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RESUMO

Este estudo epidemioldgico € do tipo ecoldgico, de abordagem quantitativa e descritiva de série
temporal. O presente trabalho tem o objetivo de investigar a influéncia do clima na variabilidade
interanual do nimero de casos de dengue e prever situacdes epidemioldgicas em areas urbanas,
de clima tropical semi-arido, no Ceard. Para isso, utilizou-se diversos modelos de regressao
linear de minimos quadrados ordinario baseados nas varidveis meteoroldgicas (precipitacdo e
temperatura) com correlagdes mais significativas com a ocorréncia de casos de dengue. As
correlacdes amostrais foram calculadas para associacdes sem lag e com lag de 1 a 3 meses, a
fim de verificar a influéncia da defasagem temporal entre os dados climaticos e os dados de
dengue. Dos resultados extrai-se que a temperatura minima com defasagem de 3 meses foi a
varidvel que mais influenciou o numero de casos de dengue, participando como variavel
preditora mais significativa em 6 dos 12 municipios analisados no estudo. Outro achado
interessante € que o modelo calibrado para Fortaleza foi o que apresentou melhor qualidade
entre os demais municipios, com um SRMSE de ~0,799. Juazeiro do Norte, Tiangua e Sobral
foram os municipios em que nenhuma das varidveis preditoras possuiam correlagdo com
significancia estatistica. Com isso, pode-se concluir que a relagdo entre variaveis climaticas e a
incidéncia de dengue varia entre 0s municipios, ndo tendo um padrdo bem definido de
influéncia, podendo indicar que o clima sozinho ndo explica a variabilidade interanual do
numero de casos de dengue, outros fatores como urbanizacdo, diminuicdo da vegetacdo e a
expansdo populacional podem modular/influenciar a incidéncia da dengue. Adicionalmente
pode-se ainda concluir que modelos mais simples, baseados em varidveis significativas,
apresentaram melhor desempenho. Em alguns casos, a previsdo capturou bem as tendéncias
sazonais da dengue, mas houve limitacbes como superestimacdo e subestimacdo em certos

periodos.

Palavras-chave: Regressdo Linear; Previsdo Epidemioldgica; Dengue.



ABSTRACT

This epidemiological study is ecological, with a quantitative and descriptive time series
approach. The present work aims to investigate the influence of climate on the interannual
variability of the number of dengue cases and epidemiological pre-situations in urban areas,
with a semi-arid tropical climate, in Ceard. For this, several ordinary least squares linear
regression models were used based on the detrimental variables (precipitation and temperature)
with the most significant correlations with the occurrence of dengue cases. The sample
correlations were calculated for associations without delay and with a delay of 1 to 3 months,
in order to verify the influence of the time lag between the climate data and the dengue data.
From the results it is extracted that the minimum temperature with a lag of 3 months was a
variable that most influenced the number of dengue cases, participating as the most significant
predictor variable in 5 of the 12 cities proven in the study. Another interesting finding is that
the model calibrated for Fortaleza was the one that presented the best quality among the other
municipalities, with a SRMSE of ~0.799. Juazeiro do Norte, Tiangua and Sobral were the cities
in which none of the predictor variables had statistically significant brightness. Therefore, we
can conclude that the relationship between climate variations and the incidence of dengue varies
among municipalities, with no well-defined pattern of influence, even indicating that climate
alone does not explain the interannual variability in the number of dengue cases; other factors
such as urbanization, increased vegetation and population expansion can modulate/influence
the incidence of dengue. Additionally, it can also be concluded that simpler models, based on
significant variables, presented better performance. In some cases, the forecast captured the
seasonal trends of dengue well, but there were limitations such as overestimation and

underestimation in certain periods.

Key words: Linear Regression; Epidemiological Forecast; Dengue.
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1. INTRODUCAO

O aumento da incidéncia do Zika virus (ZIKV) e da Chikungunya (CHIKV) em &reas
com alta presenca do virus da dengue (DENV) tornou-se um grande desafio para os servicos de
salide em diversos paises. O crescimento dessas arboviroses!, transmitidas principalmente pelo
mosquito Aedes aegypti (do género Aedes), passou a ser uma questdo de extrema relevancia,
especialmente em areas urbanas, onde ocorre a maior proliferagdo do mosquito. Isso tem gerado
um debate constante nas politicas de saude publica (SIQUEIRA, 2022).

A dengue, atualmente, é definida como a arbovirose mais predominante do mundo.
Anualmente, o nimero de casos de dengue classica (DC) e da febre hemorragica da dengue
(FHD) vem aumentando (VIANA & IGNOTTI, 2013). A infec¢do pelo virus da dengue resulta
em diferentes quadros clinicos, desde assintomaticos até quadros sintomatoldgicos: Febre do
Dengue (FD), quadros graves de Febre Hemorragica do Dengue (FHD) e Sindrome do Choque
do Dengue (SCD), dessa forma essas instabilidades de quadros podem evoluir para sintomas
graves, em alguns casos resultando a morte. Diante disso, nas Gltimas décadas a doenca se
configurou como uma grande causa de morbidade e mortalidade no Brasil (MALECK, 2019).

O clima pode favorecer a disseminacao de locais propicios para proliferacdo de vetores
da Dengue. Elementos climéaticos, como mudancas nos padrdes de pluviometria e aumento
de temperatura, podem acelerar as taxas de maturacdo e reproducdo do mosquito, elevando
a capacidade de transmissdo do virus (SAJIB etal., 2024). Nesse contexto, nos tltimos anos, tem-
se intensificado a busca de metodologias e estratégias que possam identificar e minimizar as
causas e efeitos de doencas e suas relacdes com os fendmenos climaticos (SOUSA et al, 2018).
Nessa perspectiva, Rahman et al. (2021) observaram que as varidveis climaticas exercem
interferéncia direta no desenvolvimento, sobrevivéncia e habitos alimentares do mosquito.
Foi percebido que o ciclo de vida desse inseto sofre influéncia da temperatura, tendo propensao
a ocorrer no intervalo térmico de 28 °C a 32 °C. Desvios nesses valores, seja em termos
excessivamente baixos ou altos, podem ocasionar retardo no seu desenvolvimento ou aumentar
sua mortalidade (HARRIS; CALDWELL; MORDECAI, 2019; MOREIRA et al.,

2020).

Costa et al. (2022) investigaram a associacdo entre variabilidade hidroclimatica

interanual e sazonal e a incidéncia de dengue (2008-2018) em sete municipios de grande

relevancia socioecondmica no Ceard. A relagdo entre a incidéncia de dengue e variaveis

! Arboviroses sdo doencas causadas por arbovirus (Arthropod-borne virus), que por sua vez, s3o virus transmitidos
por artrépodes.



hidrocliméticas foi analisada por meio de regressdo de minimos quadrados generalizados
(GLS). Os autores notaram que o inicio da quadra chuvosa, em fevereiro, também abre a
temporada de dengue no estado do Ceara. Além disso, perceberam que no final da atuacdo da
Zona de Convergéncia Intertropical (ZCIT) no Ceara, principal sistema indutor de chuvas no
Estado, é o periodo de maior ocorréncia de casos de dengue nos municipios de Fortaleza, Sobral
e Barbalha. Quanto & modelagem da incidéncia de dengue, verificaram que as regresses GLS
foram capazes de reproduzir o inicio, o desenvolvimento e o final da temporada de dengue,
embora tenham encontrado subestimacdo dos picos e superestimagdo dos baixos indices de
incidéncia.

Segundo Roy et al. (2024), elementos climaticos e sociodemogréaficos afetam a
propagacao da dengue. Embora precipitacdo, temperatura do ar e umidade relativa do ar possam
influenciar o ciclo de vida dos mosquitos, a prevaléncia da dengue também esta correlacionada
com a urbanizacéo, a diminuicdo da vegetacao e a expansdo populacional. Por isso, os indices
de dengue tendem a ser maiores na zona urbana.

Conforme FERREIRA et al. (2023) e COSTA et al. (2022), o desenvolvimento de
estudos de previsdo epidemioldgica dos casos de dengue também pode auxiliar na investigacao
dos efeitos do clima na satde publica. As implicacBes na satde variam de acordo com as escalas
espaciais e de tempo, e depende de condi¢cdes socioecondmicas e ambientais, com
possibilidades de aumento da incidéncia de doencas ou modificacdo de sua abrangéncia
geogréfica. A avaliacdo de tendéncias e a quantificacdo da influéncia interanual na incidéncia
da dengue ¢ essencial na prevencdo de surtos e no direcionamento de politicas publicas mais
eficientes no combate a doenca.

Nesse contexto, observa-se que os efeitos do clima nos casos de dengue sdo muito
dependentes da localizacéo e escala, o que dificulta a generalizagdo dos resultados de pesquisa
para regioes geograficas ndo estudadas. Alem disso, pouco se sabe sobre os efeitos da
variabilidade climatica interanual na incidéncia de dengue em areas urbanas de regides tropicais
secas (PAUL et al., 2021; BHATIA et al., 2022; COSTA et al., 2022; FERREIRA, 2023).

InvestigacOes direcionadas a populagbes urbanizadas, localizadas em regides
climaticamente e sociodemograficamente favoraveis a incidéncia de dengue, sdo essenciais para
identificar os elementos climaticos locais que influenciam a transmisséo da doenca. Com isso,
é possivel antecipar mudancas na magnitude e na sazonalidade dos surtos. A justificativa para
esta pesquisa reside na necessidade de compreender como as variaveis hidroclimaticas
impactam a dindmica da transmissdo da dengue, contribuindo para o desenvolvimento de
modelos preditivos mais eficazes. A hipotese do trabalho € que as variagdes climaticas, como

precipitacdo e temperatura, ttém uma influéncia significativa na proliferacdo do mosquito Aedes



aegypti, e, portanto, na intensidade e periodicidade dos surtos de dengue nas areas estudadas.
Esse conhecimento pode fornecer subsidios cruciais para o planejamento de estratégias de
controle mais eficientes, auxiliando os tomadores de decisdo na implementacdo de medidas
preventivas. (SIQUEIRA, 2018; BATISTA et al., 2021).

1.1. Objetivos
1.1.1. Objetivo Geral

Investigar a influéncia da precipitacdo e temperatura (maxima, média e minima) na
variabilidade interanual das incidéncias de casos de dengue e prever situacdes epidemioldgicas
em areas urbanas, de clima tropical semi-arido, no Ceara.

1.1.2. Objetivos Especificos
) Analisar se varidveis climéaticas, como precipitacdo e temperatura do ar, influenciam o
numero de casos de dengue;

) Criar um modelo de previsdo epidemiologica com base nas varidveis que mais
influenciam o crescimento de casos da doenga;

) Validar o modelo de previsao epidemioldgica dos casos de dengue.



2. REVISAO DA LITERATURA

2.1. Dinamica climatica do nordeste brasileiro (NEB) e do Ceara

O clima do Nordeste Brasileiro (NEB) se distingue por amplas varia¢@es na distribuicao
da precipitacdo em escala espacial e temporal. No NEB, tanto os periodos prolongados de
estiagem quanto os de alta pluviometria causam sérios problemas sociais e econdmicos. A
regido esta localizada na Zona Intertropical e seus sistemas meteoroldgicos mais atuantes em
escala sazonal séo Zona de Convergéncia Intertropical (ZCIT), Linhas de Instabilidade (LI),
Vortices Ciclonicos de Altos Niveis (VCAN), Disturbios Ondulatérios de Leste (DOL) e
Sistemas Frontais (SF). Outros fatores que afetam o clima da regido sao os fendmenos EIl Nifio
- Oscilacdo Sul (ENOS) e a Oscilacdo Decadal do Pacifico (ODP), que ocorrem em escala
interanual e decadal, respectivamente (ARAUJO JUNIOR, 2018; FERREIRA & MELLDO,
2005).

Na pré-estacdo chuvosa no NEB, que ocorre entre novembro e janeiro, os VCAN
caracterizados por serem um sistema de baixa pressdo em altos niveis da atmosfera, com
circulacdo de ventos no sentido horario, comumente provocam chuvas significativas no
Semidarido Brasileiro (REIS et al., 2021; FERREIRA et al., 2019). Os SF, como as Frentes Frias,
que se formam no encontro entre uma massa de ar frio (mais densa) com uma massa de ar
guente (menos densa), embora menos frequentes, podem atingir a regido durante esse periodo,
contribuindo para a formacdo de chuvas, especialmente nas areas mais ao sul do Nordeste
(FEDOROVA et al., 2016).

Durante a quadra chuvosa no NEB, de fevereiro a maio, o principal sistema indutor de
chuvas no estado do Ceara é a ZCIT, que € uma zona de baixa pressdo na regido equatorial,
formada pelo encontro dos ventos Alisios de Sudeste e de Nordeste em baixos niveis. Este
realiza um deslocamento sazonal entre os hemisférios norte e sul, de modo que em anos
normais?, migra de uma posi¢&o mais ao norte, entre agosto e outubro, para uma posi¢do mais
ao sul, entre fevereiro e maio. Esse deslocamento esta relacionado aos padrbes de Temperatura
da Superficie do Mar (TSM) sobre a bacia do oceano Atlantico Tropical e do Pacifico,
dimensionando a pluviometria sobre o NEB (NOGUEIRA et al., 2024; OLIMPIO &
ZANELLA, 2015; FERREIRA & MELLO, 2005).

2 Anos normais, sdo aqueles em que a pluviometria ficou em torno da média climatolégica.



As Linhas de Instabilidade, formadas por nuvens do tipo cumulus de alta atividade
convectiva, com bandas de nuvens em forma de linha, também tendem a atuar no NEB tanto
durante o periodo da estagdo chuvosa, aumentando com a proximidade da ZCIT, principalmente
em fevereiro e margco, como durante o segundo semestre do ano, especialmente entre agosto e
novembro (FERREIRA & MELLO, 2005).

