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RESUMO 

O clima da Terra está sofrendo alterações significativas, resultando em impactos relevantes e 

potencialmente devastadores no ambiente, na sociedade e na economia global. As mudanças 

climáticas têm efeitos diretos na propagação de doenças transmitidas por vetores, como a 

dengue. Portanto, estudar a variação da temperatura e outros fatores climáticos em relação às 

condições de transmissão da dengue é essencial para a adoção de medidas preventivas de saúde 

pública e adaptação às mudanças climáticas. O objetivo geral deste trabalho é avaliar os efeitos 

das variações climáticas nos casos de dengue na cidade de Campina Grande – PB. Para tanto, 

estudou-se a associação entre o número de casos de dengue e as variáveis climáticas, por meio 

do cálculo do coeficiente de correlação de Pearson. Em seguida, foram ajustados e comparados 

modelos de regressão de séries temporais: regressão linear múltipla com erros independentes, 

regressão linear múltipla com erros correlacionados e modelos aditivos generalizados. Por fim, 

foi avaliado o impacto das mudanças climáticas na incidência da dengue, assumindo a tendência 

geral das variáveis climáticas na região de acordo com os cenários RCP4.5 e RCP8.5 no final 

deste século. A correlação positiva entre dengue e chuvas, com atraso de um mês, destaca a 

importância das chuvas como fator impulsionador da proliferação do mosquito. Por outro lado, 

as temperaturas máximas e médias do mês atual apresentaram correlação negativa com a 

dengue, sugerindo que temperaturas mais altas podem limitar a sobrevivência do mosquito, o 

que pode ser contrabalançado pela correlação positiva entre dengue e temperatura mínima. O 

melhor modelo de regressão linear para dengue é aquele que tem como variável dependente a 

temperatura máxima do mês atual e uma distribuição de erros seguindo um modelo 

autorregressivo de primeira ordem. Seu SRMSE foi de 0,90, o que significa que o modelo é 

10% superior que o valor esperado da variável dependente (logaritmo dos casos de dengue) 

como preditor. O ajuste do modelo aditivo generalizado apresentou melhor desempenho com 

um SRMSE igual a 0,85. Esse modelo contou, com a adição da precipitação com um mês de 

antecedência como variável independente, mostrando a influência da precipitação no número 

de casos de dengue de forma não linear. As projeções indicam aumentos de temperatura de 

1,8°C no cenário RCP4.5 e de 4,1°C no cenário RCP8.5 na região Nordeste do Brasil. Estas 

tendências indicam uma possível redução de aproximadamente 50% na taxa de incidência de 

dengue para o cenário RCP4.5 e uma redução de 100% nos casos no cenário RCP8.5, uma vez 

que as temperaturas podem tornar-se demasiado altas para a proliferação do mosquito da 

dengue. Este estudo fornece uma visão regional da variabilidade climática e seu impacto local 

na incidência de dengue em um município da região Nordeste do Brasil. Os resultados 

apresentados podem ter implicações importantes para a saúde pública no presente e nos cenários 

futuros de alterações climáticas. 

Palavras-chave: Doenças transmitidas por vetores. Dengue. Variabilidade climática. 

Regressão linear e Não-linear. Saúde pública. 

 

 

 

 



 

 

ABSCRACT 

 

The Earth's climate is undergoing significant changes, resulting in relevant and potentially 

devastating impacts on environment, society and the global economy. Climate change has direct 

effects on the spread of vector-borne diseases such as dengue fever. Therefore, studying the 

variation in temperature and other climatic factors in relation to dengue transmission conditions 

is essential for adopting preventive public health measures and adapting to climate change. The 

general objective of this work is to evaluate the effects of climate variations on dengue cases in 

the city of Campina Grande – PB. To this end, the association between the number of dengue 

cases and climatic variables was studied, by calculating the Pearson correlation coefficient. 

Then, time series regression models were adjusted and compared: multiple linear regression 

with independent errors, multiple linear regression with correlated errors, and generalized 

additive models. Finally, the impact of climate change on the incidence of dengue fever was 

assessed, assuming the general trend for climate variables in the region according to the RCP4.5 

and RCP8.5 scenarios at the end of this century. The positive correlation between dengue fever 

and rainfall, with a delay of one month, highlights the importance of rainfall as a factor that 

drives mosquito proliferation. On the other hand, the current month's maximum and average 

temperatures showed a negative correlation with dengue, suggesting that higher temperatures 

may limit mosquito survival, which may be counterbalanced by the positive correlation between 

dengue and minimum temperature. The best linear regression model for dengue is one that has 

the maximum temperature in the current month as a dependent variable and a distribution of 

errors following a first-order autoregressive model. Its SRMSE was 0.90, which means that the 

model is 10% better than the expected value of the dependent variable (logarithm of dengue 

cases) as a predictor. The adjustment of the generalized additive model showed however better 

performance with an SRMSE equal to 0.85, with the addition of precipitation as an independent 

variable, showing the influence of precipitation on the number of dengue cases in a non-linear 

form. Projections indicate temperature increases of 1.8°C in the RCP4.5 scenario and 4.1°C in 

the RCP8.5 scenario in the Northeast region of Brazil. These trends may lead to a reduction of 

approximately 50% in the dengue incidence rate for the RCP4.5 scenario and a 100% reduction 

in cases in the RCP8.5 scenario, as temperatures could become too high for the dengue 

mosquito to proliferate. This study provides a regional view of climate variability and its local 

impact on dengue incidence in a municipality in the Northeast region of Brazil. The results 

presented may have important implications for public health in the present and in future climate 

change scenarios. 

 

Key words: Vector-borne diseases. Dengue. Climate variability. Linear and Non-linear 

regression. Public health. 
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1. INTRODUÇÃO 

As mudanças climáticas têm se tornado uma das questões mais prementes e desafiadoras 

enfrentadas pela humanidade no século XXI. O clima da Terra está passando por alterações 

significativas, resultando em impactos relevantes e potencialmente devastadores no meio 

ambiente, na sociedade e na economia global (Ebi et al., 2018).   

De acordo com o Quinto Relatório do Painel Intergovernamental das Mudanças 

Climáticas (IPCC), a temperatura da superfície global deve aumentar entre 0,3 e 0,7 °C no 

período de 2016 a 2035, em relação ao intervalo de 1986 a 2005 (IPCC, 2012).  O relatório 

também concluiu que, embora os impactos das alterações climáticas na saúde humana sejam 

variáveis em comparação com outros fatores, as relações identificadas até o momento não 

devem ser descartadas (Barcellos, 2016). Isso ocorre, em parte, devido às alterações climáticas 

que têm provocado modificações nos padrões esperados dos vetores de doenças, assim como o 

surgimento de doenças e agravos diretos em decorrência de fenômenos climáticos extremos 

(IPCC, 2012). 

Entre as preocupações com as doenças transmitidas por vetores e pelas mudanças 

climáticas, a dengue é uma das mais alarmantes. A dengue é transmitida principalmente pelo 

mosquito Aedes Aegypti (Krug et al., 2019). O tempo de vida e a reprodução desse mosquito 

variam de acordo com o tipo de clima, podendo ser maior ou menor em diferentes regiões.  

No período de 1994 a 2002, foram notificados quase três milhões de casos de dengue 

no Brasil, com um aumento da incidência de 37 para 454 por 100.000 habitantes no período. 

Embora grandes surtos tenham sido observados na estação chuvosa, uma parte considerável dos 

casos (em torno de 500 mil) foram registrados em estação sem chuva, demonstrando, assim, o 

aumento da atividade do vírus da dengue durante todo o ano. No Nordeste do Brasil, os períodos 

sem chuvas podem contribuir para o aumento da abundância de vetores por meio de 

reservatórios de armazenamento de água, que podem servir como locais de reprodução para os 

mosquitos vetores (Pontes, 2000). Aproximadamente 50% dos casos de dengue ocorreram em 

adultos entre 20 e 40 anos de idade. Assim, a incidência de dengue foi consistentemente maior 

em adultos, atingindo até 433 por 100.000 habitantes na faixa etária de 30 a 49 anos em 2002 

(Siqueira et al., 2005). 

Estudos sobre a difusão da transmissão da dengue no Brasil revelam que a doença vem 

expandindo sua área de transmissão em quase todo o território nacional, tornando-se 

hiperendêmica ao longo do litoral leste e regiões centrais (Barcellos; Lowe, 2014). Os surtos se 

concentram principalmente no Nordeste e surpreendentemente, também no Sul.  
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De fato, entre 2001 e 2019, a zona de transmissão da doença se expandiu para o Sul do 

país, a região Centro-Oeste e a região Amazônica, quando foram registrados quase 13 milhões 

de casos de dengue 558 microrregiões do Brasil. A sazonalidade da dengue variou entre as 

regiões do país, com a alta temporada de transmissão ocorrendo no início do ano em alguns 

locais, como é o caso da região Norte do Brasil. Além disso, foi reportada alta variabilidade 

interanual com grandes epidemias ocorrendo, na região Nordeste em 2010, 2013, 2015, 2016 e 

2019 (Lowe et al., 2021). 

Uma explicação para o aumento da zona de transmissão no Brasil é o aumento da 

temperatura nessas regiões. Sophie et al. (2021) destacou um aumento no número de meses em 

que as temperaturas variam de 16,2°C a 24,5°C em áreas do Sul e Sudeste do Brasil. Essas 

regiões que eram consideradas anteriormente como sendo protegidas contra a transmissão da 

dengue, por causa das temperaturas relativamente mais baixas.  

No Nordeste do Brasil, durante o período de chuva, as temperaturas variam entre 25°C 

e 35°C, que são condições ideais para a propagação da doença (Lira, 2020). Nesse intervalo de 

temperatura o mosquito Aedes aegypti é mais ativo e eficiente na transmissão da dengue 

(Gomes, 2018), pois se alimenta com mais frequência, busca hospedeiros humanos e realiza a 

postura de ovos com maior eficácia. Além, disso, o ciclo de vida do mosquito, que inclui o 

desenvolvimento do ovo, larva e pupa até a fase adulta, é mais curto. Isso significa que a 

população de mosquitos pode aumentar rapidamente em áreas onde as temperaturas são mais 

quentes (Ferreira, 2018). 

Enquanto o clima frio pode reduzir a velocidade de replicação e a sobrevivência do 

mosquito (Hales et al., 2002). Estudar a variação da temperatura e de outros fatores climáticos 

em relação às condições do mosquito é fundamental para adotar medidas preventivas em 

regiões com maior propensão à antecipação do mosquito e possíveis epidemias, além de 

providenciar medidas em áreas menos propensas, levando em consideração a população 

suscetível. 

Estudos sobre a influência climática na saúde humana não se limitam apenas às doenças 

transmitidas pelo mosquito Aedes Aegypti. Segundo Caminade et al. (2013), o clima contribuiu 

parcialmente para a expansão da endemicidade da malária no século XX em regiões da África 

Ocidental e América do Sul, onde foram observadas mudanças na duração da estação de 

transmissão da doença. Essas áreas foram identificadas por meio de mapas que mostram 

mudanças na duração da estação de transmissão da malária (ETM) e locais com uma taxa de 

acerto superior a 60% foram identificadas. O aumento da ETM foi consistente em regiões como 
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a África oriental, África do Sul, centro de Angola, Madagascar, América Central, sul do Brasil, 

leste da Austrália e fronteira entre Índia e Nepal.  

Liu-Helmersson et al. (2019) empregaram a modelagem de nicho ecológico como uma 

abordagem científica para analisar os fatores socioeconômicos e de saúde pública que 

influenciam a presença ou a ausência do mosquito Aedes Aegypti. Observou-se que o ciclo 

reprodutivo do mosquito está fortemente condicionado por variáveis climáticas, tais como 

temperatura do ar, umidade relativa do ar e pluviosidade. É importante notar que variações 

extremas de temperatura, tanto em direção ao calor quanto ao frio, podem resultar na redução 

ou expansão das populações de mosquitos. Essas constatações são de relevância para a 

compreensão das dinâmicas de transmissão de doenças transmitidas por mosquitos, como a 

malária e a dengue. 
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2. OBJETIVOS  

2.1 Objetivo Geral 

O objetivo geral deste trabalho é avaliar os efeitos das variações do clima nos casos de 

dengue na cidade de Campina Grande - PB. Este estudo tem como objetivo fornecer 

informações valiosas para a formulação de políticas públicas de saúde e ajudar a desenvolver 

estratégias de prevenção e controle de doenças na região. 

2.2 Objetivo Específico  

• Associar a variação da incidência de dengue com variáveis climáticas; 

• Ajustar um modelo de regressão de séries temporais, considerando os erros 

independentes ou correlacionados; 

• Ajustar um modelo não-linear aditivo generalizado; 

• Comparar os modelos ajustados; 

• Avaliar o impacto das mudanças climáticas na incidência de dengue, assumindo a 

tendência geral para as variáveis climáticas em Campina Grande-PB em função dos 

cenários de RCP4.5 e RCP8.5. 
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3. FUNDAMENTAÇÃO TEÓRICA  

3.1 Mudanças Climáticas  

Nos séculos XIX e XX, estudos em geomorfologia e paleontologia revelaram 

informações sobre o clima passado da Terra, abrangendo períodos de centenas de milhões de 

anos. Durante a Era Paleozoica, iniciada há cerca de 600 milhões de anos, as evidências 

mostram variações climáticas mais quentes e mais frias do que as atuais. No Período Terciário, 

entre 65 e 2,6 milhões de anos atrás, as temperaturas foram predominantemente mais quentes, 

enquanto no Período Quaternário, desde 2,6 milhões de anos até o presente, se testemunhou 

oscilações entre condições glaciais e interglaciais (Treut et al., 2007). 

 Descobertas de mudanças climáticas abruptas, eventos regionais com diversas 

variações de temperatura ao longo de décadas, foram identificadas pela primeira vez através da 

análise de núcleos de gelo da Groenlândia em 1984. Essas mudanças abruptas, ocorridas no 

final da última era glacial, foram associadas a alterações nos padrões de circulação do Oceano 

Atlântico. No final dos anos 1990, ficou claro que as mudanças climáticas abruptas, 

especialmente nas regiões do Atlântico Norte, registradas nos núcleos de gelo da Groenlândia, 

foram excepcionais e de grande magnitude. Esses eventos são conhecidos como eventos 

Dansgaard-Oeschger (Treut et al., 2007). 

Os cientistas Treut et al. (2007) concluíram que, embora vários fatores influenciem o 

clima, a atividade humana foi a principal força responsável pela maior parte do aquecimento 

global distribuído nos últimos 50 anos. As mudanças climáticas causadas pelo homem resultam 

principalmente da alteração dos níveis de gases de efeito estufa na atmosfera, bem como de 

mudanças nas partículas em suspensão (aerossóis) e do uso da terra. Há mais de um século, 

Arrhenius (1896) fez uma previsão baseada em gases de efeito estufa, indicando que uma 

variação de 40% na concentração atmosférica de CO2 poderia desencadear mudanças 

significativas no clima, incluindo avanços e retrocessos glaciais. Cerca de cem anos depois, foi 

confirmado que a concentração de CO2 variava nessa proporção entre os períodos glaciais e 

interglaciais (Treut et al., 2007). 

Callendar (1938) desenvolveu equações que relacionavam os gases de efeito estufa às 

mudanças climáticas. Ele descobriu que a duplicação da concentração atmosférica de CO2 

resultaria em um aumento médio de temperatura global de 2°C, com um aquecimento mais 

pronunciado nas regiões polares (Marengo, 2007). Ele também associou o aumento da queima 

de combustíveis fósseis ao aumento de CO2 e aos efeitos estufa. Em 1947, Ahlmann sugeriu 
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um aquecimento de 1,3°C no Ártico setentrional desde o século XIX e atribuiu essa variação 

climática ao aquecimento causado pelos gases de efeito estufa. 

O 4º Relatório de Avaliação das Mudanças Climáticas Globais (IPCC-AR4) publicado 

pelo IPCC em 2004 destaca os riscos decorrentes do aumento da concentração de gases de 

efeito estufa na atmosfera, enfatizando a dificuldade dos países industrializados em reduzir suas 

emissões e a resistência das nações em desenvolvimento em adotar medidas para estabilizar e 

diminuir suas emissões. 

O relatório também enfatiza que é "muito provável" (com até 90% de probabilidade) 

que as atividades humanas, em especial a queima de combustíveis fósseis, estejam contribuindo 

para o aquecimento global desde meados do século XX, aumentando a confiança na ligação 

entre atividades humanas e mudanças climáticas. 

O 5º Relatório de Avaliação do Painel Intergovernamental sobre Mudanças Climáticas, 

publicado em 2013, representa uma avaliação abrangente e fundamental do conhecimento 

científico sobre as mudanças climáticas globais. Este relatório se concentra principalmente nos 

aspectos físicos da mudança climática, sendo um marco crucial para a compreensão das 

interações que moldam o clima da Terra (IPCC, 2013). 

O relatório apresenta evidências sólidas de que o clima global está esquentando e que a 

concentração de gases de efeito estufa na atmosfera está em ascensão, principalmente devido 

às atividades humanas, como a queima de combustíveis fósseis e o desmatamento. Esses gases 

retêm o calor do sol na atmosfera, criando um efeito de estufa ampliado, que é o principal motor 

do aquecimento global (IPCC, 2013). 

Uma das principais conclusões do relatório é a confirmação de que a influência humana 

é a principal causa do aquecimento global observado nas últimas décadas. As emissões de gases 

de efeito estufa são apontadas como o fator dominante nesse processo (IPCC, 2013). 

O relatório também aborda os impactos atuais e futuros das mudanças climáticas em 

diferentes regiões do mundo. Isso inclui questões como o aumento do nível do mar, eventos 

climáticos extremos, mudanças nos ecossistemas, ameaças à segurança alimentar e hídrica, 

entre outros. Ele alerta para a necessidade urgente de adaptação e de mitigação das mudanças 

climáticas (IPCC, 2013). 

Os planos de emissões futuras, como o RCP4.5 e o RCP8.5 (Vias Representativas de 

Concentração), são apresentados como ferramentas essenciais para avaliar os possíveis 

impactos futuros da mudança climática e direcionar a tomada de decisões. O relatório enfatiza 

a importância de agir para evitar cenários de alto aquecimento, destacando a necessidade de 

medidas como a transição para energias renováveis e a redução das emissões de carbono (IPCC, 
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2013). Para o cenário de RCP4.5 foi representada uma trajetória de emissões em que as ações 

são tomadas para reduzir as emissões de gases de efeito estufa, com uma prevenção do aumento 

da temperatura média global de aproximadamente 1,1°C a 2,6°C até o final do século em 

comparação com os níveis pré-industriais, incluindo menor aumento do nível do mar, eventos 

climáticos extremos menos intensos e menor ameaça à biodiversidade. O cenário RCP4.5 

representa um futuro em que a comunidade global toma medidas eficazes para limitar as 

emissões, enquanto o RCP8.5 representa um cenário em que as emissões continuam 

aumentando sem controle (IPCC, 2013). 

As revisões do 5º Relatório do IPCC destacam a importância de reduzir as emissões e 

tomar medidas para limitar o aquecimento global, a fim de evitar cenários de alto aquecimento 

e minimizar os impactos adversos das mudanças climáticas. Esses cenários também 

desempenharam um papel fundamental na formulação de políticas climáticas, incluindo o 

Acordo de Paris, que busca limitar o aumento da temperatura global abaixo de 2°C acima dos 

níveis pré-industriais, com esforços para limitar o aumento a 1, 5°C (IPCC, 2013). 

Cada uma das RCP foi formulada por um grupo de cenários diferentes de forçantes 

climáticas, sendo designadas de acordo com as forçante radiativas durante o século XXI. O 

RCP 3-PD (Pico e Declínio) denota um ápice da forçante radiativa em torno de meados do 

século, com 3 W/m², seguido de um declínio para 2,6 W/m² até o ano 2100 (também chamado 

de RCP2.6). O segundo cenário, denominado como RCP 4.5, implica na estabilização da 

forçante em 4,5 W/m² antes do final do século XXI. O RCP 6.0, por sua vez, projeta uma 

estabilização em 6 W/m² após o ano 2100. O RCP com maior concentração de Gases de Efeito 

Estufa (GEE), o RCP 8.5, projeta uma estabilização em 12 W/m² após o fim do século, 

alcançando uma forçante radiativa de 8,5 W/m² em 2100 (Costa et al., 2015). 

Em relação às questões pertinentes aos modelos globais de mudanças climáticas do 

CMIP5, é relevante destacar a resolução espacial limitada desses modelos, o que resulta na 

incapacidade de produzir determinados processos físicos, além da incerteza quanto às emissões 

futuras de gases de efeito estufa. Os RCPs, como explicados anteriormente, desempenham um 

papel crucial como entradas para os experimentos numéricos de modelagem climática e química 

atmosférica no contexto do CMIP5 

O relatório sobre o Clima do INPE publicado em 2007 oferece cenários das mudanças 

climáticas no Brasil até o final do século XXI (Marengo et al., 2007). Este relatório descreve 

cenários regionalizados de clima futuro (2071-2100), estabelecendo três modelos climáticos 

regionais (Eta-CCS, HadRM3P e RegCM3), com resolução espacial de 50 km de latitude-

longitude. Esses modelos foram forçados com o modelo atmosférico global do Hadley Centre 
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do Reino Unido (HadAM3P), para os cenários de emissão A2 (pessimista-alta emissões) e B2 

(otimista-baixas emissões). As projeções de mudanças de temperatura para o Nordeste do Brasil 

para o período de 2071-2100, em comparação com o período de referência (1961-1990), foram 

obtidas para os dois cenários climáticos supracitados para a média dos 3 modelos regionais. 

Segundo este relatório do INPE, no cenário climático pessimista as temperaturas aumentariam 

de 2 a 4 ºC e as chuvas teriam uma redução de 15 a 20% (2-4 mm.dia-1) para o Semiárido do 

Brasil. No cenário otimista o aquecimento seria entre 1 e 3 ºC e a chuva ficaria entre 10 e 15% 

(1-2 mm.dia-1) menor que no presente a nível anual. (Marengo et al., 2011). 

3.1.1 Política Nacional sobre Mudança do Clima  

A Política Nacional de Mudança do Clima (PNMC) é um importante marco jurídico 

brasileiro criado para enfrentar os desafios das mudanças climáticas globais e promover ações 

de mitigação e adaptação no país. A PNMC foi instituída pela Lei nº 12.187/2009 e 

posteriormente regulamentada pelo Decreto nº 9.578/2018. A PNMC busca garantir que o 

desenvolvimento econômico e social do país contribua para a proteção do sistema climático 

global. Para possibilitar o alcance desses objetivos, o texto da PNMC estabelece algumas 

diretrizes, como fomento a práticas que efetivamente reduzam emissões de GEE e o estímulo e 

apoio dos governos – federal, estadual, distrital e municipal – à adoção de atividades e 

tecnologias de baixas emissões desses gases, além de padrões sustentáveis de produção e 

consumo. Devem-se considerar, ainda, as diretrizes voltadas para a redução nas incertezas das 

projeções nacionais e regionais futuras da mudança do clima, identificação das vulnerabilidades 

e adoção de medidas de adaptação adequadas para reduzir os efeitos adversos da mudança do 

clima (BRASIL, 2016).  

A PNMC é uma lei federal e, portanto, é regida pelas normas e princípios do sistema 

legal brasileiro, criados pelo Decreto presidencial n° 6.263/2007. Dentre os instrumentos 

institucionais para a execução da PNMC estão o Plano Nacional sobre Mudança do Clima, o 

Fundo Nacional sobre Mudança do Clima e a Comunicação do Brasil à Convenção-Quadro das 

Nações Unidas sobre a Mudança do Clima (UNFCCC), além de medidas que estimulem o 

desenvolvimento de processos e tecnologias que contribuam para a mitigação e adaptação. A 

PNMC estabelece ações e medidas para mitigação e adaptação à mudança do clima, com 

objetivos específicos como fomentar aumentos de eficiência nos setores da economia, manter 

a participação de energia renovável na matriz elétrica, fomentar o aumento sustentável de 

biocombustíveis na matriz de transportes, reduzir o desmatamento ilegal e eliminar a perda 

líquida da área de cobertura florestal no Brasil, além de identificar os impactos ambientais da 
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mudança do clima e desenvolver pesquisas científicas para minimizar os custos 

socioeconômicos de adaptação. A formulação dos Planos Setoriais embasou a revisão do Plano 

Nacional de Mudanças Climáticas e deu início à construção do Plano Nacional de Adaptação à 

Mudança do Clima (PNA). A Rede Brasileira de Pesquisas sobre Mudanças Climáticas Globais 

- Rede Clima - e a Comissão de Coordenação das Atividades de Meteorologia, Climatologia e 

Hidrologia são instrumentos institucionais da PNMC.  

3.1.2 Plano Nacional de Adaptação à Mudança no Clima 

Considerando a adaptação como um elemento crucial do esforço global para lidar com 

a mudança do clima e seus impactos, o Governo Federal instituiu, em 2012, o Grupo Técnico 

de Adaptação. Em 2013, foram realizados estudos, oficinas de capacitação, definição de setores 

prioritários e mobilização de atores-chave para a elaboração do PNA, coordenado pelo 

Ministério do Meio Ambiente (MMA). Ministérios adicionais também contribuíram para a 

elaboração do PNA, bem como governos estaduais, especialistas, centros de pesquisa, empresas 

e a sociedade civil.  

A Portaria n° 15019 do MMA foi responsável por publicar a versão final do PNA, em 

10 de maio de 2016. O PNA apresenta diretrizes e recomendações para onze temas considerados 

de interesse nacional, em relação à vulnerabilidade às mudanças do clima. Seu objetivo geral é 

promover a gestão e a redução do risco climático no país, diante dos efeitos negativos 

associados à mudança do clima. Com isso, busca-se aproveitar as oportunidades emergentes, 

prevenir perdas e danos e desenvolver instrumentos que permitam a adaptação dos sistemas 

naturais, humanos, produtivos e de infraestrutura. 