Na pos-estacdo chuvosa no NEB, os DOL que séo perturbacdes ondulatorias no campo
dos ventos alisios, tém origem no Oceano Atlantico Tropical proximos & costa oeste da Africa
e se propagam em direcdo ao oeste, tendo atuacdo mais pronunciada entre maio e julho, sdo
responsaveis por chuvas intensas em estados litoraneos, como Ceard, Pernambuco, Alagoas,
Sergipe e Bahia (SILVA et al, 2020; CAVALCANTE et al., 2020).

Anos secos ou chuvosos também estdo relacionados a variabilidade climética interanual,
que é significativamente influenciada por fenémenos como, El Nifio-Oscilagdo Sul (ENOS) e 0
Gradiente Inter- Hemisférico da Temperatura da Superficie Mar (GRADM) do Atlantico no
Brasil (LUCENA et al., 2010; WAINER et al., 2010; VASCONCELOS JUNIOR et al., 2018).

O ENOS ¢ dado como referéncia nas situacdes nos quais o oceano Pacifico Equatorial
estd mais quente (EI Nifio) ou mais frio (La Nifia) do que a média normal histdrica. As mudancas
climaticas do oceano Pacifico Equatorial acarretam efeitos globais na temperatura e
precipitacdo. O ENOS na fase positiva, estado mais quente, historicamente produz escassez
hidrica no NEB e chuvas intensas no Sul/Sudeste do pais. J&, 0 ENOS na fase negativa, estado
mais frio, influencia a precipitacdo em grande parte da Regido Norte e também em parte da
Regido Nordeste, com chuvas acima da média historica para a atualidade, enquanto no
Sul/Sudeste ha uma tendéncia de reducdo da pluviometria (MEDEIROS & OLIVEIRA, 2021;
ABREU et al., 2023)

O GRADM esta relacionado a mudancas no regime de ventos alisios nos dois
hemisférios do planeta devido ao gradiente de temperatura das aguas do Atlantico Norte e do
Atlantico Sul. No NEB, o GRADM influencia o deslocamento meridional da ZCIT tendendo a
ocasionar escassez de chuvas na sua fase positiva (quando as aguas do Atlantico Norte estdo
mais aquecidas que do Atlantico sul), enquanto que nos anos de precipitagdo intensa tal
comportamento € oposto, sendo esta caracteristica da fase negativa (LUCENA et al., 2011,
CAVALCANTI, 2015; SILVA et al., 2021b).

O clima do NEB é significativamente influenciado pelas anomalias de temperatura da

superficie do Oceano Pacifico tanto na escala interanual, j& comentada acima, como na escala



decadal (SANTOS et al., 2023). A ODP, assim como 0 ENOS possui duas fases, quente e fria.
As temperaturas das superficies dos oceanos ficam mais aquecidas durante 20 a 30 anos e, em
seguida, se resfriam durante outros 20 a 30 anos, totalizando um ciclo de 50 a 60 anos (Andreoli
& Kayano, 2004; CAVALCANTI et al., 2009).

Estudos como o de Molion (2005), Andreoli e Kayano (2005) e Oliveira et al. (2017),
mostraram que na fase negativa (ou fria) a ODP acarreta uma reducédo da frequéncia dos eventos
de El Nifio, e na fase positiva (ou quente) ha uma tendéncia de aumento em numero e
intensidade de eventos de El Nifio. Sendo, assim, a fase fria da ODP mais favoravel a

precipitacdo para o Nordeste Brasileiro.
2.2. Clima e saude publica

As relaces entre o clima e saide humana sao complexas, 0 aumento das temperaturas,
a mudanca de padrdes climaticos e a degradacdo ambiental estdo correlacionadas a doencas,
como disturbios respiratérios, problemas cardiovasculares e a disseminacdo de doencas
transmitidas por vetores bioldgicos, afetando populagdes, especialmente as mais vulneraveis,

em regides socioecondmicas mais marginalizadas (Omeye, 2024).

Segundo Adamopoulos & Syrou (2024), a poluicdo do ar, aliada ao aumento de
temperatura do planeta, tem intensificado doencas respiratorias e cardiacas. Estudos como os
de Hasunuma et al. (2021), Hu et al. (2022) e Makrufardi et al. (2023) evidenciam a relacéo
entre fatores ambientais e 0 aumento da prevalecéncia e severidade da asma em criangas, por
meio da tendencia de crescimento de morbidade e mortalidade nesse publico. Doencas
cardiovasculares, como o Acidente Vascular Cerebral (AVC) e o Infarto Agudo do Miocéardio
(IAM) podem ser influenciados pelo estresse térmico, predispondo potencialmente individuos
vulneraveis a ruptura ou bloqueio dos vasos sanguineos cerebrais ou cardiacos (MOREIRA et
al., 2024). Silveira et al. (2021), Zhao et al. (2022) e Ohashi et al. (2023) notaram um aumento
de internac6es e de mortalidade por AVC ou IAM associados a temperaturas extremas (muito

elevadas e muito baixas)

Athirsha et al. (2024), em seu estudo de revisdo, destacaram que a mudanca climatica
em curso pode, alterar a sazonalidade de muitas doencas vetoriais, acelerar os ciclos de vida
dos vetores e criar condi¢Bes favoraveis para patdgenos, aumentando o risco de transmissdo e

levando a surtos mais frequentes e graves.



O clima néo é o Unico aspecto que influéncia geograficamente e que afeta as doencas
suscetiveis aos elementos climaticos. As componentes ndo climéaticas podem ter um efeito
predominante, seja de maneira independente ou através de modificagGes do clima. Além disso,
a compreensdo das diversas causas que vao da mudanca climatica até os impactos na saude, é
importante na identificacdo das oportunidades de abordar os determinantes ambientais dos
resultados deficientes de saude (OPAS, 2014).

Os efeitos climaticos podem ter limitacdes de longo alcance para a saude publica por
meio de vulnerabilidades sociais inerentes que podem ampliar os impactos de vias de risco em
cascata. Desenvolvimento de programas de controle podem ser incorporados ao uso da terra e
determinantes socioecondmicos, buscando minimizar ou neutralizar indiretamente 0s impactos
do aumento da variabilidade climética na transmisséo ou exacerbacdo de doengas. Entender as
fraquezas do sistema pode ajudar a promover a capacidade adaptativa e as medidas de
intervencdo (SEMENZA et al., 2022).

Pensando em estratégias para que os problemas de salde fossem minimizados e em
busca de compreender como o clima impacta na saude pablica, Kovats et al. (2005) desenvolveu
um modelo hierarquico, denominado Marco DPSEEA (Forcas Motrizes, Pressao, Situacao,
Exposicdo, Efeito, Agdo), ver Quadro 1, afim de identificar os condicionantes ambientais ou de

comportamento que afetam a salde.

QUADRO 1: MARCO DPSEEA (FORCAS MOTRIZES, PRESSAO, SITUACAO, EXPOSICAO,
EFEITO, ACAO)

MARCO DPSEEA ACOES

Politicas de Energia, agricultura e transporte; Acordos internacionais (por exemplo,
mudancas demograficas; mudancas no convencBes das NacBes Unidas como a
aproveitamento da terra; processo de urbanizagéo. CMNUCC, o CDB ou a CNULD)

EmissBes de gases de efeito estufa Politicas nacionais de mitigacdo.
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Politicas de adaptacdo e programas de

A mudanca climatica. ~ .
gestdo de riscos.

Fendmenos  meteorolégico  extremos  (secas,
inundacdes, ondas de calor); mudangas em
ecossistemas; escassez de agua; disponibilidade de
alimentos; mudancas na distribuicdo de vetores.

Indicadores, acompanhamento, sistemas
de vigilancia, politicas de satde publica,
protecdo ambiental.

Doengas  suscetiveis ao clima, entre elas
cardiovasculares, respiratorias agudas e cronicas,
diarreias agudas, mentais, transmitidas por vetores;
ma nutricdo; lesdes.

Diagnostico e tratamento.

O4—MTmQoX>»XO =0 TXmMOU>-Huvm

Fonte: Adaptado de OPAS (2014).

Entdo através das forcas motrizes, entendeu-se, os principais fatores que geram 0s
processos ambientais resultando em pressdes sobre 0 ambiente. Dessa forma, o estado do meio
ambiente € alterado com mudancas que podem ser mais complexas, de ampla abrangéncia e de

diferentes escalas geogréaficas (OPAS, 2014).

Para que ocorra uma melhora atraente nos resultados entre a saude e a dinamica
climatica, programas e instituicdes de satde publica tém buscado implementar, monitorar e
avaliar servicos, programas e politicas inclusivos para proteger a saude das pessoas dos riscos
ambientais (OPAS, 2014).

2.3. Arboviroses e vetores climaticos

O arbovirus sdo transmitidos por artrépodes e sdo identificados ndo somente pela sua
forma de veiculagdo, mas, principalmente, pelo fato de parte de seu ciclo de desenvolvimento
ocorrer nos insetos. Os sintomas que podem aparecer em seres humanos podem variar desde de
doenca febril a um quadro moderado ou grave, apresentando erupgdes cuténeas, artralgia,
sindrome neuroldgica e sindrome hemorragica em alguns casos (CHAVES, 2021). O Brasil por
sua larga extensdo territorial, aproximadamente 8.510.000 kmz?, esta localizado em uma area de
clima predominantemente tropical sendo um local adequado para a disseminacédo de insetos e

vetores, consequentemente a proliferacdo de doencas.

O virus do Nilo Ocidental (WNV) pode causar epidemias inclusive em areas urbanas. E

transmitido por mosquitos do género Culex e tem as aves como principais reservatorios. Alguns



virus perderam a exigéncia de amplificacdo enzodtica® e produzem epidemias urbanas tendo
exclusivamente o homem como amplificador vertebrado. E o caso dos virus da Dengue,

Chikungunya e, mais recentemente, Zika.

A circulacdo de infeccdo por Dengue, Chikungunya e Zika no pais dificulta 0 manejo
dentro dos hospitais ou clinicas, devido a similaridade entre os sintomas. Implicagdes na
transmissdo de idosos, gravidas e criancas apresenta uma maior atencdo. A interacdo de
arboviroses (DENV sorotipos 1-4, CHIKV e ZIKV) poderia teoricamente resultar em viremias
mais intensas ou outras altera¢fes imunoldgicas que, por sua vez, agiriam como gatilho para
doengas autoimunes, como a sindrome de Guillain-Barré (CHAVES, 2021). O Tempo e o clima
sdo fatores importantes na determinacdo do comportamento do mosquito e na eficacia da
transmissdo do virus da dengue. No entanto, a investigacdo sobre a relacdo entre as variaveis
meteoroldgicas e a dengue limita-se principalmente aos valores médios de temperatura e estes

ignoram o importante papel da variabilidade a curto prazo (LIU-HELMERSSON et al., 2014).

O desenvolvimento social e econdmico faz com que o Dengue acompanhe 0 homem em
seus empreendimentos, migracdes e aglomeracdes no decorrer da historia. E varios estudos
veem mostrando os diversos caminhos que levam a transmissdo. Mesmo sendo considerada
uma doenca urbana, casos frequentes estdo sendo registrados em areas rurais, abrindo
ferramentas para que sejam desenvolvidos estudos para realizar analise da situacdo. O mosquito
possui uma forte capacidade de adaptacdo (DONALISIO & GLASSER, 2002).

O referido autor ainda ressalta que o Aedes aegypti vetor marcadamente domiciliado,
utiliza diversos tipos de criadouros, independentemente dos periodos de chuva, sugerindo que
0 pico de transmissdo ndo esta relacionado com a densidade do vetor, mas sim com o
prolongamento da vida do mosquito em sua fase adulta nas condi¢Ges de temperatura e umidade
da estacdo chuvosa aumentando a probabilidade de as fémeas infectadas completarem o periodo

de replicacédo do virus.

De acordo um estudo realizado no Estado de Goéias foi constatado a associacdo e
pluviosidade e aumento dos casos de Dengue nos municipios de estudo. Havendo picos
especificos nos 4 primeiros meses dos anos, dos quais sdo considerados 0s mais chuvosos.

Sendo que a infestacdo do mosquito chegou a 97,5% de infestagdo em diversos municipios

3 Enzodtica é o equivalente ndo humano de endémico e significa, em sentido amplo, "pertencente a" ou "nativo
de", "caracteristica de" ou "prevalente em" uma determinada geografia, raca, campo, drea ou ambiente; nativo
de uma drea ou escopo.



goianos. Assim o autor também aponta a longevidade do Aedes aegypti durante o periodo
chuvoso e 0 aumento de temperatura. Este Gltimo tem sido usado como um fator modelador
para outros estados adotando a pluviosidade como um fator de pequenas interferéncias
(SOUSA, 2010).

2.4. Previsao epidemioldgica dos casos de dengue

De acordo um estudo realizado no Estado de Goéias foi constatado a associacdo e
pluviosidade e aumento dos casos de Dengue nos municipios de estudo. Havendo picos
especificos nos 4 primeiros meses dos anos, dos quais sdo considerados 0s mais chuvosos.
Sendo que a infestacdo do mosquito chegou a 97,5% de infestagdo em diversos municipios
goianos. Assim o autor também aponta a longevidade do Aedes aegypti durante o periodo
chuvoso e 0 aumento de temperatura. Este Gltimo tem sido usado como um fator modelador
para outros estados adotando a pluviosidade como um fator de pequenas interferéncias
(SOUSA, 2010).

A criacdo de ferramentas para prever os casos de dengue é considerado algo complexo,
mas diversos estudos e técnicas estdo sendo elaborados, pois existem fatores que podem
contribuir significativamente, ajudando as pesquisas na area de proliferacdo e aparecimento da
doenca. Técnicas de Machine Learning e de Deep Learning, vem influenciando nos estudos de
andlises de dados climéticos, como dados de temperatura, precipitacdo e umidade (BATISTA
etal., 2021). A progressdo da dengue, depende de condi¢des ecoldgicas e sdcio-ambientais que

facilitam a disperséo do vetor.