A partir de estudos realizados por Revi et al. (2014) e PBMC (2016), foi constatado que 

as principais ameaças associadas às mudanças climáticas para as áreas urbanas estão no 

aumento da frequência e intensidade dos eventos extremos. Isso porque, em geral, muitas 

cidades brasileiras já possuem problemas socioambientais decorrentes de padrões de 

desenvolvimento e transformação do espaço, o que as tornaram vulneráveis aos impactos das 

mudanças do clima. Como consequência, a intensificação dos eventos extremos inerentes às 

mudanças climáticas tende a potencializar os riscos já existentes nas áreas urbanas. Problemas 

como deficiências no planejamento urbano, infraestrutura e serviços básicos (como saneamento 

e coleta de resíduos) combinados com o aumento da densidade demográfica podem gerar 

inundações bruscas, deslizamentos de terra, ondas de calor, impactos na qualidade e 

distribuição de água, doenças respiratórias e intestinais, além da multiplicação de mosquitos e 
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outros vetores de doenças tropicais, como malária, dengue, Zica e febre amarela, entre outros 

(Huq et al., 2007; Revi et al., 2014). 

Devido às diferenças entre os níveis de vulnerabilidade das populações urbanas, é 

necessário que haja uma colaboração interinstitucional e conjunta para criar políticas sociais, 

estratégias e programas integrados de adaptação que sejam eficazes e de longo alcance em todo 

o país, conforme indicado pelo Governo Federal em 2016. 

3.2 Doenças Arboviroses 

 

3.2.1 Malária  

A malária é causada por cinco espécies de parasitas plasmódios que são transmitidos 

por mosquitos Anopheles. A taxa de anos de vida perdidos ajustados por incapacidade (DALY) 

de malária diminuiu quase 40% globalmente entre 2007 e 2017. A maior carga de doenças 

ocorre na África, onde ocorrem mais de 90% de todas as mortes relacionadas à malária (M’Bra 

RK et al., 2018). Entretanto a vacina contra a malária RTS, S/AS01 para a prevenção da malária 

por Plasmodium falciparum em crianças que vivem em regiões com transmissão moderada a 

alta em combinação com quimio prevenção deve diminuir ainda mais a carga da doença (Bejon 

et al., 2008). Embora tenha havido surtos locais e recorrentes de malária na Europa, o risco de 

transmissão generalizada é relativamente baixo (Sudre et al., 2013). 

A malária expandiu seu alcance geográfico para altitudes mais altas durante os anos 

mais quentes nas áreas montanhosas da Colômbia e da Etiópia (Midekisa, 2015). Assim, sem 

intervenções, é possível que as tendências de declínio no número de DALYs de malária sejam 

compensadas por mudanças climáticas. As vias de risco em cascata de vários furacões 

interromperam os programas de controle de vetores antimalária e resultaram no ressurgimento 

da malária por P. falciparum no Haiti, Guatemala e Nicarágua nas décadas de 1980 e 1990 

(Paho, 1998). Na região amazônica, a estação seca está ficando mais longa e a estação chuvosa 

que começava no final de outubro agora começa no início de dezembro; isso exacerba e acelera 

a queima da floresta tropical. Estresse térmico e incêndios na floresta amazônica juntamente 

com desmatamento, densidade de estradas e extração seletiva de madeira estão associados ao 

risco de malária na Amazônia (Hahn, 2014).  

3.2.2 Chikungunya 

O vírus Chikungunya foi identificado pela primeira vez na Tanzânia em 1952, onde 

causou um surto localizado na África e partes da Ásia, e depois se espalhou para países ao redor 

do Oceano Índico. As viagens e o comércio contribuíram para uma disseminação geográfica 
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contínua para áreas temperadas (Yactayo et al., 2016). O vírus também foi repetidamente 

importado para a Europa, onde condições climáticas favoráveis contribuíram para dois grandes 

surtos na Itália em 2007 e 2017 (Rocklöv et al., 2017). As projeções do risco de Chikungunya 

sob os cenários de RCP4.5 e RCP8.5, indicam uma expansão das áreas propícias para 

transmissão da doença na China, na África Subsaariana, na América do Sul, nos EUA e na 

Europa continental. Por outro lado, há contração do risco de transmissão ao longo de partes da 

costa adriática na Europa como resultado de condições climáticas desfavoráveis, por exemplo 

(Tjaden et al., 2017). 

3.2.3 Zika 

O vírus Zika também se expandiu globalmente, causando grandes surtos na América do 

Sul em 2016, após um período de altas temperaturas recordes e severas condições de seca em 

2015. O armazenamento de água potável em recipientes em casa como resultado da seca pode 

ter criado condições ideais de reprodução e exposição de vetores que contribuíram para o 

surto. O Zika tem o potencial de se expandir em direção ao latitudes mais elevadas à medida 

que as temperaturas se aproximam da faixa térmica ótima prevista, estimada em 29°C (Tesla et 

al., 2018). 

3.2.4 Dengue  

A dengue é uma enfermidade febril aguda causada por arbovírus pertencentes à família 

Flaviviridae, transmitidos por fêmeas do mosquito Aedes Aegypti. A dengue é responsável por 

cerca de 10.000 mortos e 100 milhões de infectados sintomáticas por ano em mais de 125 países 

(Stanaway et al., 2016). O vírus da dengue é composto por quatro sorotipos (DENV-1, DENV-

2, DENV-3 e DENV-4). A infecção por um sorotipo provoca imunidade de longa duração para 

o mesmo sorotipo, mas não para os demais. Os quatro sorotipos do vírus da dengue circulam 

nas Américas, e no Brasil, DENV-1, DENV-2 e DENV-3 estão em circulação simultânea desde 

1991 (Lung, 2007). 

Em julho de 2010, houve a detecção do sorotipo DENV-4 no Brasil, após um intervalo 

de 28 anos, ocasionando dez casos na região de Roraima, sendo nove na cidade de Boa Vista. 

A dengue apresenta uma duração de até sete dias, com resolução espontânea sem sequelas em 

muitos casos, mas pode evoluir para formas graves. Para identificar casos de dengue em áreas 

com transmissão conhecida ou presença do mosquito, é definido como caso suspeito de dengue 

clássico o paciente que apresenta doença febril aguda com duração de no máximo sete dias, 

acompanhada de pelo menos dois dos seguintes sintomas: cefaleia, dor retroorbital, mialgia, 
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artralgia ou prostração. Já o caso suspeito de febre hemorrágica da dengue (FHD) é 

caracterizado por manifestações hemorrágicas além dos sintomas clássicos da dengue (Arcari, 

2007). 

Durante uma epidemia, a confirmação de um caso de dengue pode ser feita por critério 

clínico-epidemiológico. A FHD requer não somente confirmação laboratorial, mas também a 

verificação de determinados critérios (exame específico). Quando nem todos os critérios para 

encerrar um caso como FHD são atendidos, o caso é classificado como dengue com 

complicações.  

Os países tropicais são os mais atingidos pela dengue, em razão das suas características 

ambientais, climáticas e sociais. O espaço habitado pelos seres humanos tem uma função 

fundamental na determinação da circulação dos sorotipos do vírus da dengue e na infecção. No 

processo de ocupação do espaço urbano, os seres humanos criaram condições favoráveis à 

ocorrência de muitas doenças (Gomes, 2018). 

O artrópode vetor da dengue é infectado pelo vírus durante sua alimentação sanguínea 

em indivíduos com viremia, que ocorre 24 horas antes do início da febre e permanece por seis 

a oito dias após o início da doença. Após a infecção do mosquito, o vírus se multiplica e conclui 

seu ciclo de maturação em um período de 8 a 12 dias, dependendo da temperatura ambiente. 

Esse é o período extrínseco, após o qual o mosquito torna-se um vetor infectante, capaz de 

transmitir o vírus da dengue por toda a sua vida através da saliva (Hasan, 2016). 

Os criadouros, tanto dentro como fora das casas, são abundantes durante a estação seca 

e chuvosa. Durante a estação chuvosa, os mosquitos tendem a se proliferar em criadouros 

criados pela interceptação da água da chuva. Durante a estação seca, as pessoas tendem a 

armazenar água dentro de casa em regiões secas, o que facilita a proliferação do mosquito Aedes 

Aegypti e a postura de seus ovos (Gomes, 2018).  

O Aedes Aegypti também é, o principal vetor da Chikungunya, febre amarela e Zika. Ele  

experimentou uma expansão global, ameaçando quase metade da população mundial (Bhatt et 

al., 2013). Essa expansão é atribuída em parte ao aumento da temperatura global, mas também 

ao movimento globalizado da população por meio do tráfego aéreo e da urbanização, além de 

medidas insuficientes de controle de vetores (Semenza et al., 2014).   

3.3 Variáveis Climáticas e os impactos na incidência da Dengue 

Existe uma série de estudos que projeta o impacto das mudanças climáticas em doenças 

sensíveis ao clima. Há um conjunto de evidências que sugere um aumento no alcance 

geográfico da transmissão do vírus da dengue em um clima futuro. As condições climáticas, 
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como temperatura do ar, chuva e umidade relativa do ar, têm impacto na multiplicação e 

desenvolvimento das infecções por dengue (Mutheneni et al., 2017; Thai e Anders 2011; Wu 

et al., 2016; Costa et al., 2022). 

Estudos científicos têm demonstrado que a temperatura ambiente exerce impacto 

significativo sobre o tamanho populacional, período de maturação, atividade hematofagia da 

fêmea e a taxa de sobrevivência do vetor da dengue. Com o aumento da temperatura, a 

população de vetores tende a crescer, e a atividade hematofagia do mosquito aumenta, chegando 

a dobrar à temperatura de 32°C em relação à temperatura de 24°C. Outro fato relacionado à 

temperatura é que a taxa de metabolismo do vetor acelera seu ciclo evolutivo, que geralmente 

dura entre 9 e 12 dias, podendo chegar a 8 dias em meses quentes ou se prolongar por cerca de 

22 dias em meses frios. A temperatura também exerce influência no comportamento do vírus 

dentro do vetor, acelerando a replicação e maturação do vírus no inseto (período extrínseco) 

conforme a temperatura aumenta (Ferreira, 2018).  

Por outro lado, estudos apontam que o vírus não é capaz de se amplificar no vetor em 

uma temperatura ambiente abaixo ou muito elevada como 6°C ou acima de 42°C, 

respectivamente. Em geral, em temperaturas muito baixas, o desenvolvimento viral é mais lento 

e o mosquito não sobrevive o tempo suficiente para se tornar infeccioso e transmitir o vírus. 

Uma temperatura entre 16 e 29°C seria adequada para o mosquito Aedes aegypti se desenvolver 

(Torres, 1998; Kramer, 2023). 

A precipitação pode ser o principal agente climático associado à distribuição e ao 

aumento na incidência da dengue em regiões tropicais (Arcari, 2007). Entretanto, a relação 

entre a precipitação e a incidência de casos de dengue pode não seguir uma proporcionalidade, 

como conhecida entre dengue e temperatura ambiente. O aumento na precipitação pode 

aumentar o número de locais de reprodução do vetor devido ao acúmulo de água, mas pode 

também eliminar os criadouros devido a enchentes, resultando em uma redução da população 

vetorial. Por um outro lado, níveis pluviométricos muito baixos podem levar ao armazenamento 

de água em recipientes que servem como criadouros. Assim, a associação entre a precipitação 

e a incidência da doença pode não ser direta, dependendo das características urbanas locais e 

de abastecimento de água.  

Diferentes estudos apontam que a umidade relativa do ar afeta significativamente a 

sobrevivência do vetor Aedes Aegypti, tanto na fase de ovo como na forma adulta (Gomes, 

2018). O aumento da umidade pode favorecer a taxa de sobrevivência do mosquito e influenciar 

hábitos alimentares e de atração entre eles. Em ambientes com baixa umidade, há uma maior 

propensão das fêmeas do mosquito em buscar a alimentação em humanos, o que pode promover 
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a transmissão da doença (Lira, 2020). Além disso, estudos indicam que a velocidade do vento 

pode estar inversamente associada com a incidência da dengue, pois o aumento da velocidade 

do vento pode levar a uma redução na densidade vetorial. Embora haja especialistas que 

afirmam que o vento possa contribuir para a dispersão passiva do vetor. Além disso a altitude 

é considerada um fator limitante na dispersão do vetor, no entanto, já foi relatada a presença do 

vetor e a ocorrência de epidemias em altitudes acima de mil metros (Siqueira, 2018). 

Um estudo realizado em Singapura demonstrou que há uma relação linear entre o 

aumento da incidência de dengue e o aumento da temperatura, com um atraso de 5 a 16 semanas, 

e com a precipitação, com um atraso de 5 a 20 semanas (Sousa, 2020). Outro estudo encontrou 

correlação significativa entre a incidência de dengue e a temperatura máxima (com atraso de 1 

a 4 meses), temperatura mínima (com atraso de 1 a 3 meses), umidade relativa (com atraso de 

1 a 3 meses) e precipitação (com atraso de 2 meses) (Ferreira, 2018). 

Diversas pesquisas estabeleceram a dinâmica entre a ocorrência de casos positivos de 

dengue e fatores climáticos, como temperatura, umidade e pluviosidade, embora com algum 

tempo de defasagem. Esses estudos foram cruciais na elaboração de modelos de alerta 

antecipado capazes de projetar casos de dengue com base em dados meteorológicos (Colón-

González et al., 2013; Wang et al., 2014; Struchiner et al., 2015; Li et al., 2017). 