Para os estudos de séries temporais, modelos matematicos e estatisticos, mais
especificamente as ferramentas de analises de séries temporais, tém sido amplamente utilizados
para monitorar e predizer a incidéncia de dengue e outras doencas infecciosas. Permitindo
predi¢cbes do numero de casos em periodos posterior a séries estudada. SARIMA (Seasonal
Autoregressive Integrate Moving Average), destaca-se como um modelo atil em situacfes em

que os dados das séries temporais exibem flutua¢des sazonais constantes (LIZZI et al., 2012).

Segundo Silva & Rosa (2018), um modelo matematico aplicado a sistemas dinamicos
epidemioldgicos é a representacdo de um sistema, utilizando uma linguagem e ferramentas
matematicas, na busca de explicar o comportamento da doenga, a sua propagacao, 0S seus
efeitos. Podendo ainda servir para prever os impactos da disseminacéo e das formas de controle
de doencas. Dessa forma os modelos matematicos aplicados a epidemiologia, podem ser Uteis

para fornecer estimativas sobre as formas mais eficazes de controle.



Costa et al. (2022) investigaram a associacdo entre a variabilidade hidroclimética e a
incidéncia de dengue em uma grande &rea tropical seca. A influéncia entre as variaveis foi
extraida por meio da regressdo de minimos quadrados generalizados (GLS). Os resultados
mostraram que a variacdo interanual da dengue na regido de estudo € modulada pela
precipitacdo e temperatura. As regressdes foram capazes de capturar o inicio, 0
desenvolvimento e o fim da temporada de dengue, apesar da subestimagdo dos picos e
superestimacgdo dos vales de incidéncia do vetor. Os autores ainda ressaltam que 0s desvios
entre os dados previstos e observados ndo sdo um problema no caso de os modelos serem
utilizados para avaliacdo do impacto de mudancas climaticas na incidéncia de dengue em escala

municipal, visto que conseguiram representar bem a sazonalidade da incidéncia de dengue.

Batista et al. (2021) fazem uma revisao sistematica dos modelos de previsdo de casos de
dengue através de técnicas de machine learning e deep learning. A revisdo diagnosticou que as
técnicas de Random Forest (RF), Support Vector Regression (SVR) e Long Short-Term
Memory (LSTM) sdo as mais utilizadas para prever os casos de dengue usando informacoes
climéticas. O artigo ainda ressalta que a técnica de Root Mean Absolute Error (RMSE) é a

preferida para mensurar o erro.

Em um estudo realizado no México, dados em escalas anuais relacionando dengue e
temperaturas foram utilizados para analisar a dinamica temporal e produzir previsdes precisas
da dengue. A dindmica temporal dos dados foi obtida através de métodos de autocodificacéo,
janelas de contagem e agrupamento de séries temporais colocados em cascata para capturar
possiveis associacdes entre dengue e temperatura. Em seguida, foi utilizado o método de
previsdo do vizinho mais préximo (KNN) baseado em associacdo de tendéncia para prever o
namero de casos de dengue. Os resultados comprovaram a viabilidade da metodologia proposta,
podendo esta concorrer com outros métodos de previsao de Ultima geragdo (APPICE, 2020).

Mittelmann e Soares (2017) usam dois tipos de arquitetura de redes neurais artificiais
(RNASs) para prever o numero de casos de dengue em Guarulhos - Sdo Paulo. Dados de
precipitacdo total, temperatura maxima média, temperatura minima média e umidade relativa
sdo utilizados para treinar redes de perceptron multicamadas (MLP) e redes autorregressivas
com entradas exogenas (NARX). As redes MLP adota no estudo foram constituidas de cinco
entradas uma camada intermediaria com “n” neur6nios e um neurdnio na camada de saida, ja
as redes NARX utilizou 12 entradas, em que se considerou 0os mesmos dados de entrada das
redes MLP porém defasados até dois meses em relacdo a dengue, além de dois atrasos de



retroalimentacdo. O melhor desempenho foi obtida pela MLP com 10 neur6nios na camada

oculta, funcdo de ativacdo logistica e algoritmo de treinamento de regularizagdo Bayesiana.

Diante do exposto, é evidente que o enfrentamento das arboviroses no Brasil exige uma
abordagem integrada, que considere tanto os elementos climaticos quanto os socioambientais.
A combinac&o de dados meteorolégicos com técnicas avangadas de previsdo, como 0os modelos
matematicos e métodos de aprendizado de maquina, apresenta-se como uma ferramenta
promissora para antecipar surtos e orientar estratégias de prevencdo. No entanto, a eficécia
dessas iniciativas depende de investimentos continuos em pesquisa, infraestrutura de satde
publica e educacdo sanitaria da populacdo. Somente com agdes coordenadas entre governo,
comunidade cientifica e sociedade civil seré possivel reduzir de forma significativa os impactos
das doencgas transmitidas por vetores, promovendo um ambiente mais seguro e saudavel para

todos.



3. METODOLOGIA
3.1. Tipo de Pesquisa

Trata-se de um estudo epidemioldgico do tipo ecoldgico, de abordagem quantitativa e
descritiva, de série temporal. Optou-se pelo estudo ecoldgico porque possibilita a comparacéao
de um determinado objeto de estudo, no caso a dengue, com uma ou mais variaveis de interesse
(LIMA-COSTA & BARRETO, 2003). Os dados coletados sdo correspondentes ao periodo
2008-2018 (11 anos) e incluem, os casos confirmados por dengue e dados meteoroldgicos para
12 municipio do estado do Ceara (Ver Figura 02). O estudo serad realizado utilizando a
correlacdo entre a dindmica climética e a ocorréncia de casos de dengue.

O fluxograma, mostrado na Figura 01, detalha as etapas do delineamento do estudo.
Inicialmente, sdo obtidos os dados de dengue do Sistema de Informagdo de Agravos de
Notificacdo (SINAN) e varidveis hidroclimaticas de Xavier et al. (2022), referentes a 12
municipios do Ceara no periodo de 2008 a 2018. Em seguida, os dados sdo organizados em uma
série temporal mensal, com normalizacdo e padronizagdo, se necessario. Define-se 0 modelo
estatistico com o In (Dengue) como varidvel dependente e variaveis explicativas como
precipitacdo e temperaturas minima, média e maxima, que podem ser defasadas até 3 meses em
relacdo a Dengue. Os parametros do modelo de regressdo linear multipla (MLR) séo
inicialmente estimados pelo método dos Minimos Quadrados Ordinarios (OLS), assumindo
erros nao correlacionados. A série historica € dividida em 70% para calibracdo (2008-2014) e
30% para validacdo (2015-2018). Apos o ajuste, os modelos sdo testados e comparados com
métricas de desempenho, selecionando o mais adequado. Por fim, os resultados séo avaliados e
interpretados para compreender a associacdo entre o Indice de Dengue e as variaveis
hidrocliméticas. Mais informacdes sobre as etapas serdo apresentadas nas se¢des a seguir.

3.2. Area de Estudo

O estado do Ceara é composto por 184 municipios, entre os quais destacam-se Aracati,
Canindé, Cratels, Fortaleza, Iguatu, Itapipoca, Juazeiro do Norte, Morada Nova, Quixada,
Sobral, Taud e Tiangua (Ver Figura 02). Esses municipios apresentam caracteristicas

socioecondmicas diversas que refletem a heterogeneidade do estado.

Fortaleza, a capital estadual, € o principal centro econdmico e populacional do Ceara,
concentrando grande parte das atividades industriais, comerciais e de servi¢cos. Municipios
como Sobral e Juazeiro do Norte também se destacam como polos regionais de
desenvolvimento (Ver Tabela 1), possuindo economias diversificadas e infraestrutura

significativa.



Figura 1: Fluxograma de delineamento.
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De acordo com as estimativas populacionais mais recentes do Instituto Brasileiro de
Geografia e Estatistica (IBGE, 2023), o Ceara possui uma populacdo de 8.794.957 de
habitantes. A distribuicdo populacional é desigual, com maior concentracdo nas A&reas
metropolitanas e litordneas, enquanto regides do interior apresentam densidades demogréaficas
menores. A maioria dos municipios possuem indice de desenvolvimento humano (IDH) entre
0,600 e 0,699, classificado como de categoria media. Logo abaixo apresentasse o IDH
juntamente com outras dados socioeconémicos relevantes para cada um dos municipios em
estudo (Ver Tabela 1).

O IDH é uma métrica que avalia o desenvolvimento de municipios, regides, estados ou
paises em 3 dimensdes basicas, saude, educacao e renda. Entre os municipios selecionados para
0 estudo, Fortaleza é o que possui 0 maior IDH, 0,754, evidenciando a qualidade de vida dos
fortalezenses devido a uma maior qualidade da educacgdo e maior renda dos seus habitantes em
relagdo aos outros municipios.

Tabela 1- Dados Socioecondmicos de 12 municipios cearenses.

INDICE DE
i AREA N° DE DESENVOLVIME AREA %SSE,\T ?F'\AE'I\I(;—
MUNICIPIO TERRITORIAL HABITANTES NTO HUMANO URBANIZADA ADEQUADO
(Km?) MUNICIPAL- (Km2) e
IDHM (%)
ARACATI 1227,197 75.113 0,655 19,83 4,50
CANINDE 3032,390 74.174 0,612 10,20 23,2
CRATEUS 2981,459 76.390 0,644 14,92 479
FORTALEZA 312353 2428708 0,754 253,69 74,0
IGUATU 992208 98064 0,677 19,46 27,4
ITAPIPOCA 1600,358 131123 0,640 25,40 32,9
JUAZEIRO
DO NORTE 258788 286120 0,694 51,44 47,20
MORADA
NOVA 2763971 61443 0,610 11,69 9,10
QUIXADA 2020,586 84168 0,659 11,27 52,70
SOBRAL 2068,474 203023 0,714 31,17 75,60
TAUA 4010,618 61227 0,633 10,29 32,30
TIANGUA 909853 81506 0,657 18,88 39,40

Fonte: Instituto Brasileiro de Geografia e Estatistica- IBGE, 2022.

A cobertura de esgotamento sanitario € um indicador crucial de infraestrutura e satde
publica, pois quando maior seu percentual, menores sdo as chances de contaminacdo do solo,
da agua e de propagacéo de doencas. Conforme Tabela 01, Fortaleza tem a maior cobertura,
com 74% de esgotamento sanitario adequado, enquanto Aracati s6 tem um percentual de 4,5%.
Segundo o ranking do saneamento do Instituto Trata Brasil de 2024 (ITB, 2024), entre as 100
cidades brasileiras com melhor nivel de atendimento de esgotamento sanitario, Fortaleza esta

na 682 posicao.



Figura 2: Localizacdo dos 12 municipio cearenses estudados.
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Considerando componentes climaticas, o Ceara € marcado por altas temperaturas, baixos
niveis de umidade e chuvas irregulares, devido seu ambiente semiarido. A temperatura média
frequentemente excede 30 °C, especialmente durante a estagdo seca (Rodrigues et al., 2021). A
quadra chuvosa, que ocorre de fevereiro a maio, é o periodo mais imido do ano no Ceara.
Durante esses meses, 0 estado recebe a maior parte de sua precipitacdo anual, sendo crucial para
a agricultura e o abastecimento hidrico (NOGUEIRA et al., 2024; OLIMPIO & ZANELLA,
2015). Em 2024, por exemplo, a quadra chuvosa registrou um acumulado de 764 mm, ficando
acima da média historica (CEARA, 2024). O principal sistema meteoroldgico responsavel pelas

chuvas no Cearé durante a quadra chuvosa € a ZCIT.

Em relacédo a presenca de mosquito Aedes aegypti, no Ceara ha registros desde o ano de
1851 com noticiada erradicacdo em 1950. Em 1986 houve a reintroducdo dos casos de dengue
nos municipios de Fortaleza, Aquiraz e Beberibe. Desde entdo, a doengca permanece como um
problema grave de saude publica com epidemias cada vez mais frequentes. A partir de 1986,
registrou-se ao menos 14 anos com epidemia de dengue no Ceard, com a circulacdo de quatro
sorotipos da doenca (DENV1 - 1986, DENV2 - 1994, DENV3 - 2002 e DENV4 - 2011). A
partir de 2015, o Ceara passou a apresentar um cenario diferenciado de tripla epidemia, com a
circulacdo autdctone de dois outros arbovirus Chikungunya e Zika (Cavalcanti et al., 2018).



3.3. Modelo Epidemioldgico da Dengue

Nesta pesquisa analisaram-se as variaveis dependentes de casos confirmados de dengue,
juntamente com variaveis independentes, como precipitacdo, temperatura maxima, temperatura
média e temperatura minima do ar. Na regressdo linear simples tem-se uma variavel
independente X e uma varidvel dependente Y. Para um determinado valor de X, estima-se o
valor médio de Y escrevendo essa relacdo numa perspectiva condicional E (Y | X), ou apenas
como w(X). Como p(X) varia com X, entdo ¢ permitido dizer que Y tem uma regressao em X.

A presenca ou auséncia de relacao linear pode ser investigada sob dois pontos de vista:

I.  Quantificando a forca dessa relacdo: Correlagao.

Il.  Explicitando a forma dessa relacdo: Regressao.

A regresséo linear maltipla é uma técnica estatistica que usa varias varidveis explicativas
para prever o resultado de uma variavel de resposta. A regressdo multipla é uma extensao da
regressao linear simples que usa apenas uma variavel explicativa. Em busca de analisar e avaliar
a forca da relacéo entre um resultado (variavel dependente) e variaveis preditoras, bem como a

importancia de cada um dos preditores para a relagéo.

Os dados utilizados, extraidos dos bancos de dados de Xavier et al. (2022), sdo
correspondentes ao periodo de 2008 a 2018 para as variaveis temperatura média (Tmed),
temperatura maxima (Tmax), temperatura minima (Tmin), precipitacdo acumulada (Prec) e
numero de casos confirmados de dengue, com um intervalo mensal. O estudo foi realizado
utilizando a correlacdo de Pearson, com varidveis relacionadas a dinamicas climaticas

(precipitacdo e temperatura) com a ocorréncia de casos de dengue.