Mais recentemente, o impacto de fatores sociais na transmissão do vírus da dengue, 

como o controle de vetores, qualidade de habitação, renda, entre outros, vem sendo estudados 

como forma de redução do  risco de dengue (Åström, 2012). Por exemplo, já foi demonstrado 

que parte do aumento da transmissão do vírus pelas mudanças climáticas poderia ser 

compensado pelas o aumento do produto interno bruto (Banu, 2011). 

3.4 Casos Graves de Dengue no Brasil e Mundo 

A dengue na sua forma mais grave é a febre hemorrágica viral mais disseminada em 

regiões tropicais e subtropicais, especialmente nas áreas urbanas, sendo um dos principais 

problemas de saúde pública em todo o mundo. Segundo a Organização Mundial de Saúde, cerca 

de 2,5 bilhões de pessoas (ou seja, 2/5 da população mundial) estão sob o risco de contrair 

dengue. Nos últimos 35 anos, a incidência de dengue e o número de epidemias têm aumentado 

em todo o mundo. Até a década de 1950, apenas nove países haviam notificado a doença, mas 

esse número aumentou para 26 nos anos seguintes e, desde a década de 1990, mais de 100 

países tiveram casos de dengue notificados. O ano de 2002 foi o de maior número de casos 

notificados no mundo, com a doença atingindo 69 países. Somente nas Américas, foram 

notificados 1.015.420 casos de dengue (World Health, 2007). 
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O Aedes Aegypti está amplamente disseminado nas Américas, do Uruguai ao sul dos 

Estados Unidos, e é responsável por epidemias significativas em países como Cuba, Venezuela, 

Brasil e Paraguai. O vetor tem papel crucial nas características das epidemias de dengue, no 

controle vetorial e na variedade de habitats urbanos. Devido ao atual cenário 

socioepidemiológico, espera-se que a expansão geográfica da dengue continue, como já ocorreu 

em partes da Argentina, onde a transmissão do vírus foi registrada pela primeira vez em 2009 

(Gomez, 2009). 

No território brasileiro, houve uma epidemia de dengue no estado de Roraima entre 

1981 e 1982, com isolamento dos sorotipos 1 e 4 do vírus. Um inquérito sorológico subsequente 

revelou que onze mil indivíduos foram infectados pelo vírus da dengue (Santiago, 2022). Após 

um breve período de baixa atividade epidemiológica, o sorotipo DENV-1 emergiu em 1986 no 

Estado do Rio de Janeiro, mais precisamente na cidade de Nova Iguaçu, e causou uma epidemia 

entre 1986 e 1987, com 91.853 casos notificados (Silva, 2020). Desses casos, 75% ocorreram 

na região metropolitana do Estado, conhecida como Grande Rio. Com a entrada do DENV-1 

na região Sudeste, iniciou-se a disseminação do vírus pelo Brasil (Oliveira, 2019). 

Entre os anos de 1990 e 1991, houve uma nova ocorrência de epidemia de dengue no 

Brasil, com a introdução do sorotipo DENV-2, que se espalhou pelo Rio de Janeiro e pela 

Região Nordeste. Essa epidemia foi caracterizada pelo surgimento dos primeiros casos de febre 

hemorrágica dengue (Viana, 2020). Em 2000, o sorotipo DENV-3 foi isolado no município de 

Nova Iguaçu, e em 2001-2002, foi responsável pela maior epidemia de dengue no Estado do 

Rio de Janeiro, com 368.460 casos notificados. O município do Rio de Janeiro registrou 41% 

dos casos notificados durante este período (Rodrigues, 2016). 

A dispersão viral se deu em todo território nacional, devido à efetiva colonização do 

mosquito Aedes Aegypti. A dengue em suas formas clássicas e graves (síndrome do choque da 

dengue e febre hemorrágica) está amplamente difundida, com ocorrência em todos os 27 

Estados da Federação, alcançando um total de 3.794 municípios, nos quais três sorotipos do 

vírus circulam simultaneamente em 24 Estados. (Nascimento, 2015). 

No século atual, o Brasil alcançou a posição de líder mundial em número total de casos 

reportados de dengue, com mais de três milhões de casos registrados entre 2000 e 2005 (78% 

do total de casos nas Américas e 61% dos casos reportados no mundo). Em 2007-2008, ocorreu 

uma nova epidemia no Rio de Janeiro, devido ao retorno do sorotipo DENV-2, com aumento 

significativo no número de casos em indivíduos com menos de 15 anos de idade e alta taxa de 

mortalidade na forma hemorrágica da doença (Oliveira, 2020). 
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A co-circulação dos quatro sorotipos do vírus dengue no Brasil aumenta o risco de 

epidemias de febre hemorrágica de dengue, especialmente em grandes cidades que já 

enfrentaram surtos de dois sorotipos (Neto, 2019). A sobrevivência e reprodução do mosquito 

Aedes Aegypti no ambiente é determinante para a persistência e propagação da doença. Dessa 

forma, a estratégia mais viável é o combate aos criadouros desse mosquito, visto que ainda não 

há uma vacina disponível para prevenir a infecção pelo vírus (Nascimento, 2015). 

Diante do cenário apresentado, é fundamental enfatizar a necessidade de implementar 

ações efetivas para a redução dos casos de dengue e a realização de investigações detalhadas 

dos óbitos. Essas ações são essenciais para subsidiar o monitoramento e a assistência adequada 

aos casos graves, visando evitar novos óbitos relacionados à doença (Silva et al., 2019). É 

importante adotar medidas de prevenção, controle do vetor e educação em saúde, em conjunto 

com uma abordagem integrada e coordenada entre as autoridades de saúde, profissionais de 

saúde e comunidade (Santos et al., 2019). Ações de promoção da saúde, capacitação dos 

profissionais de saúde, melhoria do sistema de informação e vigilância epidemiológica são 

estratégias fundamentais para enfrentar o desafio da dengue e minimizar seu impacto na 

população (Viana, 2016).  

3.5 Casos Dengue na Cidade de Campina Grande-PB 

Entre os anos de 1995 e 1997, foram registrados apenas seis casos da doença na Paraíba, 

distribuídos em diferentes municípios e meses. Em Campina Grande, foi registrado apenas um 

caso durante esse período, especificamente em novembro de 1996 (Rocco e Borges, 2001). 

Desde então, houve um aumento significativo no número de casos, com 138 casos registrados 

na cidade em 1998. Observou-se um maior número de casos nos meses de abril (25 casos) e 

maio (21 casos), coincidindo com o período de chuvas. Além disso, foram registrados casos 

isolados em regiões vizinhas nos meses de abril (12 casos), maio (12 casos), junho (15 casos) 

e julho (16 casos), novamente correspondendo aos meses de aumento nos índices 

pluviométricos. Essa associação sugere uma possível relação entre o início das chuvas e o 

aumento no número de casos. No ano de 2000, foram registrados 645 casos, sendo 259 casos 

notificados na região de Campina Grande, com os maiores índices observados nos meses de 

março (34 casos), abril (63 casos) e maio (28 casos) (Rocco e Borges, 2001). 

O número de casos de dengue notificados pela Secretaria Municipal de Saúde da cidade, 

e posteriormente encaminhados para a Secretaria Estadual de Saúde, totalizou 5.954 durante o 

período de janeiro de 2001 a dezembro de 2009. A maioria dos casos foi considerada autóctone, 
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ou seja, adquiridos localmente. Foi observado que os anos de 2001 a 2003 apresentaram o maior 

número de casos da doença que pode ser observado na Figura 1.  

Figura 1: Distribuição anual dos casos de dengue em Campina Grande-PB. 

 

Fonte: Lima, 2018. 

No ano de 2013, a cidade enfrentou uma das maiores epidemia de dengue já 

documentadas, com um registro de 1205 casos (Figura 2) (Silva, 2020). Esses dados sugerem 

que Campina Grande está em um contexto em que os índices de infestação do vetor estão em 

níveis que caracterizam um risco médio a alto, de acordo com os parâmetros de controle 

estabelecidos pelo Ministério da Saúde. No ano anterior à epidemia, 2012, foi registrado o 

menor número de casos de dengue na cidade, com apenas 63 casos. Esse ano se destacou no 

gráfico como o de menor incidência.  

Após 2012, os anos que apresentam os menores índices de casos de dengue são 2019, 

com 149 casos registrados, 2017, com 164 casos, e 2021, com 100 registros (Figura 2). No 

entanto, é importante mencionar que esses anos são exceções, conforme explicado pelo 

Ministério da Saúde em seu Boletim Epidemiológico, volume 52, número 3 de janeiro de 2021. 

Nos últimos três anos do gráfico, há o risco de atraso ou ausência no registro de dados, bem 

como subnotificação, o que pode levar a uma subestimação dos casos reais. Portanto, é possível 

que os índices sejam mais elevados do que os apresentados no sistema do Ministério da Saúde 

nesses anos (Mendonça, 2022). 

Os anos de 2014, 2015 e 2016 apresentam uma tendência crescente de casos, com 234, 

264 e 379 casos, respectivamente (Figura 2). No ano de 2017, houve uma queda considerável 

para 164 casos, representando uma redução de quase 50% em relação ao ano anterior. No 

entanto, em 2018, o país enfrentou outra epidemia da doença, repetindo o padrão observado nos 

anos de 2012 e 2013, em que o ano anterior apresentou uma redução nos casos e o subsequente 

registrou um aumento drástico. Embora não tenha atingido o mesmo nível de 2013, o ano de 
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2018 é relevante por também abrir espaço para casos de Zika e Chikungunya, doenças que 

também são transmitidas pelo Aedes Aegypti (Silva, 2020). 

Figura 2: Casos de Dengue em Campina Grande - PB para o período de 2011 a 2021. 

 

Fonte: Ministério da Saúde/SVS - Sistema de Informação de Agravos de Notificação - Sinan Net. Organizado 

por: Silva, 2022. 

Rodrigues et al. (2018) também retrata que foram notificados um total de mais ou menos 

1259 casos de dengue para os anos de 2015 e 2016 no município de Campina Grande. O perfil 

epidemiológico da doença no município aponta para uma maior incidência de casos em 

indivíduos na faixa etária de 20 a 39 anos, bem como uma predominância de casos no sexo 

feminino em 2015, enquanto em 2016 houve uma similaridade na transmissão entre os sexos. 

Assim, depois da entrada do vetor biológico em meadas da década de 1990, a incidência 

da dengue apresentou elevada variabilidade interanual em Campina Grande, com anos de pouco 

incidência intercaladas com epidemias, que pode estar indicando o efeito dos diferentes 

sorotipos da dengue na população local e condições sociais e hidroclimáticas locais. 
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4. METODOLOGIA  

A metodologia a ser empregada segue três fases fundamentais (conforme ilustrado na 

Figura 3). A fase inicial compreende a seleção da área de investigação e a obtenção dos dados 

referentes às variáveis climáticas e casos de dengue na localidade de Campina Grande, no 

Estado da Paraíba. A segunda etapa engloba a execução da modelagem estatística no ambiente 

de programação “R”, as quais consistiram em regressão linear múltipla com erros 

independentes, regressão linear múltipla com erros correlacionados e modelos aditivos 

generalizados. Por fim o terceiro e último bloco da metodologia envolve, de forma simplificada, 

a estimativa da projeção dos casos futuros de dengue na área de estudo. 

Figura 3: Fluxograma de atividades realizadas no trabalho. 

 

Fonte: Autor, 2023. 
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4.1 Caracterização da Área de Estudo  

O município de Campina Grande, localizada na Zona Centro-Oriental do Estado da 

Paraíba, no Nordeste do Brasil (Figura 4), ocupa uma posição estratégica na mesorregião do 

Agreste Paraibano e na microrregião de Campina Grande. Em termos de coordenadas 

geográficas, Campina Grande está localizado aproximadamente a 7°13’00” de latitude Sul e 

35°53’ de longitude Oeste (INMET, 2018). A cidade desempenha um papel de centro 

submetropolitano, exercendo influência política e econômica não apenas nos municípios 

vizinhos, mas em toda a região (Rodrigues, 2017; Cabral, 2022). 

Figura 4:Localização da cidade de Campina Grande-PB. 

 

Fonte: Autor, 2023. 

Com uma população de aproximadamente 413.830 habitantes, de acordo com os dados 

do Instituto Brasileiro de Geografia e Estatística (IBGE) de 2023, Campina Grande se destaca 

como o segundo maior município em termos populacionais no Estado da Paraíba. A cidade 

possui uma infraestrutura desenvolvida, abrangendo setores como comércio, serviços, 

instituições de ensino e uma economia diversificada. A região do Agreste Paraibano, onde 

Campina Grande está inserida, apresenta uma atividade agrícola relevante, destacando-se na 

produção de frutas, grãos e aviculturas (Rodrigues, 2017; Cabral, 2022). 

Além disso, Campina Grande é reconhecida por sediar periodicamente o evento "Maior 

São João do Mundo", uma tradicional festa junina que atrai muitos turistas de diversas partes 

do país. Essa é considerada uma das maiores festas populares do Brasil, com apresentações 
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musicais, quadrilhas, culinária típica e outras manifestações culturais (Rodrigues, 2017; Cabral, 

2022). 