O coeficiente de correlacdo de Pearson é uma medida de associacdo bivariada do grau
de relacionamento entre duas variaveis. A correlacdo mensura a dire¢do e o grau da relacdo

linear entre duas variaveis quantitativas. Sua formula é apresentada abaixo:

yi—Y

_ 1 xi—X
r=—IEOE) (1)

Sc



Em relacdo as analises estatisticas, duas variaveis se associam quando elas guardam
semelhancas nas distribuicdes. No caso da correlacdo de Pearson (r), a associacdo ocorre pela
variancia compartilhada entre duas varidveis. A relacdo linear desse coeficiente sugere que o
aumento ou diminuicdo da varidvel X gera um impacto proporcional em Y, isto implica que a
melhor forma de ilustrar o relacionamento entre duas varidveis é por meio uma linha reta,
portanto a correlacdo de Pearson exige uma distribuicao linear dessa variagdo (FIGUEIREDO
FILHO & SILVA JUNIOR, 2009).

As correlagdes amostrais foram calculadas para associa¢des sem lag e com lagde 1 a 3
meses, em que lag é o periodo de tempo que separa as séries temporais, a fim de verificar a
influéncia da defasagem temporal de no maximo 3 meses entre os dados climaticos e os dados

de dengue.

A fim de compreender se as correlacdes obtidas sdo estatisticamente significativas é
necessario, para tanto, partindo do objetivo, formular: HO e H1, estabelecer os graus de
liberdade (N-2) e realizar o teste t-student para rxy, em que:

rvnN — 2

‘= V1 —r2 @

Para o teste de significancia, que busca comprovar a relevancia estatistica da influéncia

dos dados de climaticos nos casos de dengue, formulou-se as seguintes hipoteses:
HO: p=0 (N&o existe correlacéo)
H1: p£0 (Existe correlagdo)

Arbitrando-se nivel critico de significancia para 5% (0,05), como a probabilidade de
rejeitar a hipétese nula.

O conjunto de dados de observa¢fes mensais caracteriza uma série temporal onde foi
usado a aplicagédo da Correlagdo de Pearson, uma vez que este modelo considera a correlagéo
linear entre duas variaveis. (FAGUNDES et al., 2021). Para nosso caso sera aplicado o uso de
Correlacdo Cruzada (ACF) que permite identificagéo de correlagGes que ocorrem em qualquer
periodo. Esse método é capaz de estimar estatisticamente a correlacdo entre duas séries
temporais tendo o tempo incluido como uma variavel. Dentro do contexto conseguimos
identificar um atraso ou defasagem que chamamos de lag, podendo adquirir valores positivos

Ou negativos.

Apbs encontrar as variaveis independentes mais significativas estatisticamente, um

modelo epidemiolégico da dengue foi ajustado considerando o logaritmo natural do nimero de



casos de dengue (Yt) como varidvel alvo e as varidveis climaticas selecionadas (xtl, ..., xtp),
Como a precipitacdo (mm) e a temperatura do ar (minima, média e maxima, °C), que podem

estar defasadas em relacdo ao alvo ou ndo, como potenciais variaveis explicativas:
Yt=p0+ Blxtl + ... + Bpxtp + Et (3)

Usando o algoritmo dos minimos quadrados ordinarios (OLS), os parametros 1, ... Bp
séo estimados assumindo o termo de erro Et com média zero, variancia constante e nenhuma
correlacdo. Aplicando OLS, o método passo a passo reverso produziu preditores com defasagem
variando de 0 a 3.

O Apéndice mostra o cadigo na linguagem R, comentado no subtdpico abaixo, aplicado
ao municipio de Fortaleza, informando todos os passos realizados para o desenvolvimento,
aplicacdo e validacdo do modelo epidemioldgico. Ressalta-se que a fungdo “gls” que aparece
no codigo se refere apenas a sintaxe da linguagem de programacéo, mas ¢ a fungdo OLS que
estd sendo aplicada, visto que quando as suposi¢oes classicas sdo validas, ou seja considera-se
os erros independentes com distribuicdo normal, média zero e variancia constante, a GLS se
reduz a OLS conforme o teorema de Gauss-Markov (MAIA, 2017).

3.4. Software Rstudio

As analises estatisticas, bem como as analises graficas, apresentadas neste trabalho
foram realizadas por meio do ambiente de desenvolvimento integrado (do inglés, IDE) do
RStudio®. O RStudio IDE constitui uma plataforma moderna que integra programacao, geracao
de imagens e importacdo de dados em um Unico ambiente. O RStudio IDE opera através da
linguagem de programacdo R, uma linguagem aberta, livre e com destaque na area de analise
de dados e modelagem. Por operar através de bibliotecas de fungdes, muitas desenvolvidas e
validadas pela comunidade de programadores de R, a linguagem R possui aplicacBes em
diferentes areas do conhecimento, desde a estatistica classica, psicologia, biologia até topicos
modernos como a big data. Além de contribuir para uma pesquisa com foco na reprodutibilidade
dos resultados, o desenvolvimento de pesquisas quantitativas aliadas a uma linguagem de
programacdo torna possivel a implementacdo de solugdes ndo disponiveis em softwares
comerciais. (MASSA, 2017).

3.5. Métricas de Avaliacao

As métricas de avaliacdo sao utilizadas principalmente para averiguar a assertividade de
modelos preditivos. Elas sdo capazes de retornar de maneira objetiva em um Unico valor o
desempenho entre as previsdes e os valores reais, sendo utilizadas como um parametro de
comparacdo para os resultados obtidos com diferentes algoritmos aplicados em um mesmo

conjunto de dados. A combinacao dessas métricas em um sistema de avaliacéo é capaz de gerar



conclusBes mais consistentes a respeito da usabilidade dos modelos. Neste capitulo serdo
apresentados as quatro métricas utilizadas para parametrizar e escolher o melhor modelo
preditivo, sendo elas: AIC, BIC, RMSE, SMRSE.

3.5.1. AIC

O Critério de Informac&o de Akaike (AIC) é fundamentado na teoria da informacéo. Esta
métrica mensura a qualidade de um modelo estatistico considerando sua simplicidade. Em
outras palavras, o AIC estima a quantidade relativa de informacéao perdida por um determinado
modelo. Quanto menor a perda de informacao maior é a qualidade do modelo e menor é o valor
AIC (TRAN, 2011; McELREATH, 2016). Matematicamente, o AIC tem a seguinte formulag&o:

AIC = —=2In(L) + 2k 4)

L = verossimilhanga do modelo (mede o ajuste do modelo aos dados);

k = nlmero de parametros estimados no modelo.

3.5.2. BIC

O Critério de Informacdo de Bayesiana (BIC) é similar ao AIC, mas penaliza mais
fortemente modelos complexos, especialmente quando o tamanho da amostra (n) é
grande.Semelhante ao AIC, quanto menor o valor BIC melhor € o modelo (TRAN,
2011; AGIAKLOGLOU & TSIMPANOS, 2022). A formulagdo do BIC é dada por:

BIC = =2In(L) + k.In(n) (5)
L = verossimilhanga do modelo (mede o ajuste do modelo aos dados);
k = nimero de parametros estimados no modelo.

n = numero de observacdes do modelo;

3.5.3. RMSE

A raiz do erro quadratico médio (RMSE, do inglés Root Mean Square Error) € uma
métrica que estima a diferenca média entre os valores previstos e os valores observados, em
outras palavras, ela fornece a precisao da previsdo em relacdo ao valor alvo. Uma caracteristica
interessante do RMSE é que ele estima o erro na unidade de medida da variavel alvo, facilitando
a interpretacdo do resultado. Valores elevados de RMSE, indicam o modelo ndo é de boa
qualidade, enquanto valores baixos de RMSE, demonstram modelos de boa qualidade. Ressalta-
se que valores altos ou baixos dependem do contexto da analise (CHAI et al., 2014; GANJI &
KAJISA, 2019; HODSON, 2022). A definicdo matematica de RMSE é dada por:

RMSE =\"3  (yi— pi)? (6)

n o i=1



n = numero de observacdes do modelo;
yi = valor real da observacéo i;

pi = valor previsto pelo modelo para a observagéao.

3.5.4. SRMSE

O erro quadratico medio padronizado (SRMSE) é definido como o RMSE dividido pelo
desvio padrdo da série observada (Perreti et al., 2013). A padronizacdo do RMSE permite a
comparacgédo entre diferentes conjuntos de dados ou modelos, facilitando a interpretacéo e a
comparacdo entre diferentes contextos. Se 0 SRMSE for maior que 1(um) indica que o resultado
da modelagem é menos precisa do que simplesmente assumir a média dos dados observados, se
préximo de 0 (zero) implica em uma melhor correspondéncia entre o dado modelado e o

observado.



4. RESULTADOS

O presente estudo investiga a influéncia da precipitacdo e temperaturas (méxima, média
e minima) na variabilidade inter anual das incidéncias de casos de dengue em 12 areas urbanas,
de clima tropical semi-arido. Considerando as correlagcdes encontradas, para cada municipio
descrito, entre as varidveis explanatorias e de resposta no intervalo definido entre 2008 e 2018.
Considerando os diversos pré-testes realizados, estabeleceu-se como regra inicial de escolha
das variaveis preditoras (temperaturas minima, média, maxima, precipitcdes), aquelas cuja
correlacdo apresentou valores maiores que 0,20 ou menores que -0,20. Em seguida, é feita uma
analise de quais dessas variaveis explicativas tém significancia estatistica (ver Tabela 2) e
verificado se o0s erros ndo estdo autocorrelacionados. Com isso, procede-se com o0
treinamento/calibracdo e validacdo dos modelos., conforme explanado no capitulo

metodoldgico (Secdo 3).

4.1. Anélise da Correlagdo Linear e dos Residuos

As Figuras 3 a 14 retratam a Correlagéo Linear de Pearson considerando defasagens
temporais de até 3 meses para 0s 12 municipios em estudo. J& as Figuras 15 a 24 mostram uma
analise dos residuos, por meio da plotagem os erros, por meio da comparacao de distribuices
de probabilidades Normais (Normal Q-Q plot), avaliacdo da autocorrelacao total e parcial.

Considerando a defasagem méaxima de 3 meses para todas as variaveis independentes,
observa-se que, para 0 municipio de Aracati, a variavel precipitagdo com defasagens de (t-1) e
(t-2) encontra-se dentro do intervalo estabelecido pela regra inicial de selecdo de variaveis.
Quanto as temperaturas, apenas a temperatura minima com defasagem (t-3) se enquadra,
conforme ilustrado na Figura 3.

Na sequéncia, foi realizada a verificacdo do ajuste dos residuos do modelo, com o
objetivo de quantificar a discrepancia em relacdo aos valores observados e avaliar a qualidade
do ajuste (Figura 15). No quadrante 1, apresenta-se o grafico de probabilidades “Normal Q-Q
plot”, que compara dados independentes gerados aleatoriamente (eixo vertical) a uma
distribuicdo normal teorica (eixo horizontal). A linearidade dos pontos sugere que 0s residuos
seguem uma distribuigdo normal.

No guadrante 2, o grafico dos residuos indica que os erros se distribuem aleatoriamente
em torno de zero, variando entre -2 e 2, sem exibir tendéncia estatistica, 0 que sugere que 0
modelo é adequado. O terceiro quadrante mostra a autocorrelacao do erro, ou seja, a correlagdo
do erro com ele mesmo considerando defasagens seriais. As linhas tracejadas horizontais
indicam um intervalo de confianca de 95% para a significancia das correlagdes, revelando que,

para Aracati, apenas a série sem defasagem apresentou autocorrelagdo, indicando que o erro é



aleatorio e ndo tende a se repetir ao longo da distribuicdo. O quarto quadrante apresenta a
autocorrelacdo parcial do erro, que identifica a relacdo entre o residuo e suas proprias
defasagens, eliminando a influéncia das defasagens intermediarias. Assim como no quadrante
anterior, as linhas tracejadas indicam um intervalo de confianga de 95%. A analise mostra que
os residuos ndo sdo autocorrelacionados, permitindo a utilizacdo de modelos de regresséo linear.

Em Canindé, municipio com 74.174 habitantes, as variaveis selecionadas dentro do
intervalo definido foram: precipitacdo sem defasagem e com defasagem de 1 més (t-1);
temperatura maxima sem defasagem e com lag de 1 més (t-1); temperatura minima com
defasagens (t-1, t-2 e t-3); e temperatura média sem lag e com defasagem (t-3), conforme
apresentado na Figura 4.

A Figura 16 exibe o estudo detalhado dos residuos do modelo aplicado. No quadrante
1, observa-se que o gréafico Q-Q tende a repousar sobre a linha y = x, indicando que o erro segue
uma distribuicdo normal. No quadrante 2, verifica-se que os erros dos 132 pontos de previsdo
sdo aparentemente aleatdrios e independentes, caracteristica confirmada pelos quadrantes 3 e 4,
0s quais indicam auséncia de correlacdo serial dos residuos.

Para Crateus, a Figura 5 apresenta as correlacdes entre cada variavel climética e a série
de numero de casos de dengue. As variaveis selecionadas, por estarem dentro do intervalo
predefinido, foram: precipitacdo (t-1); temperatura maxima sem defasagem e com defasagem
(t-1); temperatura minima (t-3); e temperatura média sem defasagem e com defasagem (t-1).

Na etapa de ajuste dos residuos, conforme o Quadrante 1 da Figura 17, os dados cobrem
toda a extensdo da reta, com maior concentracdo entre os intervalos de -1 e 1, indicando boa
adequacdo dos erros a distribuicdo normal. Os quadrantes 2, 3 e 4 indicam que 0s erros sdo
irregulares, mas nao significativamente autocorrelacionados, o que valida o desenvolvimento
do modelo de regressdo por minimos quadrados ordinarios.