O município está inserido no bioma Caatinga, próxima à Serra da Borborema, sendo 

marcada por colinas e um relevo montanhoso. A caatinga é conhecida por suas condições 

climáticas semiáridas, com chuvas escassas e irregulares. No caso de Campina Grande, o clima 

é classificado como semiárido tropical previsto pelo Instituto Nacional de Meteorologia 

(INMET, 2018). As chuvas na região são concentradas em um período de aproximadamente 

quatro meses, geralmente entre fevereiro e maio, conhecida como a estação chuvosa. O restante 

do ano tende a ser seco. A temperatura média anual na área de estudo é em torno de 25°C, 

(Cabral et al., 2013). 

4.2 Período da Coleta de Dados  

Neste estudo, foram utilizados dados provenientes do Sistema de Informação de 

Agravos de Notificação (SINAN), do Ministério da Saúde do Brasil, referentes ao período de 

2007 a 2020, que dizem respeito aos casos de dengue registrados no município de Campina 

Grande. Os dados climatológicos utilizados, incluindo precipitação, temperatura máxima, 

temperatura média e temperatura mínima, foram adquiridos do site oficial do Instituto Nacional 

de Meteorologia (INMET), que corresponde à estação meteorológica em funcionamento no 

município. 

4.3 Operacionalização da Coleta de Dados  

Os dados referentes aos casos de dengue foram coletados a partir do registro do início 

dos sintomas (dia/mês/ano) e do município de residência dos pacientes, que são disponíveis no 

SINAN. Todos os dados foram compilados em um formulário eletrônico no Microsoft Excel 

2019, com as seguintes variáveis mensais: número de casos de dengue, precipitação, 

temperatura máxima, temperatura média e temperatura mínima. 

4.4 Análise dos Dados 

Para investigar a evolução dos casos mensais de dengue em relação às variáveis 

climáticas, foram utilizados inicialmente gráficos das series temporais das variáveis envolvidas. 

Depois, foram realizados os cálculos da correlação linear de Pearson entre os casos de dengue 

e as variáveis climáticas. A linguagem de programação R foi adotada como ferramenta para a 

análise dos dados do estudo assim como o MS Excel.  

4.4.1 Coeficiente de Correlação Linear de Pearson 
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O coeficiente de correlação linear, também chamado de coeficiente de Pearson, é uma 

medida que avalia o grau de dependência linear entre duas variáveis  aleatórias (Naghettini e 

Pinto, 2007). Quando a relação linear entre as variáveis é mais forte, os pontos tendem a ficar 

mais próximos de uma linha de regressão. Esse coeficiente assume valores entre -1 e 1, podendo 

ser expresso pela Equação 1 

𝜌𝑋,𝑌 =  
𝜎𝑥,𝑦

𝜎𝑥𝜎𝑦
     (1) 

Para calcular o coeficiente de correlação linear, é necessário calcular a covariância entre 

duas variáveis. A covariância é uma medida estatística que quantifica o grau de 

interdependência ou inter-relação numérica entre duas variáveis aleatórias, ou seja, o quanto 

elas se alteram juntas. Pode ser interpretado como o momento de primeira ordem de duas 

variáveis aleatórias, centrado em suas respectivas médias, expresso pela Equação 2. 

𝜎𝑥,𝑦 =  
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

𝑛−1
  (2) 

onde 𝜎𝑥,𝑦 é a covariância amostral entre as variáveis X e Y; x e y são as médias 

aritméticas de cada uma das variáveis; n é o tamanho da amostra; 𝑥𝑖 e 𝑦𝑖 são as observações 

simultâneas das variáveis. Os desvios-padrão das expressões são calculados pelas Equações 3 

e 4. 

                   𝜎𝑥 =  √
∑ (𝑥𝑖−𝑥̅)²𝑛

𝑖=1

𝑛−1
   (3) 

                 𝜎𝑦 =  √
∑ (𝑦𝑖−𝑦̅)²𝑛

𝑖=1

𝑛−1
                 (4) 

4.5 Modelos Empíricos 

 

De forma geral, um modelo de previsão empírico é composto por uma equação de 

recorrência, na qual os valores previstos são obtidos a partir de séries históricas das variáveis 

envolvidas no processo. Não há preocupação em representar o conhecimento do fenômeno por 

meio de leis físicas, e os parâmetros são obtidos por meio de ajustes baseados na série histórica 

das variáveis. Os modelos empíricos podem utilizar dados anteriores e atuais da própria variável 

e de outras variáveis exógenas para realizar previsão em um determinado período (Amorim, 

2022). 

As previsões empíricas são fundamentadas em séries temporais quando a variável de 

interesse apresenta variações ao longo do tempo. O objetivo da previsão de séries temporais é 

estimar como a sequência de observações irá se comportar no futuro. Em seguida, são 
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apresentados os modelos empíricos de séries temporais utilizados neste estudo e seus principais 

elementos.  

4.5.1 Regressão Linear 

A regressão linear é uma técnica estatística que busca estimar o valor esperado de uma 

variável Y com base nos valores das variáveis X, assumindo a existência de uma relação 

funcional entre Y e X. Quando a relação entre a resposta e as variáveis é uma função linear dos 

parâmetros, a regressão é chamada de linear. No entanto, quando essa relação não é linear, é 

denominada de regressão não-linear (Naghettini e Pinto, 2007). 

Quando há apenas uma variável independente que se relaciona com uma variável 

dependente, trata-se de um modelo linear simples (Jung e Chang, 2011). Esse modelo fornece 

um valor médio de uma das variáveis em função da outra, e os pontos observados apresentam 

uma variação ao redor da linha que representa a função de regressão. A linha de regressão pode 

ser presumida por meio da Equação 5. 

𝑌𝑖 =  𝛼 +  ꞵ. 𝑋𝑖 +  𝑒𝑖   (5) 

Onde  𝑌𝑖 é a variável dependente (ou seja, o valor que se deseja conhecer), 𝑋𝑖 é a variável 

independente (que representa a variável explicativa), α é uma constante que representa o 

intercepto com o eixo vertical,  ꞵ é uma constante que representa o coeficiente angular da reta 

e 𝑒𝑖 representam os erros ou resíduos da regressão (Moreno et al., 2010). Os parâmetros são 

estimados com base nos dados utilizados para realizar a regressão. Os parâmetros α e ꞵ dos 

modelos lineares podem ser estimados utilizando as Equações 6 e 7. 

ꞵ =  √
∑ 𝑥𝑖.𝑦𝑖−𝑛.𝑦̅.𝑥̅𝑛

𝑖=1

∑ 𝑥𝑖²−𝑛.𝑥̅𝑛
𝑖=1 ²

                      (6) 

𝛼 =  𝑦̅ −  ꞵ. 𝑥̅                           (7) 

 A regressão linear múltipla (RLM) é usada para estudar o comportamento de uma 

variável dependente em função de duas ou mais variáveis independentes. Se a variável 

apresentar um comportamento linear em relação às variáveis , é possível adotar um modelo 

geral aplicando a Equação 8 (Torres et al., 2011). 

𝑌𝑖 =  𝛼 + ꞵ
1

. 𝑋1,𝑖 + ꞵ
2

. 𝑋2,𝑖 + ⋯ + ꞵ
𝑛

. 𝑋𝑛,𝑖 + 𝑒𝑖            (8) 

Os modelos de regressão linear são ferramentas importantes utilizadas em diferentes 

tarefas como projetar variáveis hidrológicas em longo prazo (Moreno et al., 2010), analisar os 
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efeitos das mudanças climáticas nas concentrações de nitrato em grandes rios (Zweimuller et 

al., 2008), identificar relações entre chuva e vazão sazonais (Torres et al., 2011) e avaliar a 

tendência de escoamento futuro sob diferentes cenários de mudanças climáticas (Jung e Chang, 

2011), por exemplo. 

4.5.2 Modelo Aditivo Generalizado  

 

Os Modelos Aditivos Generalizados (Generalized Additive Models - GAM), 

introduzidos por Hastie e Tibshirani (1990), são uma extensão dos modelos lineares 

generalizados. O GAM possui um preditor linear que inclui a soma de funções de suavização 

não paramétricas das covariáveis. Isso permite que os próprios dados guiem a relação entre as 

covariáveis e o preditor, que frequentemente ocorre de forma não linear. O GAM é expresso 

por meio da Equação 9: 

𝜂 = 𝑔(µi) = 𝑋𝑖
∗𝛳 + 𝑓1(x1i) + 𝑓2(x2i) + 𝑓3(x3i) + ⋯ (9) 

 

Onde µi  ≡ 𝐸(Yi) sendo que Yi ∼ alguma distribuição da família exponencial. Yi é a 

variável resposta, 𝑋𝑖
∗ é uma coluna da matriz do modelo para os componentes paramétricos, θ 

é o vetor de parâmetros, e fj são funções suaves das covariáveis xk (Rigby et al., 2017).  

As funções de suavização mais comumente utilizadas, são p-splines, splines cúbicas, 

loess e redes neurais. As splines são curvas definidas matematicamente por meio de dois ou 

mais pontos de controle, e é dessa maneira que os dados estabelecem a relação entre η = g(µi) 

e as variáveis explicativas, sendo esse o conceito fundamental para empregar uma função de 

suavização (Eilers, 2015). 

A complexidade dos modelos semiparamétricos com o GAM reside no fato de não 

serem facilmente descritos em uma forma matemática explícita. No entanto, eles podem ser 

visualmente representados de forma gráfica, fornecendo informações valiosas sobre a 

adequação do ajuste e dos resíduos. 

4.5.3 Resíduos 

Os resíduos em um modelo são obtidos subtraindo-se os valores observados dos valores 

ajustados. Espera-se que esses resíduos sejam independentes e identicamente distribuídos, 

embora o GAM também permita lidar adequadamente com resíduos assimétricos. Uma forma 

simples e rápida de verificar essa condição é analisar o gráfico de dispersão dos resíduos em 

relação à variável prevista. Se for observado um padrão não aleatório dos resíduos de um 
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modelo linear, isso pode indicar uma relação não linear nos dados, sugerindo que um modelo 

linear pode não ser adequado para fazer previsões com esses dados (Hyndman e 

Athanasopoulos, 2013). Outra forma é calcular a função de autocorrelação e a função de 

autocorrelação parcial. Caso a correlação serial seja relevante, processos ARMA poderão ser 

ajustados aos resíduos. Os resíduos também são úteis para identificar viés, caso a média dos 

resíduos seja diferente de zero (Chang, 2011). 

4.5.4 Colinearidade e multicolinearidade 

Embora os termos “colinearidade” e “multicolinearidade” sejam frequentemente usados 

como sinônimos, alguns autores fazem uma distinção entre eles. A colinearidade refere-se à 

existência de uma relação linear entre duas variáveis explicativas, enquanto a 

multicolinearidade refere-se à existência de uma relação linear entre uma variável explicativa e 

as demais variáveis (Sem, 2022). Algumas características que podem indicar problemas de 

colinearidade ou multicolinearidade como: 

• ꞵ
𝑖
 com sinal oposto ao esperado; 

• Mudanças muito proeminentes em ꞵ
𝑖
, quando realiza-se adições ou 

exclusões de variáveis ou observações. 

• ꞵ
𝑖
 não apresentando significância estatística para variável 𝑋𝑖 

teoricamente importante. 

4.5.5 Teste de significância da regressão linear múltipla 

Na regressão linear simples, o teste F é usado para avaliar a significância global do 

modelo, ou seja, se a variável independente é estatisticamente significativa na explicação da 

variável dependente (Biasi et al., 2017). Nesse caso, o teste F compara a variação explicada 

pelo modelo com a variação não explicada (Maciel, 2019). 

Na regressão linear múltipla, o teste F é utilizado para avaliar a significância conjunta 

de um conjunto de variáveis independentes (Castor, 2020). O teste F compara a variação 

explicada pelo modelo completo (com todas as variáveis independentes) com a variação não 

explicada, e é usado para determinar se o conjunto de variáveis independentes, como um todo, 

tem um efeito significativo na variável dependente (Sell, 2005). 

A estatística F convencional, proposta por Snedecor, é utilizada para testar a conversão 

estatística de um conjunto de parâmetros em um modelo de regressão linear múltipla, quando 

o modelo é ajustado aos dados por meio dos mínimos quadrados (Sell, 2005). 

http://repositorio.unesc.net/browse?type=author&value=Biasi%2C+Lu%C3%ADs+Henrique+de
https://repositorio.ufmg.br/browse?type=author&value=Mirelle+Rachel+de+Sales+Castor
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Define-se o seguinte teste de hipóteses: 

𝐻0: ꞵ
0

 =  ꞵ
1

= ꞵ
2

… =  ꞵ
𝑘

= 0              (10) 

As hipóteses a testar assumem o seguinte aspecto:   

𝐻0 : ꞵ = 0     𝐻1 : ꞵ ≠ 0  (11) 

A variabilidade total dos valores da variável dependente Y, representada pela soma dos 

quadrados dos desvios de Y em relação à sua média Y (SQT), pode ser decomposta em dois 

componentes aditivos: uma explicada pelo modelo de regressão (SQR) e outra atribuída aos 

resíduos (SQE) (Oliveira, 2020).  

Dessa forma, levando em consideração as quantidades; 

       Notação matricial 

SQE =  ∑ (𝑦𝟏 − ŷ𝑖)²𝑛
𝑖=1   SQE =  (y − Xꞵ̂)

T
. (y − Xꞵ̂) =  eTe           (12) 

SQR =  ∑ (ŷ1 − 𝑦̅𝑖)²𝑛
𝑖=1    SQR =  (Xꞵ̂ − 𝑦̅)

T
. (Xꞵ̂ − 𝑦̅),            (13) 

SQT =  ∑ (𝑦1 − 𝑦̅𝑖)²𝑛
𝑖=1   SQT =  (y − 𝑦̅)T. (y − 𝑦̅),                      (14) 

estabelece-se a seguinte relação: 

SQT =  SQR+ SQE, ou seja, 

∑ (𝑦1 − ŷ𝑖)²𝑛
𝑖=1 =   ∑ (ŷ1 − 𝑦̅𝑖)²𝑛

𝑖=1 +  ∑ (𝑦𝟏 − ŷ𝑖)²𝑛
𝑖=1  (15) 

A proporção da variância total em Y explicada pelo modelo de regressão e a proporção 

atribuída aos resíduos podem ser adquiridas dividindo-se os valores de SQR e SQE pelos seus 

graus de liberdade, respectivamente (Castor, 2020). Esses resíduos são conhecidos como 

quadrados médios da regressão (QMR) e quadrados médios dos resíduos (QME), 

respectivamente.  

Portanto, temos que: 

𝑄𝑀𝑅 =
𝑆𝑄𝑅

𝐾
  (16) 

Para avaliar a evolução do modelo de regressão aos dados populacionais, é comum 

comparar a proporção da variância explicada pelo modelo de regressão com a proporção da 

https://repositorio.ufmg.br/browse?type=author&value=Mirelle+Rachel+de+Sales+Castor
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variância atribuída aos resíduos (Villa, 2016). Se a primeira proporção for significativamente 

maior do que a segunda, pode-se concluir que o modelo é estatisticamente significativo. Essa 

comparação é feita utilizando a distribuição estatística da razão entre essas duas variâncias 

(Américo, 2017). 

Considerando a independência e a homocedasticidade dos erros aleatórios, e sob a 

hipótese nula inicial, pode-se afirmar que: 

𝑆𝑄𝑅

𝐾
~ 𝞼²𝑋²𝑘 e 

𝑆𝑄𝐸

𝐾
~ 𝞼²𝑋²𝑛−𝑘−1  (17) 

Devido à independência entre as duas quantidades, a estatística de teste, que 

corresponde à razão entre as duas quantidades anteriores, segue uma distribuição F com k e n-

k-1 graus de liberdade, ou seja,  

             𝐹 =
𝑆𝑄𝑅

𝐾⁄

𝑆𝑄𝑅
𝑛−𝑘−1⁄

 ~ 𝐹𝑛−𝑘−1    (18) 

A estatística de teste F, sob a hipótese nula H0, segue uma distribuição 𝐹𝑛−𝑘−1. A um 

nível de significância  , rejeita-se H0 se 𝐹 >  𝐹−1
𝑛−𝑘−1(1 −  ) (Villa, 2016). 

Sob a veracidade da hipótese alternativo H1: β1  0, a estatística de teste F segue uma 

distribuição com k  e  n – k – 1 em graus de liberdade e parâmetros de não centralidade dado 

por: 

                                        =
𝛽𝑇𝑋𝑇𝑋𝛽

 ²
     (19) 

A aplicação do teste F ao modelo completo de regressão linear permite tomar uma 

decisão em relação ao conjunto de todos os parâmetros presentes no modelo (Sell, 2005). 

Assim, ao rejeitar a hipótese nula, indica-se que pelo menos um dos parâmetros βj é 

significativamente diferente de zero, embora isso não implique que todos os parâmetros o sejam 

(Oliveira, 2020). 

Para verificar a significância de um subconjunto de parâmetros no modelo de regressão 

linear, é necessário analisar um submodelo do modelo de regressão linear múltiplo, no qual os 

preditores correspondentes a esses parâmetros são excluídos (Maciel, 2019). O objetivo desse 

procedimento é determinar se as variáveis que foram removidas do modelo reduzido são ou não 

significativas para o ajuste global (Biasi, et al., 2017). 

http://repositorio.unesc.net/browse?type=author&value=Biasi%2C+Lu%C3%ADs+Henrique+de
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4.6     Métricas de Avaliação do Ajuste do Modelo  

A seguir, são apresentadas as principais métricas utilizadas para avaliar o desempenho 

dos modelos empíricos aplicados nesta pesquisa. 

4.6.1 Coeficiente de determinação 

Dentre as métricas empregadas nesta pesquisa, a primeira a ser calculada foi o 

coeficiente de determinação (R²). Uma maneira eficiente de quantificar a relação entre duas 

variáveis aleatórias é por meio do coeficiente de correlação (Team, 2016). O coeficiente de 

determinação, por sua vez, corresponde ao quadrado dessa correlação, representando a 

proporção da variabilidade nas observações que pode ser explicada pelos valores previstos pelo 

modelo. 

Explicado como: 

𝑅2 = 𝑐𝑜𝑟𝑟2{𝑦𝑖, µ̂}  (20) 

ou simplesmente 

𝑅2 = 1 −
∑ (𝑦𝑖− µ̂𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

,  (21) 

onde 𝑦𝑖 são observações independentes e µ𝑖 os correspondentes valores calculados pelo 

modelo 

Em modelos multivariados, pode-se afirmar que o coeficiente de determinação é uma 

medida que indica a proporção da variabilidade total dos dados (soma dos quadrados dos 

desvios de cada valor observado y em relação à média de y) que pode ser explicada pelas 

covariáveis  𝑥𝑖 , ... 𝑥𝑛 , incluídas no modelo empírico (Team, 2016). Um valor de R² próximo 

de 1 indica um aumento na capacidade de previsão do modelo, mesmo levando em conta a 

possível perda de graus de liberdade e a perda de informação (Trevor, 2008). 

 

4.6.2 Coeficiente de determinação ajustado  

Essa medida ajusta o coeficiente de determinação de acordo com o aumento do número 

de variáveis explicativas, (Malaquias, 2014).  

Matematicamente ao adicionar uma variável explicativa ao modelo, aumenta-se a 

dimensão do espaço no qual ocorre a estimação (Malaquias, 2014). Assim, a estimação no 



40 

 

espaço de dimensão p+1 é uma minimização restrita no espaço de dimensão p, e sabe-se por 

cálculo que os mínimos restritos são maiores do que os mínimos absolutos. Portanto, o 

coeficiente de determinação obtido no modelo de ordem p é ligeiramente menor do que obtido 

no modelo de ordem p+1 (León, 2011). 

Essa propriedade nos indica que, ao adicionar um número infinito de covariáveis ao 

modelo, mesmo que não sejam relevantes para o problema em questão, é possível melhorar 

artificialmente o coeficiente de determinação. Por essa razão, é recomendado o uso do o 

coeficiente de determinação ajustado (León, 2011): 

𝑅²𝑎𝑑𝑗 = 1 − (1 − 𝑅2)
𝑛−1

𝑛−𝑝−1
  (22) 

Onde R2
adj é o R ao quadrado ajustado ou coeficiente de determinação ajustado, R2 é o 

R ao quadrado ou coeficiente de determinação, n é o número de observações na amostra e p 

número de variáveis independentes. 

4.6.3 Raiz do erro quadrático médio  

Em seguida, calculou-se a métrica conhecida como a raiz do erro médio ou do inglês 

Root Mean Squared Error (RMSE) (Equação 23) (Trevor, 2008). Quando o RMSE é dividido 

pelo desvio-padrão da variável dependente, temos então um valor padronizado de RMSE ou 

SRMSE. Quanto mais próximo SRMSE de zero, melhor será o ajuste do modelo. Se SRMSE 

for maior que um, significa que o modelo não é melhor que o valor esperado como preditor da 

variável dependente. 

𝑅𝑀𝑆𝐸 = (
1

𝑛
∑ (𝑦𝑖 − 𝑝𝑖)

2𝑛
𝑖=1 )

1

2  (23) 

Onde n é o número de amostras, yi é o valor observado para a amostra i  e pi é o valor 

previsto pelo modelo para a amostra i 

4.7 Modelagem linear dos Casos de Dengue em Função de Séries Temporais 

Primeiramente, foram conduzidas análises de regressão de séries temporais mensais 

utilizando Modelos Lineares Generalizados (MLG). Esses modelos incorporam variáveis como 

precipitação (P), temperatura mínima do ar (Tmin) e temperatura máxima do ar (Tmax) para 

explicar a variação da incidência de dengue (ID), bem como componentes autorregressivas 

(AR) e de média móvel (MA) para o erro ou resíduo correlacionado. Depois, foram aplicadas 

as métricas de desempenho dos modelos ajustados (ver acima) 

No modelo de regressão de séries temporais, em que o logaritmo de ID (𝑌𝑡) é a variável 

alvo e as variáveis hidroclimáticas (𝑥𝑡1 , … , 𝑥𝑡𝑝), como precipitação (desfasada) (mm) e 
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temperatura do ar (mínima, média e máxima), são as variáveis explicativas para o município 

como mostra a Equação (24). 

 

𝑌𝑡 = ꞵ
0 

+ ꞵ
1 

𝑥𝑡1 + ⋯ + ꞵ
𝑛 

𝑥𝑡𝑛 + 𝐸   (24) 

 

Usando o algoritmo dos mínimos quadrados ordinários (OLS), os parâmetros 

(ꞵ
0 

, ꞵ
1 

, … , ꞵ
𝑛 

 ),  podem ser estimados assumindo o termo de erro “E” com média zero, 

variância constante e sem correlação. No entanto, se os erros estiverem correlacionados, 

existem melhores estimadores para os parâmetros da regressão linear múltipla (MLR) acima, 

como a abordagem de mínimos quadrados generalizados (GLS).  

Portanto, primeiro ajusta-se o MLR pelo OLS, assumindo que os erros não são 

correlacionados. Em seguida, aplicam-se as funções de autocorrelação e autocorrelação parcial 

para avaliar se há correlação serial nos erros. Se os erros forem correlacionados, aplica-se o 

GLS para ajustar o MLR e um modelo autorregressivo de média móvel (ARMA) para os erros 

correlacionados.  

No caso da aplicação do método dos mínimos quadrados generalizados, utiliza-se o 

critério de informação conhecido como AIC (Akaike Information Criterion) para selecionar o 

modelo ARMA que apresenta a melhor qualidade e simplicidade. Nesse sentido, busca-se 

encontrar o modelo ARMA mais simples que se ajuste adequadamente à correlação serial nos 

erros. 

Ele combina componentes autorregressivos (AR) e de média móvel (MA). Começa-se 

com um modelo autorregressivo de primeira ordem AR (1), um modelo de média móvel de 

primeira ordem MA (1) e um modelo de média móvel autorregressivo de primeira ordem 

ARMA (1,1). Em seguida, aumenta-se a complexidade do modelo, por exemplo, ARMA (3,1), 

avaliando o AIC dos modelos. O modelo com menor AIC será escolhido. Por último, utilizando 

os preditores selecionados da modelagem linear generalizada, aplica-se o modelo aditivo 

generalizado. 

4.8 Projeções da Incidência de Dengue a Partir das Mudanças Climáticas na Região 

Nordeste  

Primeiramente, foi realizado uma revisão de literatura sobre a modelagem das mudanças 

climáticas na região Nordeste do Brasil. Neste contexto, foram analisadas projeções futuras 

referentes às variações na temperatura do ar , cobrindo o período que se estende até o final do 

século XXI. Durante essa revisão, foram levantados resultados de diversos modelos aplicados 
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para a região Nordeste, a exemplo do CanESM2, RAMS6.0, RAMS-CAM e CMIP5, conforme 

discutido por vários autores (Marengo et al., 2011; Silveira et al., 2013; Costa et al., 2015; 

Guimarães, 2015; Silveira et al., 2015) (ver detalhes no Anexo II). 

Nesse contexto, verificou-se que os resultados mais consistentes emergiram do emprego 

do modelo CMIP5 em combinação com os cenários de emissões RCP4.5 e RCP8.5. Os autores 

sustentam que tais cenários se mostram mais congruentes com as projeções da realidade em 

relação às futuras mudanças climáticas. Portanto, optou-se por adotar as projeções dos modelos 

correspondentes aos cenários RCP4.5 e RCP8.5 para o presente estudo. 

Ao final da investigação acerca da projeção das mudanças climáticas na região 

Nordeste, procedeu-se uma projeção relativa aos futuros casos de dengue em Campina Grande, 

assumindo a) a projeção climática dos cenários RCP4.5 e RCP8.5 e b) uma regressão linear 

simplificada entre casos de dengue e clima presente (representada pela temperatura máxima): 

                               𝑙𝑛𝐷 = 𝐼 + 𝛼 𝑇𝑚á𝑥                                         (25) 

Onde lnD é logaritmo da dengue, I  e 𝛼 são constantes ajustadas da regressão linear. 