Em Fortaleza, capital metropolitana do estado do Ceard, a analise revelou que vérias
variaveis apresentaram correlagdes dentro do intervalo estabelecido: precipitacdo sem
defasagem e com defasagens (t-1, t-2 e t-3); temperatura maxima sem defasagem e com
defasagem (t-1); temperatura minima (t-3); e temperatura média sem defasagem, conforme a
Figura 6.

A analise do ajuste dos residuos, ilustrada na Figura 18, mostra que no quadrante 1, o
grafico de probabilidade “Normal Q-Q plot” apresenta linearidade das séries, com leve desvio
nos dados extremos, sem comprometer a suposi¢do de normalidade dos erros. No quadrante 2,
0s residuos variam entre -2 e 2, sem exibir tendéncia estatistica, o que valida a adequacéo do
modelo. Nos quadrantes 3 e 4, verifica-se que ndo ha valores acima da linha pontilhada azul,
indicando auséncia de autocorrelagdo significativa, o que refor¢a a viabilidade do uso de

modelos de regressao linear.



Para Iguatu, conforme a Figura 7, as variaveis selecionadas foram: precipitagdo com
defasagens (t-1), (t-2) e (t-3); temperaturas maxima e média sem defasagem e com defasagens
(t-1) e (t-2); e temperatura minima sem defasagem, todas dentro do limite inicialmente definido.

Na Figura 19, a andlise do ajuste residual evidencia que, no quadrante 1, ha linearidade
nos pontos do gréafico “Normal Q-Q plot”, indicando boa distribuigdo dos residuos. No
quadrante 2, os erros se distribuem aleatoriamente em torno de zero, variando entre -3 e 1,
sugerindo a adequacdo do modelo. Nos quadrantes 3 e 4, observa-se que nenhuma variavel
ultrapassa o limite de confianga de 95%, o que confirma a inexisténcia de autocorrelacdo
significativa nos residuos.

Em Itapipoca, conforme a Figura 8, as variaveis pré-selecionadas foram precipitacéo,
temperatura maxima e temperatura media, todas sem defasagem, além da temperatura minima
com defasagem em (t-3). A Figura 20 apresenta o estudo dos residuos, indicando, no quadrante
1, que o gréfico se aproxima da linha que define a distribuic&o tedrica, sugerindo normalidade
dos erros. No quadrante 2, verifica-se que a previsdo é aleatoria e independente, sendo
corroborada pelos quadrantes 3 e 4, que mostram auséncia de autocorrelacdo significativa, com
todos os valores abaixo do limite estabelecido pelo tracejado azul.

No municipio de Juazeiro do Norte, conforme indicado na Figura 9, os dados ndo
apresentaram correlacdo dentro do critério inicial de selecdo, inviabilizando a construcéo de um
modelo de série temporal ajustado aos dados. Mesmo ao extrapolar os critérios e testar modelos
com todas as varidveis explicativas (com ou sem defasagens), ndo foi possivel encontrar um
modelo de regressao satisfatorio.

Em Morada Nova, as variaveis selecionadas dentro do intervalo inicial foram:
precipitacdo com defasagens (t-1), (t-2) e (t-3); temperatura maxima sem defasagem e com
defasagens (t-1), (t-2) e (t-3); temperatura minima (t-3); e temperatura média sem defasagem e
com defasagens (t-1) e (t-2), conforme apresentado na Figura 10.

Na Figura 21, a aplicagdo do modelo revela, no quadrante 1, que o ajuste do erro permitiu
maior linearidade dos residuos em relacdo a reta de distribuicdo normal. No quadrante 2,
observa-se variagdo independente e aleatdria dos residuos, sem indicios de periodicidade, o que
é confirmado pelos quadrantes 3 e 4, que mostram auséncia de defasagens do residuo
estatisticamente significativas.

Em Quixada, conforme a Figura 11, foram selecionadas as seguintes variaveis:
precipitacdo com defasagens (t-1) e (t-2); temperatura maxima sem defasagem e com defasagem
(t-1); temperatura minima com defasagens (t-2) e (t-3); e temperatura média sem defasagem. A
Figura 22, que avalia o ajuste dos residuos, demonstra, nos quadrantes 1 e 2, que 0 erro se
comporta como ruido branco com distribuicdo normal. Nos quadrantes 3 e 4, apenas a

autocorrelacdo do erro sem defasagem fica fora do intervalo de confianga, enquanto a



autocorrelacdo parcial ndo apresenta defasagens acima dos limites, permitindo a aplicacdo de
modelos de regressdo linear.

Em Sobral, conforme a Figura 12, foram selecionadas: temperatura méaxima com
defasagens (t-2) e (t-3) e temperatura minima sem defasagem. A Figura 23 evidencia, no
quadrante 1, linearidade dos residuos, indicando bom ajuste a distribui¢do normal. No quadrante
2, observa-se variacdo entre -2 e 2, com forte presenca de picos ao longo da série. O quadrante
3 apresenta dois valores de autocorrelacdo acima do limite, mas estes ocorrem fora do periodo
de defasagem considerado (até 3 meses). No quadrante 4, hé correlac6es significativas para os
lags 2, 5 e 11; contudo, estas sdo de baixa amplitude, consideradas insignificantes.

Em Taud, as variaveis selecionadas foram: temperatura minima com defasagens (t-1),
(t-2) e (t-3); e temperatura média com defasagem (t-3), conforme a Figura 13. A analise dos
residuos, apresentada na Figura 24, confirma nos quadrantes 1 e 2 que o erro é aleatorio e
normalmente distribuido. Nos quadrantes 3 e 4, verifica-se que ndo h& autocorrelacdo
significativa, mantendo-se todas as lags dentro do intervalo de confianca de 95%.

Por fim, no municipio de Tiangud, conforme Figura 14, as varidveis explicativas ndo
apresentaram correlacdo significativa com a dengue dentro do critério inicial, inviabilizando a
construcdo de um modelo de série temporal. Assim como em Juazeiro do Norte, ndo foi possivel

desenvolver um modelo viadvel para este municipio.

Figura 3: Correlacdo Linear de Pearson considerando defasagens temporais de até 3 meses para Aracati.
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Figura 4: Correlacdo Linear de Pearson considerando defasagens temporais de até 3 meses para
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Figura 5: Correlacdo Linear de Pearson considerando defasagens temporais de até 3 meses para Crate(s.
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Figura 6: Correlacdo Linear de Pearson considerando defasagens temporais de até 3 meses para

Fortaleza.
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Figura 7: Correlacdo Linear de Pearson considerando defasagens temporais de até 3 meses para lguatu.
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Figura 8: Correlacédo Linear de Pearson considerando defasagens temporais de até 3 meses para

Itapipoca.
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Figura 9: Correlagdo Linear de Pearson considerando defasagens temporais de até 3 meses para Juazeiro
do Norte.
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Figura 11: Correlacdo Linear de Pearson considerando defasagens temporais de até 3 meses para
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Figura 12: Correlagéo Linear de Pearson considerando defasagens temporais de até 3 meses para Sobral.
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Figura 13: Correlacao Linear de Pearson considerando defasagens temporais de até 3 meses para Taua.
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Figura 15: Ajuste dos residuos - Quadrantes: 1° Normal Q-Q, 2° Plot dos residuos, 3° autocorrelagéo, 4°

autocorrelacéo parcial de Aracati.
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Figura 16: Ajuste dos residuos - Quadrantes: 1° Normal Q-Q, 2° Plot dos residuos, 3° autocorrelacdo, 4°
autocorrelacdo parcial de Canindé.

Normal Q-Q Plot

residfit.arma)
-3 0 2
I
Sample Quantiles
3 o 2
& L1

0 20 40 60 80 100 120 2 1 0 1 2
Time Theoretical Quantiles
Series resid(fit.arma) Series resid(fitarma)
w 5]
i QO =g
5 & 9] L Ll 1 I
<. ‘ e =l o ' | LD
[=] T T T T T oL Q T T T T
0 5 10 15 20 5 10 15 20
Lag Lag
Fonte: Autor, 2024.
Figura 17: Ajuste dos residuos - Quadrantes: 1° Normal Q-Q, 2° Plot dos residuos, 3° autocorrelacéo, 4°
autocorrelacdo parcial de Crateus.
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Figura 18: Ajuste dos residuos - Quadrantes: 1° Normal Q-Q, 2° Plot dos residuos, 3° autocorrelacéo, 4°
autocorrelacdo parcial de Fortaleza.
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Figura 19: Ajuste dos residuos - Quadrantes: 1° Normal Q-Q, 2° Plot dos residuos, 3° autocorrelacéo, 4°
autocorrelacdo parcial de lguatu.
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Figura 20: Ajuste dos residuos - Quadrantes: 1° Normal Q-Q, 2° Plot dos residuos, 3° autocorrelacéo, 4°
autocorrelacdo parcial de Itapipoca.
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Figura 21: Ajuste dos residuos - Quadrantes: 1° Normal Q-Q, 2° Plot dos residuos, 3° autocorrelagéo, 4°
autocorrelacéo parcial de Morada Nova.

Normal Q-Q Plot

w
K
z
| ? . 000 ©
] WWMMWWM o "]
7 o e re?
T T T T T T T g o= T T T T T
0 20 40 60 B0 100 120 o 2 1 0 1 2
Time Theoretical Quantiles
Series resid(fitarma) Series resid(fitarma)
w
— Q —
3 E = L | | |
e R L R B T T
T h = - 3
T T T T T 39 T T T T
0 5 10 15 20 5 10 15 20
Lag Lag

Fonte: Autor, 2024.



resid(fit arma)

ACF

resid(fit.arma)

ACF

a1 2

2

1.0

08

02 02

(=]

0.2 02 06 10

Figura 22: Ajuste dos residuos - Quadrantes: 1° Normal Q-Q, 2° Plot dos residuos, 3° autocorrelacéo, 4°
autocorrelacdo parcial de Quixada.
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Figura 23: Ajuste dos residuos - Quadrantes: 1° Normal Q-Q, 2° Plot dos residuos, 3° autocorrelagéo, 4°
autocorrelacéo parcial de Sobral.
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Figura 24: Ajuste dos residuos - Quadrantes: 1° Normal Q-Q, 2° Plot dos residuos, 3° autocorrelacao, 4°
autocorrelacdo parcial de Taua.

Normal Q-Q Plot

2 2
IENENE

resid(fit. arma)
2 2
LIl
Sample Quantiles

0 20 40 60 80 100 120

Time Theoretical Quantiles

Series resid(fit.arma) Series resid(fitarma)

o

ACF

Fartial ACF

-0.2
0.15
INNRNEN]
i
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
|
q
q
E_
i
—
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4.1.1. Variaveis mais significativas

A relacdo entre as varidveis ocorreu por meio do ajuste do modelo de regressdo usando
0 método dos minimos quadrados ordinarios (GLS, do Inglés), em que a dengue € o principal
alvo de estudo e as variaveis hidroclimaticas de maior significancia podem possuir uma
defasagem de até 3 meses em cada municipio.

Para Aracati apenas a temperatura minima defasada de 3 meses (t-3), passou no teste de
significancia, de modo que a calibracéo foi realizada considerando apenas essa variavel.

Em Canindé o treinamento dos dados foi realizado considerando a temperatura maxima
e média sem lag, conforme definido pelo teste de significancia da correlacdo realizado no
modelo de aplicacao.

Para CrateUs, ap0s o teste de significancia apenas a temperatura média (t-1) foi excluida
por ndo atingir o limite de confiabilidade. Com isso as variaveis precipitacao (t-1), temperatura
méaxima sem defasagem, temperatura minima (t-3), e temperatura média sem defasagem e com
defasagem (t-1) foram utilizada como variaveis preditoras do modelo epidemioldgico.

Em Fortaleza, considerando o intervalo de confianca de 95% para a significancia das
correlages, trés variaveis foram selecionadas: precipitagdo com defasagens (t-1) e (t-2) e
temperatura minima (t-3), compondo assim o modelo de aplicacao.

Para Iguatu, apenas a precipitacdo defasada em 1 més (t-1) e temperatura minima sem
defasagem, passaram no teste de significancia, considerando apenas essas varidveis para
realizacdo da calibragdo do modelo.

Em Itapipoca em seguida ao teste de significdncia, obteve-se temperatura minima

defasada em 3 meses (t-3), sendo connsidera apenas esta para a calibracdo do modelo previsto.



Variavel significativa de

Municipio Intercept treinamento Coeficiente
Aracati -14,624 Temperatura minima(t-3) 0,712
L Temperatura maxima -1,222
Canindé 10,630 —
Temperatura média 1,103
Temperatura maxima -0,449
Temperatura maxima(t-1) -0,471
Crateus 12,697 Temperatura média 0,519
Temperatura média(t-1) 0,227
Precipitacdo(t-1) -0,001
Temperatura minima(t-3) 0,500
Fortaleza -5,626 Precipitacdo(t-1) 0,003
Precipitacéo(t-2) 0,002
Temperatura minima -0,460
Iguatu 11,502 L
Precipitacdo(t-1) 0,005
Itapipoca -13,041 Temperatura minima(t-3) 0,611
Juazeiro do x R - P
Norte N&o possui varidveis estatisticamente significativas
Morada Nova 0,441 Precipitacdo(t-3) 0,006
Quixada -14,521 Temperatura minima(t-3) 0,710
Temperatura maxima(t-3) -0,174
Sobral -8,923 —
Temperatura minima(t-3) 0,739
Taua -10,713 Temperatura minima(t-3) 0,623
Tiangua N&o possui variaveis estatisticamente significativas

Tabela 2: Coeficientes das varriaveis mais significativas para cada municipio.
Fonte: Autor, 2024.

Juazeiro do Norte ndo possui modelo de regressao viavel dentro do contexto da pesquisa,
mesmo apos extrapolacdo da selecdo inicial de variaveis explanatérias, em que foi considerada
todas as varidveis explicativas (precipitacdo, temperatura maxima, temperatura minima e
temperatura média com ou sem defasagens) em estudo.