Depois, foi realizada a diminuição entre o logaritmo da incidência de dengue observada 

no presente e o logaritmo da incidência dengue nos cenários de projeção (valores médios) é 

uma aproximação da mudança da média projetada no cenário de mudança climática (DCen.) 

em relação à média observada no período de referência (DOBS): 

𝑙𝑛𝐷̅̅ ̅̅ ̅
𝐶𝑒𝑛. −  𝑙𝑛𝐷̅̅ ̅̅ ̅

𝑂𝐵𝑆.  ≌  
𝐷𝐶𝑒𝑛. − 𝐷𝑂𝐵𝑆.

𝐷𝑂𝐵𝑆.
   

𝐼 + 𝛼 𝑇̅𝑚á𝑥𝐶𝑒𝑛. −  𝐼 − 𝛼 𝑇̅𝑚á𝑥𝑂𝐵𝑆.  (26) 

𝛼 (𝑇̅𝑚á𝑥𝐶𝑒𝑛. −   𝑇̅𝑚á𝑥𝑂𝐵𝑆.) 
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5. RESULTADOS E DISCUSSÃO  

 

5.1 Correlação entre as Variáveis  

Realizou-se uma análise de correlação com o intuito de determinar o intervalo de tempo  

mais apropriado que uma variável climática explica linearmente a variável alvo que é o número 

de casos de dengue. As variáveis preditoras escolhidas, considerando um possível tempo de 

atraso para o pico da proliferação do mosquito da dengue (de 0 a três meses), foram aquelas 

que o coeficiente de correlação apresentou o maior valor absoluto com a ocorrência de dengue. 

As mesmas variáveis utilizadas foram  precipitação,  temperatura mínima, média e máxima. 

Na Tabela 1, são apresentados os resultados da análise de correlação entre as variáveis. 

Observou-se que a correlação mais significativa entre a dengue e a precipitação ocorreu com 

um atraso de um mês. A correlação entre dengue e precipitação foi positiva. Esse resultado está 

em conformidade com o fato de que a proliferação do mosquito da dengue geralmente começa 

aproximadamente um mês após o início das chuvas. Por outro lado, a correlação mais 

significativa entre a dengue e as temperaturas máxima ocorreu no mês atual. A correlação entre 

dengue e temperaturas máxima e média foi negativa. Por último, a correlação mais significativa 

entre a dengue e a temperatura mínima foi com três meses de atraso. A correlação entre dengue 

e temperatura mínima foi positiva. 

Esses resultados em relação à temperatura estão em conformidade com o que já foi 

documentado na literatura, em que temperaturas muito elevadas (máxima e média) são 

prejudiciais ao desenvolvimento do mosquito (Torres, 1998; Kramer, 2023). Por um outro lado, 

a correlação positiva entre dengue e temperatura mínima pode estar indicado que as 

temperaturas mais frias não estão limitando o desenvolvimento do mosquito como 

documentado em outros estudos (Hales et al., 2002). 

Tabela 1: Coeficiente de correlação para variáveis do estudo. 

Tempo de 

atraso (mês) 
Precipitação 

Temperatura 

Máxima 

Temperatura 

Média 

Temperatura 

Mínima 

0 0,22 -0,39 -0,29 -0,21 

1 0,31 -0,26 -0,12 -0,02 

2 0,26 -0,07 0,07 0,17 

3 0,13 0,15 0,25 0,31 

Fonte: Autor, 2023. 
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Em Campina Grande observou-se o maior número de casos de dengue nos anos de 2014 

e 2018, registrando aproximadamente duzentos casos (Figura 5). No que se refere aos dados de 

precipitação, notou-se que o período de maior precipitação ocorreu entre 2008 e o início de 

2012. Entretanto, esses picos não coincidem com o período de maior incidência de casos de 

dengue, indicando que precipitação muito elevada também pode ser prejudicial ao 

desenvolvimento do mosquito, como demostrado em outros estudos (Arcari, 2007). Essa 

discrepância pode ser atribuída às variações significativas nos padrões de chuva na região 

nordeste, bem como aos anos de seca que afetaram a Paraíba depois de 2012. 

No tocante às temperaturas máximas, os anos de 2010 e 2020 se destacaram como os 

anos com as temperaturas mais elevadas. Nesses anos, as temperaturas ultrapassaram os 35°C, 

que é um limite de temperatura que pode desfavorecer a proliferação do mosquito transmissor 

(Kramer, 2023; Torres, 1998). Isso ocorre porque em temperaturas muito elevadas, o mosquito 

não sobrevive, enquanto em temperaturas moderadas, tanto a máxima 32°C, quanto a média de 

22°C, as condições tornam-se mais propícias para o aumento da população do mosquito, 

juntamente com um aumento na incidência de picadas, visto que a temperatura também 

influencia esse comportamento do mosquito. Esses padrões climáticos coincidiram com os anos 

de 2014 e 2018, em que as temperaturas variaram entre 22 e 30°C (Figura 5). 

 

Figura 5: Series temporais mensais dos casos de Dengue, precipitação (P) (mm), temperatura média 

(Tmed) (°C) e temperatura máxima (Tmax) (°C). 

 

Fonte: Autor, 2023. 
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5.2 Regressão Linear 

Escolhidas as variáveis preditoras potenciais (ver seção anterior), foi ajustado um 

modelo de regressão linear múltipla. Entretanto, apenas a temperatura máxima no mês atual 

(variável dependente) e o coeficiente de interseção foram estatisticamente significativos. Vale 

notar que o algoritmo de ajuste adotado no R evita a multicolinearidade na modelagem. Além 

disso, o ajuste foi melhor para o logaritmo dos casos de dengue, pois essa transformação 

uniformizou a variância da série temporal dos casos de dengue (ver Figura 5). Todos os passos 

desta e demais modelagens no R podem ser encontrados no Anexo I.  

Os erros do modelo ajustado apresentaram uma distribuição próxima da distribuição 

normal (ver QQ-plot na Figura 6), mas pode-se observar que esses resíduos exibem uma maior 

dispersão em suas extremidades, o que pode gerar incertezas na predição com o modelo 

ajustado. Estudando a estrutura de correlação dos erros, foi encontrado que essa correlação foi 

relevante, como demostrado na função de autocorrelação (Figura 7) e na função de 

autocorrelação parcial (Figura 8). Assim, foi ajustado também um modelo ARMA para a série 

de erros. 

Depois de uma série de tentativas de ajuste de um processo ARMA à série de erros, um 

simples modelo autorregressivo de primeira ordem [AR(1)] foi o que apresentou o menor índice 

de AIC (=164,5). Em resumo, o melhor modelo de regressão linear da dengue em função da 

variabilidade climática em Campina Grande é um modelo que possui como variável dependente 

a temperatura máxima e uma distribuição de erros seguindo um modelo autorregressivo de 

primeira ordem. O seu SRMSE foi de 0,90, o que significa que o modelo é 10% melhor que o 

valor esperado da variável dependente (logaritmo dos casos de dengue) como preditor. 

Figura 6: QQ - plot dos erros do modelo linear ajustado. 

 

Fonte: Autor, 2023. 
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Figura 7: Função de autocorrelação dos erros do modelo linear ajustado. 

 

Fonte: Autor, 2023. 

Figura 8: Função de autocorrelação parcial dos erros do modelo linear ajustado.  

 

Fonte: Autor, 2023. 

5.3 Modelo Aditivo Generalizado 

 Ajustando um modelo aditivo generalizado para as mesmas variáveis do modelo de 

regressão linear anterior, não foi encontrado uma melhoria no ajuste com o SRMSE ainda igual 

à 0,90 (Tabela 2). Entretanto, considerando uma possível associação não-linear relevante entre 

as variáveis climáticas candidatas à preditores e a variável alvo (logaritmo dos casos de 

dengue), a precipitação com um mês de atraso se demostrou significante. Além disso, houve 

uma melhoria significativa da modelagem, com o SRMSE igual à 0,85 (Tabela 2). Assim, os 
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resultados confirmam o que foi encontrado em outros, a temperatura do ar possui uma 

associação diretamente proporcional com a proliferação do mosquito da dengue, enquanto a 

precipitação não possui uma associação linear (Arcari, 2007; Colón-González et al., 2013; 

Wang et al., 2014; Struchiner et al., 2015; Li et al., 2017). 

Tabela 2: Cálculos das métricas de avaliação do ajuste do modelo aditivo generalizado. 

Intercept R² R²- Ajustado F-Statistic SRMSE 
Preditores  

3,54 0,21 0,20 12,76 0,90 

Tmax(t) 

1,01 0,27 0,30 12,76 0,85 
P (t-1), 

Tmax(t) 

Fonte: Autor, 2023. 

5.4 Estimativa da Mudanças da Incidência de Dengue para o Final deste Século  

Na Tabela 3, são apresentadas medidas estatísticas das variáveis preditoras utilizadas 

nos modelos ajustados. A média da temperatura máxima foi de aproximadamente 29°C pra o 

período de referência. 

 

Tabela 3: Cálculo das médias e desvio-padrão. das variáveis preditoras:  precipitação (P) (mm), temperatura 

média (Tmed) (°C) e temperatura máxima (Tmax) (°C). 

Dados P T.max. T.méd. 

Média 61,41 29,06 21,78 

Desvio Padrão 65,02 1,99 6,16 

Fonte: Autor, 2023. 

 

Além disso, a constante da Equação (26) foi igual à -0,272. Aplicando a Equação (26) 

e considerando os dados observados e os dados dos cenários RCP4.5 e RCP8.5, com 

incrementos de temperatura do ar previstos de 1,8°C e 4,1°C, respectivamente, para a Região 

Nordeste, foram calculadas as estimativas da incidência de Dengue para o final deste Século. 

Resumindo: 
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1) Cenário 𝑅𝐶𝑃4.5:  

 ∆𝑇̅𝑚á𝑥 = 1,8°𝑐  

−0,272 ∗ 1,8 = − 0,4896 

− 0,4896 ∗ 100 = − 48,96% 

− 0,4896 ∗ 100 ≌ − 50% 

2) Cenário 𝑅𝐶𝑃8.5:  

 ∆𝑇̅𝑚á𝑥 = 4,1°𝑐  

−0,272 ∗ 4,1 = − 1,1152 

− 1,1152 ∗ 100 ≌ 100% 

 

Assim, estimou-se uma projeção da redução de aproximadamente 50% nos casos de 

dengue em Campina Grande para o primeiro cenário, RCP4.5, que prevê um aumento de 

temperatura de 1,8°C. Já para o segundo cenário, RCP8.5, que prevê um aumento de 

temperatura de 4,1°C, estimou-se uma redução de aproximadamente 100% nos casos de dengue 

na região (Tabela 4). 

 

Tabela 4: Projeção dos casos de dengue em Campina Grande-PB. 

Cenário ∆ 𝑻̅𝒎á𝒙  Projeções % ≌% 

𝑅𝐶𝑃4.5 1,8°C -0,4896 49 50 

𝑅𝐶𝑃8.5 4,1°C -1,1152 112 100 

Fonte: Autor, 2023. 

Essas estimativas refletem a possível influência das mudanças climáticas na redução da 

incidência de dengue na região de Campina Grande-PB, considerando diferentes cenários de 

aumento de temperatura futura. Diante do aumento previsto da temperatura na Região Nordeste, 

na ordem de 1,8°C, é plausível inferir uma redução de aproximadamente 50% no número de 

casos de dengue, devido a uma provável redução na taxa de proliferação do mosquito 

ocasionadas pelas altas temperaturas. Quando confrontados com um cenário de aumento de 

temperatura mais acentuado de 4,1°C, verifica-se uma diminuição aproximada de 100% nos 
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casos de dengue, sugerindo uma inibição completa da propagação dessa doença. É pertinente 

ressaltar que os resultados, mesmo gerados por uma metodologia simplificada, demonstram 

coerência com os achados de estudos anteriores abordados neste trabalho, fortalecendo a 

presente estimativa do impacto das mudanças climáticas na incidência de dengue. 

  



50 

 

6. CONCLUSÃO 

 

Embora os resultados tenham fornecido informações valiosas, é importante reconhecer 

que o modelo utilizado apresenta limitações, principalmente relacionadas à suposição de 

linearidade nas relações entre as variáveis preditoras e a incidência de dengue em cenários 

futuros do clima. Além disso, não foi considerada uma possível variação local do clima no 

município estudado em relação à tendência geral na Região Nordeste. Essa generalização pode 

não capturar nuances climáticas locais que são relevantes para a proliferação do mosquito e a 

incidência de dengue em nível municipal. 

Em relação à suposição de que as variáveis climáticas, como temperatura máxima do ar 

e precipitação, tenham um efeito linear sobre a proliferação do mosquito Aedes aegypti e, 

consequentemente, sobre a incidência de dengue, na realidade, essas relações podem ser não 

lineares e complexas. Por exemplo, é possível que exista uma faixa de temperaturas ideais para 

a reprodução do mosquito, além da qual a temperatura excessivamente alta ou baixa possa 

limitar sua sobrevivência. Da mesma forma, a relação entre a precipitação e a incidência de 

dengue pode variar ao longo do tempo e ser afetada por outros fatores, como a disponibilidade 

de criadouros para o mosquito. 