No municipio de Morada Nova, das 11 variaveis dentro do intervalo de sele¢éo inicial,
considerando as possibilidade de sem defasagem e com defasagem citadas na se¢do anterior,
apenas a precipitacao (t-3) foi considerada significativa.

Apbs o ajuste do modelo de regressdo para Quixada, as variaveis que tiveram o melhor
resultado de significancia ap0s a realizagdo dos testes foi a temperatura minima (t-3), que serd
considerada para calibracdo do modelo.

Para Sobral, apds a selecdo das varidveis preditoras com os resultados dentro do
intervalo permitido, ndo houve valor que atendesse ao nivel de significAncia. Entranto, um
modelo foi gerado considerando as varidveis previamente selecionadas.

Em Taua, das 4 varidveis selecionadas conforme critérios iniciais, apenas a



temperatura minima com defasagem (t-3) foi considerada significativa.
Tiangué ndo possui modelo de regressdo viavel dentro do contexto da pesquisa, assim

como Juazeiro do Norte.

4.2. Andlise de desempenho e validacao

4.2.1. Aracati

Uma comparacéo da aplicacéo e do ajuste/calibracdo pode ser observada por meio dos
indices de desempenho AIC e BIC, nas Figuras 25 e 26, respectivamente. Comparativamente,
nota-se que os valores de AIC e BIC foram melhores ap6s o ajuste da fungdo GLS, mostrando
que apesar de ser um modelo relativamente mais simples que a aplicacdo, a qualidade é melhor,
devido a uma menor perda de informacao.

Figura 25: Valor do Critério de Informacéo de Akaike (AIC) para Aracati.
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Figura 26: Valor do Critério de Informacéo de Bayesiana (BIC) para Aracati.
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Fonte: Autor, 2024.

Outras variaveis de desempenho analisadas no estudo foram RMSE e SRMSE (ver
Figuras 27 e 28). Considerando que quanto menor o valor do RMSE melhor a acuracia da
previsdo, a Figura 27 mostra um mais uma vez a superioridade do ajuste em relacéo a aplicacao,
em que o modelo de calibracéo, apresenta valor RMSE de ~1,297. Em relacdo ao SRMSE, a
Figura 8 apresenta um valor de 0,933 para 0 modelo de aplicacéo e 0,898 para 0 modelo de
ajuste, o que significa que a saida do ajuste é ~10% melhor que a média dos dados observados

de dengue.

Figura 27: Variével de desempenho- RMSE para Aracati.
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Figura 28: Variavel de desempenho- SRMSE para Aracati.
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. Durante o periodo de validacdo, a avaliacdo da capacidade do modelo ajustado foi
realizada graficamente, de maneira visual e descritiva, com foco no inicio, nos meses de pico e
no fim da temporada da dengue, na ordem de magnitude e nos valores de pico da incidéncia da
dengue. Dessa forma a Figura 29, mostra que a temporada de dengue em Aracati para o0 ano de
2016 foi bem capturada pelas regressdes baseadas em OLS, porém o mesmo ndo ocorre para o
segundo semestre de 2017 e para 0 ano de 2018. Ainda é possivel notar que a previsao
epidemioldgica de dengue tende a superestimar os dados observados ao longo de toda a série,
exceto para novembro de 2015, janeiro e fevereiro de 2017 e o segundo semestre de 2018,

quando ocorre subestimacao dos valores.

Figura 29: Série temporal de validag8o para Aracati.
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Dessa forma a Figura 29, mostra que a temporada de dengue em Aracati para o0 ano de
2016 foi bem capturada pelas regressdes baseadas em OLS, porém o mesmo ndo ocorre para o
segundo semestre de 2017 e para 0 ano de 2018. Ainda € possivel notar que a previsao

epidemioldgica de dengue tende a superestimar os dados observados ao longo de toda a série,



exceto para novembro de 2015, janeiro e fevereiro de 2017 e o segundo semestre de 2018,

quando ocorre subestimacao dos valores.

4.2.2. Canindé

Com determinacdo dos valores de AIC e BIC, representados pelas figuras 30 e 31,
respectivamente, € possivel verificar que tais indices de desempenho foram piores para o
modelo de aplicacdo (AIC 471,76 ; BIC 483,20), conforme o esperado, visto que 0 mesmo tende

a ser mais complexo que o modelo de ajuste.

Figura 30: Valor do Critério de Informacéao de Akaike (AIC) para Canindé.
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Figura 31: Valor do Critério de Informacdo de Bayesiana (BIC)para Canindé.
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As Figuras 32 e 33 trazem informacdo sobre a capacidade preditiva dos modelos
considerados. Para 0 RMSE, Figura 32, observa-se que seu valor para a aplicacdo € cerca de
0,04 menor do que para o ajuste, indicando um menor desvio médio das previsdes obtidas pelo
modelo de aplicagdo. Para 0 SRMSE, verifica-se que tanto o modelo de aplicacdo como o de
treinamento preveem melhor que a média dos dados observados, em que a aplicacdo é ~21%

mais precisa que a média, enquanto a modelo de treinamento é ~19% mais assertivo.

Figura 32: Variavel de desempenho- RMSE para Canindé
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Fonte: Autor, 2024.

Figura 33: Varidvel de desempenho- SRMSE para Canindé.
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A Figura 34, que mostra a previsdo do modelo de ajuste aplicada a série de validagéo,
indica uma melhor performance para o periodo de out/2015 até o primeiro semestre de 2017,

quando se inicia uma fase sem registro de casos de dengue, mas que nao é percebida pelo



modelo. Entretanto, em geral, os resultados sdo satisfatorios no que diz respeito a previsdo do

modelo.
Figura 34: Série temporal para validagdo para Canindé.
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Fonte: Autor, 2024.

4.2.3. Cratels

Para os modelos de Crateus, aplicacdo e ajuste, os valores de AIC e BIC, apresentados
nas Figuras 35 e 36, indicam um melhor aproveitamento da informacéo passada pelas variaveis
preditoras e uma menor complexidade dos modelos de ajuste, refletindo uma melhor qualidade

do modelo de treinamento.

Figura 35: Valor do Critério de Informacéo de Akaike (AIC) para Cratels
550
500
450
400
350
300
250
200
150
100

50

0

489,742

376,170

VALOR DE AIC

APLICACAO AJUSTE

Fonte: Autor, 2024.



Figura 36: Valor do Critério de Informacéo de Bayesiana (BIC) para CrateUs.
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Fonte: Autor, 2024.

As variaveis de desempenho, RMSE e SRMSE, apresentadas nas Figuras 37 e 38 para
0 municipio de Crateus, apresentam valores satisfatérios tanto para o modelo de aplicacao
como para o de ajuste, de modo que ambos tendem a ser melhores que simplesmente a adogéo

da média dos dados observados como previsao.

Figura 37: Variavel de desempenho - RMSE para Cratéus.
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Figura 38: Variavel de desempenho- SRMSE para CrateUs.
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O gréfico apresentado na Figura 39 é trabalhado em relacdo a sazonalidade, a
estacionariedade e correlacdo entre os dados analisados. Observa-se que o modelo
ajustado/previsdo do modelo segue uma uniformidade na extensdo da série temporal,
acompanha a sazonalidade dos dados observados, havendo um melhor ajuste em periodos em

que houve picos, especialmente em 2017. No entanto, pode ser visto que nos Gltimos meses da
série temporal é demonstrado uma certa estabilidade movel.

Figura 39: Série temporal para validacdo para CrateUs
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4.2.4. Fortaleza

Analisando o modelo de calibragéo dos resultados apresentados nas Figuras 40 e 41,
respectivamente, podemos comparar os valores para AIC e BIC, que tiveram um resultado
melhor apos o ajuste da fungcdo GLS, ou seja, existe uma melhor qualidade do modelo apds a

determinacéo das variaveis mais significativas.



Figura 40: Valor do Critério de Informacéo de Akaike (AIC) para Fortaleza.
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Fonte: Autor, 2024.

Figura 41: Valor do Critério de Informacéo de Bayesiana (BIC) para Fortaleza
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Fonte: Autor, 2024.
Visualizando as Figuras 42 e 43, as variaveis de desempenho RMSE e SRMSE

consecutivamente. A Figura 42 considera o valor de RMSE de ~0,951 para aplicacdo e ~0,947
para 0 modelo calibrado, mostrando um baixo valor de erro em ambos. Em relacdo ao SRMSE,
a Figura 43, apresenta um valor de ~0,782 para o modelo de aplicagdo e ~0,800 para o modelo
de ajuste, apesar do RMSE da aplicac&o ter sido maior. Isto provavelmente ocorre devido ao
desvio padrédo da série observada ser ligeiramente maior na entrada do modelo de aplicacéo, do
que na entrada do modelo de calibracdo. Para esse municipio, 0 modelo de aplicacdo, teve o

melhor resultado.



Fiaura 42: VVariavel de desemnenho- RMSE nara Fortaleza.
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Figura 43: Variavel de desempenho- SRMSE para Fortaleza.
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Para analise comparativa da série temporal de validacdo, apresentada na Figura 44, o
modelo ajustado teve as temporadas de dengue foram bem capturadas pelas regressoes,
conseguindo representar satisfatoriamente os meses de inicio, meio e fim da epidemia de
dengue, sendo que entre o final de 2015 e o primeiro semestre de 2017 os dados observados
foram subestimados e do segundo semestre de 2017 até o final da série de validacéo

superestimados.



Figura 44: Série temporal para validacdo para Fortaleza.
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4.2.5. lguatu

Fazendo a comparacdo dos indices de AIC e BIC, observados nas Figuras 45 e 66,
respectivamente, revelam que os melhores resultados ocorrem ap6s o ajuste da funcdo GLS. Na
sequéncia das avaliagcdes com as varidveis de desempenho RMSE e SRMSE (ver Figuras 47 e
48), o resultado a ser considerado deve ser o menor, havendo melhor avaliacdo. A Figura 47
mostra que o valor de aplicacdo chega a ser aproximadamente ~0,07 menor que o valor do
ajuste. Para SRMSE, verifica-se que o modelo de aplicacdo tem melhor acuracia em relagdo ao
treinamento, sendo o valor considerado melhor que a média dos dados observados, em que

aplicacdo é mais precisa que a média cerca de ~13%.

Figura 45: Valor do Critério de Informacédo de Akaike (AIC) para Iguatu.
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Fonte: Autor, 2024.
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Figura 46: Valor do Critério de Informacéo de Bayesiana (BIC) para Iguatu.
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Figura 47: Variavel de desempenho- RMSE para Iguatu.
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Figura 48: Variavel de desempenho- SRMSE para Iguatu.
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A Figura 49 apresenta a previséo gerada pelo modelo ajustado, aplicada ao conjunto de

validacdo. De modo geral, observa-se uma subestimacéo sistematica dos valores observados ao

longo de diferentes periodos do ano, com excecdo dos meses de marco e abril de 2017, bem

como de parte do primeiro semestre de 2018, especificamente maio, junho e julho, além de todo

0]

segundo semestre deste mesmo ano. Apesar dessa tendéncia a subestimacdo, o modelo

demonstra capacidade de reproduzir adequadamente a dinamica temporal do fendmeno,

acompanhando os padrdes de elevacéo e reducdo observados nos dados empiricos.

Ln(Dengue)

Figura 49: Série temporal para validagdo para Iguatu.
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4.2.6. Itapipoca

Para acompanhamento do modelo de ajuste, apresentou-se nas Figuras 50 e 51 os valores

encontrados para AIC e BIC, havendo um melhor desempenho para ambos os modelos de

ajustes, que seguem com os valores: 365,170 e 372,602, respectivamente.



Figura 50: Valor do Critério de Informacao de Akaike (AIC) para Itapipoca.
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Figura 51: Valor do Critério de Informacéo de Bayesiana (BIC) para Itapipoca.
550
500
450
400
350
300
250
200
150
100

50

505,1858

372,6018

VALOR DE BIC

o

APLICACAO AJUSTE

Fonte: Autor, 2024.

Os graficos das Figuras 52 e 53 representam as variaveis de desempenho, aplicados para
avaliar a precisdo e qualidade do modelo. Para 0 RMSE, em especifico na Figura 52, observa-
se que seu valor para aplicacéo é cerca de ~0,15 menor que 0 ajuste, 0 mesmo apresenta melhor
desvio médio. Para 0 SRMSE, Figura 53, os dados de aplicacdo e ajuste estdo bem proximos,
com a margem de assertividade para aplicagdo de ~9,33% e ~9,37% para o ajuste em relacdo a
média observada.
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Na Figura 54 é possivel observar que para validagdo o modelo ndo capturou de maneira
adequada a temporada epidemioldgica da dengue em Iguatu, exceto para 0s meses de abril a
junho de 2018. Isso pode estar associado a prevalecéncia de fatores ndo climaticos, como
imunidade da populacéo a diferentes sorotipos (DENV-1, DENV-2, DENV-3 e DENV-4) no

Figura 52: Variavel de desempenho- RMSE para Itapipoca
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Figura 53: Varidvel de desempenho- SRMSE para Itapipoca
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Fonte: Autor, 2024.

comportamento da dengue no municipio.



Figura 54: Série temporal para validacdo para Itapipoca.
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4.2.7. Juazeiro do Norte

Para Juazeiro do Norte, extrapolou-se os resultados para além do critério inicial de
selecdo de variaveis explanatorias, e tentou-se gerar um modelo considerando todas as variaveis
explicativas (precipitacdo, temperatura maxima, temperatura minima e temperatura média com
ou sem defasagens) e mesmo assim ndo foi possivel encontrar um modelo de regressao

satisfatorio, conforme pode ser obsrvado na Figura 55..

Figura 55: Série temporal para validacdo para Juazeiro do Norte.
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4.2.8. Morada Nova

Em anélise dos resultados de AIC e BIC, podemos ver nas Figuras 56 e 57 que os indices
para 0 ajuste, tiveram o melhor desempenho (AIC - 253,5251 ; BIC - 260,9571),

respectivamente, mostrando mais uma vez que modelos menos complexos podem ser melhores

gue modelos com uma ampla gama de variaveis explicativas.



Figura 56: Valor do Critério de Informacéo de Akaike (AIC) para Morada Nova

550
500
450

400
350 332,305

300

253,525

250

VALOR DE AIC

200
150
100

50

APLICACAO AJUSTE
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Figura 57: Valor do Critério de Informacao de Bayesiana (BIC) para Morada Nova.
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Os graficos das Figuras 58 e 59, revelam informacdes sobre as variaveis de desempenho
para os modelos considerados. Para 0 RMSE, Figura 58, observa-se que seu valor para o ajuste
é maior que a aplicacdo ~0,08, indicando um maior desvio médios das previsdes obtidas. Para
0 SRMSE, Figura 59, verifica-se que o modelo de ajuste € ~19% mais preciso que o modelo de
aplicacdo, com aproximadamente ~10% melhor que a média dos dados observados.



Figura 58: Variavel de desempenho- RMSE para Morada Nova.
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Figura 59: Variavel de desempenho- SRMSE para Morada Nova.
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Fonte: Autor, 2024.

A Figura 60, mostra a previsdo do modelo de ajuste para a série de validacao, indicando
uma performance melhor a partir de fev/2017 até o inicio do segundo semestre de 2018, quando
ocorre uma baixa dos casos de dengue. No entanto, os resultados apresentam um resultado
satisfatorio.



Figura 60: Série temporal para validacdo para Morada Nova.
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4.2.9. Quixada

Analisando os resultados das Figuras 61 e 62, respectivamente, em que comparamos e
apresentamos os valores para AIC e BIC, nota-se valores menores ap0s o ajuste da fungdo GLS,

havendo uma melhor qualidade na apresentacdo do modelo.

Observando as variaveis de desempenho RMSE e SRMSE através das Figuras 63 e 64,
consecutivamente. A Figura 63, apresenta o valor de ~1,417 para RMSE, considerando um
melhor resultado para o ajuste do modelo. Seguindo para o grafico seguinte, Figura 64, tems-
se que o melhor resultado foi novamente para o ajuste, sendo este 0 modelo que possui a melhor

acuracia dos resultados. Sendo considerado ~11% melhor que a média dos dados observados.

Figura 61: Valor do Critério de Informacao de Akaike (AIC) para Quixada.
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Fonte: Autor, 2024.
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Figura 62: Valor do Critério de Informagéo de Bayesiana (BIC) para Quixada.
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Figura 63: Variavel de desempenho- RMSE para Quixada.
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Figura 64:Variavel de desempenho- SRMSE para Quixada
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Na Figura 65, pode-se notar que a previsdo acompanha a fase dos dados observados,
com leves flutuagcdes nas regibes de picos e vales, com tendéncia a subestimacdo das
observacdes, especialmente em periodos de temperaturas mais amenas, que ocorrem no

periodo da quadra chuvosa.

Figura 65: Série temporal para validacdo para Quixada.
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4.2.10. Sobral

Em especifico para sobral, o modelo foi realizado sem o resultado de uma variavel
significativa, apos a selecdo das variaveis com os resultados dentro do intervalo permitido, ndo
houve valor que atendesse ao nivel de significancia. Mesmo assim, o modelo foi gerado
considerando as mesmas variaveis definidas pelo intervalo inicialmente. Os valores para AIC e
BIC séo apresentados pelas Figuras 66 e 67, respectivamente, onde para os valores de AIC teve
um resultado menor para o ajuste, sendo ~157 a diferenca entre a aplicacdo e o ajuste. Para o
valor de BIC h& uma semelhanga, o valor é considerado com melhor resultado para o ajuste.

As variaveis de desempenho RMSE E SRMSE, podem ser visualizadas pelas Figuras 68



e 69, respectivamente. O gréafico da Figura 68 apresenta o valor de RMSE com diferenca de 0,116
de reducéo para o ajuste, sendo considerado melhor resultado para 0 modelo. Para 0 SRMSE,
Figura 69, os resultados apontam que o ajuste é ~7,4% melhor que a média observada, sendo
este 0 modelo selecionado.

Figura 66: Valor do Critério de Informacéo de Akaike (AIC) para Sobral.
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Figura 67: Valor do Critério de Informac&o de Bayesiana (BIC) para Sobral.
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Figura 68: Variavel de desempenho- RMSE para Sobral.
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Figura 69: Variavel de desempenho- SRMSE para Sobral.
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A Figura 70 mostra uma boa modelagem, de forma que o modelo de previséo segue
inicialmente com valores menores em relacdo aos dados reais, desde de out/2015 até o final do

segundo semestre de 2016, quando a previsao passa a superestimar os dados reais.

Figura 70: Série temporal para validacao para Sobral.
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4.2.11. Taua

Acompanhando o modelo de ajuste, temos os valores de AIC e BIC, representados pelos
gréaficos das Figuras 71 e 72. Em ambos os modelos, aplicam-se os melhores resultados para o
ajuste da funcdo GLS. Os valores de AIC tiveram uma reducdo de aproximadamente ~167,465
em relacdo ao modelo de aplicacdo, sendo este 0 mais favorecido. O mesmo ocorreu para anélise
de BIC, com uma reducdo de ~168,566, confirmando que o melhor resultado ocorreu para o

ajuste.

Os indices de desempenho, RMSE e SRMSE (Figuras 73 e 74), buscando avaliar a
precisao e qualidade do modelo, apresentam um melhor resultado para 0 modelo de ajuste, com
a valor de SRMSE ~0,9, o que indica que o modelo € ~10% melhor que a média dos dados

observado.

Figura 71: Valor do Critério de Informacéo de Akaike (AIC) para Taud.
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Figura 72: Valor do Critério de Informacéo de Bayesiana (BIC) para Taua.
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Figura 73: Variavel de desempenho- RMSE para Taua.
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Figura 74: Variavel de desempenho- SRMSE para Taua.
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A Figura 75 apresenta uma superestimacao de dados logo no inicio da séries, out/2015,
seguindo com uma modesta linearidade referente ao primeiro semestre de 2016. Todo o restante

da série € modelado por essa superestimacao dos dados.

Figura 75: Série temporal para validagdo para Taua.
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5. DISCUSSAO

O presente estudo investigou a influéncia de varidveis climéticas, como precipitacéo e
temperaturas (maxima, média e minima), na variabilidade interanual das incidéncias de casos
de dengue em 12 &reas urbanas, de clima tropical semi-arido. A maioria dos municipios
estudadas apresentou relagdes estatisticamente significativas entre a incidéncia da doenca e
variaveis climaticas. Essas relacdes podem ser explicadas pela influéncia da variabilidade
climatica através de regressoes lineares, conforme discutido em Costa et al. (2022) e Borges et
al. (2024), que analisaram a inter-relacdo entre precipitacdo, temperatura e casos confirmados
de dengue em municipios do Nordeste Brasileiro.

A andlise dos municipios investigados revela importantes variagdes na relagdo entre as



variaveis hidroclimaticas ( precipitagdo e temperaturas) e a incidéncia de dengue em regides de
clima tropical semiarido. As diferencas observadas refletem tanto os contexto climaticos locais

quanto fatores urbanos, ambientais e socioecondmico que modulam a dindmica da doenca.

Dos resultados, pode-se extrair que a temperatura minima com defasagem de 3 meses
foi a variavel que mais influenciou o nimero de casos de dengue, ela foi tida como a variavel
preditora mais significativa ou entre as mais significativas, em Aracati, Fortaleza, Itapipoca,
Quixadéa e Taua. Ainda foi possivel verificar que a variavel temperatura, seja ela maxima, média
ou minima esteve contemplada em todos os modelos de calibracdo que foram viéveis. Isso
mostra que a temperatura é variavel que mais impacta no nimero de casos de dengue, conforme
evidenciado por diversos estudos em varias partes do mundo (Jesus et al., 2024; Feng et al.,
2024; Costa et al., 2022; Ouattara et al., 2022; Lowe et al., 2022), especialmente nos casos
temperatura mais amenas, conforme discutido em ABDULLAH et al. (2022), Gomez et al.
(2022) e NURAINI et al. (2021).

Em relacdo a precipitacdo, os resultados mostraram que ela sé teve representatividade
em 3 dos 12 municipios em estudo, Fortaleza, Iguatu e Morada Nova. Estudos como o de Sophia
et al. (2025) e Benitez et al. (2021), mostram que a relacdo entre chuvas e dengue é complexa,
chuvas intensas podem diminuir a incidéncia de dengue e periodos de estiagem podem propiciar
grandes surtos da doenca, especialmente em areas onde ha armazenamento temporario de agua,

conforme pode ser visto em Borges et al. (2024) e Costa et al. (2022).

Outro achado importante do estudo é que o modelo calibrado, por meio de regressao
linear por minimos quadrados ordinarios, para Fortaleza foi o que apresentou melhor qualidade

entre 0s demais municipios estudados, com um SRMSE de ~0,799, indicando que o modelo é

~20% melhor gque se a adotar a média das observacdes de dengue no periodo analisado. Este
resultado contraria, em parte, o do estudo realizado por Costa et al. (2022), que avaliou a
influéncia da variabilidade hidroclimatica na incidéncia de dengue em uma grande area tropical
seca, utilizando uma metodologia de regressao similar a adotada nesta dissertacdo, em que nao

foi possivel encontrar a reta de ajuste as varidveis preditoras para Fortaleza.

A robustez estatistica dos modelos varia entre 0s municipios, mas a aplicacdo dos
modelos GLS mostrou-se adequada para lidar com autocorrelacdo e heterocedasticidade,
frequentes em séries temporais epidemioldgicas. A viabilidade preditiva € maior onde ha forte
associagdo entre variaveis hidroclimaticas e o padrdo endémico de dengue, sendo limitada em
areas onde outros fatores (socioeconémicos, de gestdo urbana ou ambientais) parecem ter papel

predominante.

Ressalta-se que no presente estudo também houve localidades em que as variaveis



explicativas ndo possuiam correlagdo com significancia estatistica, Juazeiro do Norte, Tiangua
e Sobral, ndo sendo possivel o desenvolvimento de um modelo de regressao linear de qualidade

minimamente satisfatoria.

Os resultados obtidos reforcam a relevancia das variaveis hidrocliméaticas como fatores
explicativos da incidéncia de dengue em regides de clima tropical semiarido, embora com
variagdes significativas entre os municipios. A precipitacdo acumulada e a temperatura minima

média foram, em geral, os principais preditores nos modelos aplicados.

A analise comparativa evidencia que a eficacia dos modelos GLS depende do contexto
local, ressaltando a importancia de abordagens que integrem multiplas dimensdes — ambientais,
sociais, econémicas e de infraestrutura — para a compreensdo e enfrentamento da dengue.
Municipios com padrdes distintos de urbanizacéo e disponibilidade de servicos publicos podem
demandar estratégias de monitoramento e controle especificas, adaptadas as suas realidades

climaticas e socioambientais.

Em sintese, os achados deste estudo contribuem para o aprimoramento de politicas
publicas voltadas a vigilancia e prevencdo da dengue, ao indicar como o comportamento da
doenca esta intrinsecamente relacionado as condi¢fes climaticas locais e como modelos
estatisticos podem oferecer suporte a antecipacdo de surtos, especialmente em contextos

vulneraveis.

6. CONCLUSAO

Em geral, as regressdes de séries temporais baseadas nas funcbes dos minimos
quadrados ordinarios foram capazes de reproduzir o desenvolvimento das séries temporais, com
a previsao sazonal de casos de dengue. A proposta do estudo foi investigar a influéncia do clima
na variabilidade interanual dos casos de dengue, com o objetivo de prever situacdes

epidemioldgicas em areas urbanas

Nota-se através do presente estudo que as variagcBes climéaticas, de precipitacdo e
temperatura, e a incidéncia de casos de dengue podem variar de um municipio para o outro, ou
seja, ndo ha um padrdo bem definido de influéncia, de modo que apenas uma variavel consegue
explicar essa variagdo. Contudo, o desenvolvimento da simulagéo tem sido bem estruturado,
no entanto, em todos os municipios, com excecdo de Juazeiro do Norte e Tiangua, houve
subestimacdo dos dados reais. Havendo uma maior discrepancia em determinados periodos

entre os valores reais.

A presente dissertacdo teve como objetivo principal analisar a influéncia de variaveis
hidrocliméaticas — notadamente a precipitagdo acumulada e as temperaturas média, minima e

méaxima — sobre a incidéncia de casos de dengue em treze municipios cearenses inseridos em



contexto de clima tropical semiarido, no periodo compreendido entre 2008 e 2018. A partir da
aplicacdo de modelos de regresséo linear generalizada (GLS), buscou-se investigar em que
medida os elementos climaticos contribuiram para a variabilidade temporal da doenca,

destacando os diferentes padrdes observados entre os municipios selecionados.

Os resultados obtidos evidenciaram que a relacdo entre as variaveis hidroclimaticas e a
ocorréncia da dengue é espacialmente heterogénea. Em municipios como Fortaleza, Sobral e
Juazeiro do Norte, observou-se um ajuste mais expressivo dos modelos, com destaque para a
precipitacdo acumulada e a temperatura minima como variaveis significativamente associadas
a incidéncia de casos. Por outro lado, localidades como Taua, Crateus e Canindé apresentaram
desempenhos mais discretos, sugerindo que, nesses contextos, fatores ndo-climaticos — como
condigBes socioambientais, infraestrutura urbana, acesso a servigos de salde, mobilidade

populacional e efetividade das a¢Oes de vigilancia — podem ter maior peso explicativo.

O municipio de Fortaleza destaca-se com a presenca de resultados considerados bons
para as variaveis de desempenho. Cada municipio conseguiu apresentar sua capacidade
preditiva, analisando a melhor performance dos periodos de validacdo, alguns com
superestimacdo dos dados. Nos municipios em que foram obtidas variaveis significativas, houve
um melhor ajuste dos erros a reta de distribuicdo normal. Outro resultado importante € analise
foram os valores de AIC e BIC, que tiveram seu desenvolvimento melhor nos modelos de ajuste

em ambos os modelos.