Apesar dessas limitações, os resultados deste estudo oferecem insights importantes 

sobre a relação entre a variabilidade climática e a incidência de dengue em Campina Grande. 

A correlação positiva entre dengue e precipitação, com um atraso de um mês, destaca a 

importância das chuvas como um fator que impulsiona a proliferação do mosquito. Por outro 

lado, as temperaturas máxima e média do mês atual mostraram uma correlação negativa com a 

dengue, sugerindo que temperaturas mais altas podem limitar a sobrevivência do mosquito. Isso 

é consistente com a literatura científica que aponta para a sensibilidade do ciclo de vida do 

mosquito transmissor da dengue à temperatura, mas pode estar sendo contrabalanceado pela 

correlação positiva entre dengue e temperatura mínima. 

O melhor modelo de regressão linear da dengue foi aquele que possuiu como variável 

dependente a temperatura máxima no mês atual e uma distribuição de erros seguindo um 

modelo autorregressivo de primeira ordem. O seu SRMSE foi de 0,90, o que significa que o 

modelo é 10% melhor que o valor esperado da variável dependente (logaritmo dos casos de 

dengue) como preditor.  O ajuste do modelo aditivo generalizado mostrou um melhor 

desempenho com um SRMSE igual a 0,85, com a adição da precipitação com um mês de 

antecedência como variável independente, mostrando a influência da precipitação no número 

de casos de dengue de forma não-linear. 
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Em resumo, este estudo contribui para o entendimento das complexas interações entre 

o clima e a incidência de dengue em uma região da Paraíba. Pesquisas futuras, especialmente 

aquelas direcionadas ao microclima local, são cruciais para aprimorar nosso conhecimento e a 

precisão das projeções sobre a incidência de dengue na região. 
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ANEXO I 

 

 Comandos utilizados em R 

Distribuição das variáveis preditoras  

> data<-read.table("C:/Users/Jéssica 

Silva/Desktop/Importante/Faculdade/Alternate/Mestrado/UNILAB/Orientador/Campina-

PB/DadosLog.txt",TRUE) 

> ts.data<-ts.union(Ldeng=ts(data$Ldeng,start=c(2007,2),freq=12),P=ts(data$P,start= 

c(2007,1),freq=12),Tmed=ts(data$Tmed,start=c(2007,2),freq=12), 

Tmax=ts(data$Tmax,start=c(2007,2),freq=12)) 

> plot(ts.data) 

> library(mgcv) 

Carregando pacotes exigidos: nlme 

This is mgcv 1.8-42. For overview type 'help("mgcv-package")'. 

Modelo de regressão linear múltipla 

> fit.ols<-lm(Ldeng~P+Tmed+Tmax,data=ts.data ,na.action=na.exclude)          

> summary(fit.ols) 

Call: 

lm(formula = Ldeng ~ P + Tmed + Tmax, data = ts.data, na.action = na.exclude) 

Residuals: 

     Min       1Q   Median       3Q      Max  

-1.50726 -0.47076  0.05166  0.43474  1.26929  

Coefficients: 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  3.5361496  0.9661050   3.660 0.000355 *** 

P            0.0002013  0.0011109   0.181 0.856496     

Tmed         0.2270910  0.1283416   1.769 0.078969 .   

Tmax        -0.2718373  0.0933092  -2.913 0.004156 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Calculo dos residuos  

Residual standard error: 0.5941 on 142 degrees of freedom 

  (22 observations deleted due to missingness) 
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Multiple R-squared:  0.2124,    Adjusted R-squared:  0.1957  

F-statistic: 12.76 on 3 and 142 DF, p-value: 1.969e-07 

Erro encontrado no modelo 

> qqnorm(fit.ols) 

Error in match.arg(type):  

  'arg' should be one of “working”, “response”, “deviance”, “pearson”, “partial” 

> qqline(fit.ols) 

Error in sort.int (x, na.last = na.last, decreasing = decreasing, ...) :  

  'x' deve ser atômico 

> qqnorm(resid(fit.ols)) 

> qqline(resid(fit.ols)) 

> acf(resid(fit.ols)) 

Error in na.fail.default(as.ts(x)) : valores em falta em objeto 

> acf(resid(fit.ols)) 

Error in na.fail.default(as.ts(x)) : valores em falta em objeto 

Análise de resíduos 

> acf(resid(fit.ols),na.action = na.pass) 

> pacf(resid(fit.ols), na.action = na.pass) 

>  library(nlme) 

>  cor<-corARMA(p=1) 

> model<-formula (Ldeng ~Tmax) 

> fit.gls<-gls(model, data=ts.data,correlation=cor,na.action=na.omit)  

> summary (fit.gls) 

Generalized least squares fit by REML 

  Model: model  

  Data: ts.data  

       AIC      BIC    logLik 

  164.5442 176.9679 -78.27208 

Correlation Structure: AR (1) 

 Formula: ~1  

 Parameter estimate(s): 

      Phi  

0.7749507  

Coefficients: 
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                Value Std.Error   t-value p-value 

(Intercept) 3.895302 0.6859478 5.678715       0 

Tmax        -0.100029 0.0231298 -4.324701       0 

 Correlation:  

     (Intr) 

Tmax -0.983 

Standardized residuals: 

         Min           Q1          Med           Q3          Max  

-2.106786347 -0.789220801 -0.002476864  0.823491713  1.986597184  

 

Residual standard error: 0.599267  

Degrees of freedom: 167 total; 165 residual 

> cor<-cor ARMA(p=2) 

> model<-formula(Ldeng ~Tmax) 

> fit.gls<-gls(model, data=ts.data,correlation=cor,na.action=na.omit)  

>  summary(fit.gls) 

Modelo mínimos quadrados generalizados 

Generalized least squares fit by REML  

  Model: model  

  Data: ts.data  

       AIC      BIC    logLik 

  166.5285 182.0583 -78.26427 

Correlation Structure: ARMA(2,0) 

 Formula: ~1  

 Parameter estimate(s): 

       Phi1        Phi2  

0.767231826 0.009883275  

Coefficients: 

                Value Std.Error   t-value p-value 

(Intercept)  3.912395 0.6825064  5.732393       0 

Tmax        -0.100616 0.0230007 -4.374478       0 

 

 Correlation:  

     (Intr) 
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Tmax -0.982 

Standardized residuals: 

        Min          Q1         Med          Q3         Max  

-2.10973874 -0.78960180 -0.00379258  0.82144568  1.98501762  

Residual standard error: 0.5992108  

Degrees of freedom: 167 total; 165 residual 

> sd(ts.data[,1],na.rm=TRUE) 

[1] 0.6558298 

> rmse<-sqrt(mean(residuals(fit.gls)^2)) 

> sdo<-sd(ts.data[,1],na.rm=TRUE) 

> srmse<-rmse/sdo 

> srmse 

[1] 0.8973855 

> sdo 

[1] 0.6558298 

 

> fit.gam<-gam(Ldeng ~ s(P)+s(Tmed)+s(Tmax),data=ts.data,na.action=na.omit) 

> summary(fit.gam) 

Family: gaussian  

Link function: identity  

Aplicação das variáveis  

Formula: 

Ldeng ~ s(P) + s(Tmed) + s(Tmax) 

Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  0.99958    0.04753   21.03   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Approximate significance of smooth terms: 

          edf Ref.df     F p-value 

s(P)    5.474  6.578 1.670   0.110 

s(Tmed) 1.000  1.000 0.089   0.766 

s(Tmax) 1.000  1.000 1.175   0.280 
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R-sq.(adj) =  0.249   Deviance explained = 28.7% 

GCV = 0.35011  Scale est. = 0.32979   n = 146 

> fit.gam<-gam(Ldeng ~ s(P)+s(Tmax),data=ts.data,na.action=na.omit) 

> summary(fit.gam) 

Family: gaussian  

Link function: identity  

Retirada de variáveis ao modelo completo 

Formula: 

Ldeng ~ s(P) + s(Tmax) 

Parametric coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  1.00657    0.04526   22.24   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Approximate significance of smooth terms: 

          edf Ref.df      F  p-value     

s(P)    5.259  6.332  2.428 0.024010 *   

s(Tmax) 1.000  1.000 14.716 0.000184 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

R-sq.(adj) =  0.267   Deviance explained = 29.6% 

GCV = 0.33721  Scale est. = 0.32162   n = 157 

> rmse<-sqrt(mean(residuals(fit.gam)^2)) 

> sdo<-sd(ts.data[,1],na.rm=TRUE) 

> srmse<-rmse/sdo 

> srmse 

[1] 0.8445061 

> sdo 

[1] 0.6558298 

> plot(ts.data). 
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ANEXO II 

PARA O NORDESTE: 

Simulações do Clima Presente 

Título do artigo Modelos Cenários NEB 1985 a 2005 
Temperatura 

anual 

Confiança(٪)/ 

resultados 

Projeções De Mudanças 

Climáticas Sobre O Nordeste 

Brasileiro Dos Modelos Do 

Cmip5 E Do Cordex. 

 

Guimarães, 2015 

MCGs CMIP5 

A média de 

temperatura para o 

clima presente 

25,8°C 90 

Guimarães, 2015 CanESM2 - - - 

Melhor modelo para 

cálculo de precipitação 

futura 

Guimarães, 2015 TAS e PR - - - 50 

Guimarães, 2015 RAMS-CAM Aplicadas ao CRU 
Mostram aumento no 

IA 
- 

Não tem boa representação 

para locais com clima 

muito seco. 

Guimarães, 2015 RAMS-SAM Aplicadas ao CRU 
Mostram aumento no 

IA/futuro 
- 

Resulta no 

desaparecimento de zonas 

áridas 

Guimarães, 2015 
CSIRO-Mk3-6-

0 
 

Projetam mais 

mudança no IA 
- 

Mostram o surgimento de 

uma área hiperárida entre 

os Sertões 

Projeções De Mudanças Na 

Precipitação E Temperatura No 

Nordeste Brasileiro Utilizando 

A Técnica De Downscaling 

Dinâmico 

 

RAMS6.0 

RCP8.5 

A simulação foi 

comparada com os 

dados do CRU 

Superior ao hadgem2-

ES 
- 

Representação da fase do 

ciclo anual de precipitação 

e temperatura 

Redução do viés seco na 

estação seca sobre o 

NNEB 
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Costa Et Al., 2015 

Avaliação De Desempenho Dos 

Modelos Do Cmip5 Quanto À 

Representação Dos Padrões De 

Variação Da Precipitação No 

Século Xx Sobre A Região 

Nordeste Do Brasil, Amazônia 

E Bacia Do Prata E Análise 

Das Projeções Para O Cenário 

Rcp8.5 

 

Silveira Et Al., 2013 

CMIP5 
RCP8.5 

 

Os modelos globais do 

CMIP5 analisados 

apresentam 

correlações elevadas 

em relação à 

climatologia observada 

no período de 1901 a 

1999. 

- 
Futuro da precipitação nas 

várias regiões da América. 

Fonte: Autor, 2023. 

Simulações do Clima Futuro: 

Título do artigo 
Cenários 

NEB 
Ano de 2006-2099 Temperatura anual 

A temp. ficar mais 

quente, do que no último 

ano do experimento 

historical (até 2005) 

Projeções De Mudanças Climáticas 

Sobre O Nordeste Brasileiro Dos 

Modelos Do Cmip5 E Do Cordex. 

 

Guimarães, 2015 

RCP4.5 - 26,8°C 1,8°C 

Projeções De Mudanças Climáticas 

Sobre O Nordeste Brasileiro Dos 

Modelos Do Cmip5 E Do Cordex. 

 

Guimarães, 2015 

RCP8.5 

Como fisicamente esperado, o RCP8.5 

mostra mais aquecimento sobre o 

NEB que o RCP4.5. 

29,1°C 4,1°C 

Variabilidade E Mudanças Climáticas 

No Semiárido Brasileiro. 

 

Modelo 

(HadAM3P) 

Cenário: 

As temperaturas aumentariam de 2 a 4 

ºc e as chuvas teriam uma redução de 
- 2 e 4°C 
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Marengo Et Al., 2011 A2-

pessimista 

15 a 20% (2-4 mm dia-1) no 

semiárido, até o final do século XXI.  

Variabilidade E Mudanças Climáticas 

No Semiárido Brasileiro. 

 

Marengo Et Al., 2011 

Modelo 

(HadAM3P) 

Cenário: 

B2-otimista 

No cenário otimista o aquecimento 

seria entre 1 a 3 ºC e a chuva ficaria 

entre 10 a 15% (1-2  mm dia-1) menor 

que no presente a nível anual. 

- 1 e 3°C 

Avaliação De Desempenho Dos 

Modelos Do Cmip5 Quanto À 

Representação Dos Padrões De 

Variação Da Precipitação No Século 

Xx Sobre A Região Nordeste Do 

Brasil, Amazônia E Bacia Do Prata E 

Análise Das Projeções Para O 

Cenário Rcp8.5. 

 

Silveira Et Al., 2013 

CMIP5 
RCP8.5 

 

- Com reduções de 

precipitação de até 

20,5%,33,6 e 39,5% para 

os períodos de 2010 a 

2039, 2040 a 2069 e 2070 a 

2099, respectivamente. 

Fonte: Autor, 2023. 

 