No entanto, deve-se notar que 0 modelo possui algumas limitacGes, fatores ecoldgicos
como a abundancia de mosquitos, cobertura de solos e proximidades em corpos d’aguas nao
foram considerados para o desenvolvimento da pesquisa. Construir um modelo amplamente
transferivel, considerando também fatores socioeconémicos e ecoldgicos do ambiente, é
necessario maiores pesquisas. Contudo, o modelo apresentou resultados bem dimensionados

para aplicacdo em futuras pesquisas e desenvolvimentos em novas variaveis.

A heterogeneidade dos achados reafirma a complexidade dos processos envolvidos na
determinacdo da dengue, especialmente em areas semiaridas, onde os eventos pluviométricos
sdo irregulares e as condigOes socioambientais tendem a acentuar a vulnerabilidade da
populacdo. Apesar disso, os modelos desenvolvidos demonstraram ser ferramentas Uteis para a
compreensdo dos efeitos climéticos sobre a dinamica da doenga, com potencial para subsidiar

estratégias de vigilancia epidemioldgica e planejamento de a¢des preventivas em saude publica.

A utilizagdo dos modelos GLS representou um diferencial metodoldgico relevante, uma
vez que permitiu tratar adequadamente a autocorrelagdo temporal intrinseca as séries analisadas.

Essa abordagem se mostrou eficaz na modelagem da variabilidade interanual dos casos de



dengue, contribuindo para a construgdo de um arcabouco analitico mais robusto e alinhado as

necessidades da pesquisa epidemiolégica aplicada.

Em termos préticos, os achados deste estudo indicam que o monitoramento de varidveis
hidrocliméticas pode auxiliar na antecipagdo de periodos criticos de transmissdo da dengue,
sobretudo em municipios onde essas variaveis demonstraram maior capacidade preditiva.
Assim, reforca-se a importancia da integracéo entre dados climaticos e sistemas de informacao
em salde como parte de politicas publicas que visem a mitigacdo de riscos associados a

arboviroses em contextos semiaridos.

Por fim, destaca-se que, diante do atual cenario de mudancas climaticas globais e de
expansao das areas de risco para doencas transmitidas por vetores, torna-se imperativo o
aprofundamento de investigacfes que articulem as dimensdes ambientais, climaticas e sociais
na explicacdo da dindmica das arboviroses. A construcao de respostas eficazes e territorialmente
adaptadas passa, necessariamente, pela producdo de conhecimento cientifico que reconheca a
complexidade dos territorios e promova o fortalecimento de ac¢Ges integradas em salde e meio

ambiente.

Os resultados desta pesquisa podem ajudar a criar politicas de salde para evitar surtos
de dengue nos municipios estudados. Isso pode ajudar a criar sistemas de alerta baseados em
modelos de predicdo de dengue, estimativas de risco para doencas transmitidas por mosquitos

e mapas de risco baseados na populacédo e na variacdo da doenca.
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APENDICE

rm(list=1s()) #Limpar memoria
library(readxl)

#Entrada de Dados

dados <-
read_excel("C:/Users/Luiz/Documents/Unilab/PGEA_mestrado_unilab/0
rientandos/Thamara/dados_fortaleza.xlsx")

View(dados)
tsd<-ts(dados$Dengue,start=c(2008,1),freq=12)
#tsE<-ts(dados$ EMI" ,start=c(2008,1),freq=12)
#tsninol2<-ts(dados$ninol2,start=c(2008,1),freq=12)
#tsnino3<-ts(dados$nino3,start=c(2008,1),freq=12)
#tsnino34<-ts(dados$nino34,start=c(2008,1),freq=12)
#tsninod<-ts(dados$nino4d,start=c(2008,1),freq=12)
#tsatn<-ts(dados$atn,start=c(2008,1),freq=12)
#tsats<-ts(dados$ats,start=c(2008,1),freq=12)
#tsatlgrad<-ts(dados$atlgrad,start=c(2008,1),freq=12)
#tsatl3<-ts(dados$atl3,start=c(2008,1),freq=12)
tsp<-ts(dados$ Chuva (mm) ,start=c(2008,1),freq=12)
tsTmed<-ts(dados$Tmed, start=c(2008,1),freq=12)
tsTmin<-ts(dados$Tmin,start=c(2008,1),freq=12)
tsTmax<-ts(dados$Tmax,start=c(2008,1),freq=12)

#Visualizando as series temporais

#plot(ts.union(tsd,tsp,tsTmed,tsTmin,tsTmax)) # SEM LOG
plot(ts.union(log(tsd),tsp,tsTmed,tsTmin,tsTmax)) #COM LOG

#REALIZAR A CORRELACAO CRUZADA
#COM LOG

acf(ts.union(log(tsd),tsp),na.action=na.pass,ylim=c(-1,1))

acf(ts.union(log(tsd),tsTmed),na.action=na.pass,ylim=c(-1,1))
acf(ts.union(log(tsd),tsTmin),na.action=na.pass,ylim=c(-1,1))
acf(ts.union(log(tsd),tsTmax),na.action=na.pass,ylim=c(-1,1))

# Criando variaveis defasadas

#PRECIPITACAO
length(tsp)
tspl<-ts()
tsp2<-ts()



tsp3<-ts()

for (i in 1:length(tsp)) {
if(i<length(tsp)& i==1){tspl[[1]]<-NA}
if(i<=length(tsp) & i>1){tspl[[i]]<-tsp[[i-1]]}
else{tspl[[i]]<-NA}

}

for (i in 1:length(tsp)) {
for(j in 1:2){
tsp2[[j]]<-NA
}
if(i<=length(tsp) & i>2){tsp2[[i]]<-tsp[[i-2]]}
else{tsp2[[i]]<-NA}
}

for (i in 1:length(tsp)) {
for(j in 1:3){
tsp3[[j]]<-NA
¥
if(i<=length(tsp) & i>3 ){tsp3[[i]]<-tsp[[i-3]]}
else{tsp3[[i]]<-NA}
}

tspl<-ts(tspl,start=c(2008,1),freq=12)
tsp2<-ts(tsp2,start=c(2008,1),freq=12)
tsp3<-ts(tsp3,start=c(2008,1),freq=12)

#TEMPERATURA MEDIA

length(tsTmed)
tsTmedl<-ts()
tsTmed2<-ts()
tsTmed3<-ts()

for (i in 1:length(tsTmed)) {
for(j in 1:1){
tsTmedl[[j]]<-NA
}
if(i<=1length(tsTmed) & i>1 ){tsTmedl[[i]]<-tsTmed[[i-1]]}
else{tsTmed1[[i]]<-NA}
}

for (i in 1:length(tsTmed)) {



for(j in 1:2){
tsTmed2[[j]]1<-NA
}
if(i<=1length(tsTmed) & i>2 ){tsTmed2[[i]]<-tsTmed[[i-2]]}
else{tsTmed2[[i]]<-NA}

for (i in 1:length(tsTmed)) {
for(j in 1:3){
tsTmed3[[j]]1<-NA
}
if(i<=length(tsTmed) & i>3 ){tsTmed3[[i]]<-tsTmed[[i-3]]}
else{tsTmed3[[i]]<-NA}
}

tsTmedl<-ts(tsTmedl,start=c(2008,1),freq=12)
tsTmed2<-ts(tsTmed2,start=c(2008,1),freq=12)
tsTmed3<-ts(tsTmed3,start=c(2008,1),freq=12)

#TEMPERATURA MINIMA

length(tsTmin)
tsTminl<-ts()
tsTmin2<-ts()
tsTmin3<-ts()

for (i in 1:length(tsTmin)) {
for(j in 1:1){
tsTminl[[j]]<-NA
}
if(i<=length(tsTmin) & i>1 ){tsTminl[[i]]<-tsTmin[[i-1]]}
else{tsTminl[[i]]<-NA}
}

for (i in 1:length(tsTmin)) {
for(j in 1:2){
tsTmin2[[j]]<-NA
}
if(i<=1length(tsTmin) & i>2 ){tsTmin2[[i]]<-tsTmin[[i-2]]}
else{tsTmin2[[i]]<-NA}
}

for (i in 1:length(tsTmin)) {



for(j in 1:3){
tsTmin3[[j]]1<-NA
}
if(i<=1length(tsTmin) & i>3 ){tsTmin3[[i]]<-tsTmin[[i-3]]}
else{tsTmin3[[i]]<-NA}

tsTminl<-ts(tsTminl,start=c(2008,1),freq=12)
tsTmin2<-ts(tsTmin2,start=c(2008,1),freq=12)
tsTmin3<-ts(tsTmin3,start=c(2008,1),freq=12)

H#TEMPERATURA MAXIMA

length(tsTmax)
tsTmaxl<-ts()
tsTmax2<-ts()
tsTmax3<-ts()

for (i in 1:length(tsTmax)) {
if(i<length(tsTmax)& i==1){tsTmax1[[1]]<-NA}
if(i<=length(tsTmax) & i>1){tsTmax1[[i]]<-tsTmax[[i-1]]}
else{tsTmax1[[i]]<-NA}

}

for (i in 1:length(tsTmax)) {
for(j in 1:2){
tsTmax2[[j]]1<-NA
}
if(i<=length(tsTmax) & i>2 ){tsTmax2[[i]]<-tsTmax[[i-2]]}
else{tsTmax2[[i]]<-NA}
}

for (i in 1:length(tsTmax)) {
for(j in 1:3){
tsTmax3[[j]]1<-NA
}
if(i<=1length(tsTmax) & i>3 ){tsTmax3[[i]]<-tsTmax[[i-3]]}
else{tsTmax3[[i]]<-NA}
}

tsTmaxl<-ts(tsTmaxl,start=c(2008,1),freq=12)
tsTmax2<-ts(tsTmax2,start=c(2008,1),freq=12)
tsTmax3<-ts(tsTmax3,start=c(2008,1),freq=12)



#Analise dos mais significativos

#fit.1Im<-1Im(log(tsd) ~
tsTmax+tsTmaxl+tsTmax2+tsTmax3+tsTmin+tsTminl+tsTmin2+tsTmin3+tsT
med+tsTmedl+tsTmed2+tsTmed3+tsp+tspl+tsp2+tsp3)

fit.1lm<-1Im(log(tsd) ~
tsTmax+tsTmaxl+tsTmin3+tsTmed+tsp+tspl+tsp2+tsp3) #modelo teste
com variaveis de correla¢a acima de 0.2

summary (fit.1lm)
fit.1m<-1m(log(tsd) ~ tsTmin3+tspl+tsp2)#Ajuste das mais
significativas
summary (fit.1lm)

par(mfrow=c(2,2))
plot(resid(fit.1m))
ggnorm(resid(fit.1m))
gqline(resid(fit.1m))
acf(resid(fit.1m))
pacf(resid(fit.1lm))

fit.arma<-arima(resid(fit.1m),order=c(1,0,1)
)

plot(resid(fit.arma))
ggnorm(resid(fit.arma))
gqline(resid(fit.arma))

acf(resid(fit.arma))

pacf(resid(fit.arma))

#Aplicag¢ao da a fung¢ao GLS

library(nlme)
model<-formula(log(tsd) ~ tsTmin3 + tspl + tsp2 )
df_dados<-data.frame(tsTmin3,tspl,tsp2)

fit.gls<-gls(model,data=df_dados,na.action=na.omit) #AJUSTE DOS
COEFICIENTES DA OLS

summary(fit.gls)

#Vridveis de desempenho do teste
rmse<-sqgrt(mean(residuals(fit.gls)"2))
rmse

sdo<-sd(log(tsd),na.rm=TRUE)
srmse<-rmse/sdo

srmse



#Teste da previsao

prev<-predict(fit.gls,newdata=df_dados,na.action=na.omit)
#TENTATIVA 3, SEM CORRELACAO#

prev
prev.ts<-ts(prev,start=c(2008,4),freq=12)
prev.ts

plot(log(tsd))

lines(prev.ts,col="red")

#tCalibracao e Validacao do Modelo
library(nlme)

#Figura de demonstracao dos periodos

par(mfrow=c(1,1))

logtsd<-log(tsd)

plot(logtsd)

treinamento<-ts(logtsd[1:93],start=c(2008,1),freq=12) # Até
setembro 2015

lines(treinamento,col="red")
validacao<-ts(logtsd[93:132],start=c(2015,9),freq=12)
lines(validacao,col="green")

#Treinamento do modelo

tsTmin3_treino<-ts(tsTmin3[1:93],start=c(2008,1),freq=12)
tspl_treino<-ts(tspl[1:93],start=c(2008,1),freq=12)
tsp2_treino<-ts(tsp2[1:93],start=c(2008,1),freq=12)

model treinamento<-formula(treinamento ~ tsTmin3_treino +
tspl_treino + tsp2_treino )
df_treino<-data.frame(tsTmin3_treino,tspl_treino,tsp2_treino)
fit.gls treino<-

gls(model treinamento,data=df_treino,na.action=na.omit) #AJUSTE
DOS COEFICIENTES DA OLS

summary(fit.gls_treino)

#Varidveis de desempenho do treinamento
rmse_treino<-sqgrt(mean(residuals(fit.gls treino)”2))
rmse_treino

sdo_treino<-sd(treinamento,na.rm=TRUE)

#sdo_treino

srmse_treino<-rmse_treino/sdo_treino

srmse_treino

#Previsao com dados do treinamento.

prev_treino<-
predict(fit.gls_treino,newdata=df_treino,na.action=na.omit)
#TENTATIVA 3, SEM CORRELACAO#



prev_treino

prev_treino.ts<-ts(prev_treino,start=c(2008,4),freq=12)
start=c(2008,6) se treinamento ~ +tsTmin_treino + tsE_treino
tsTmax5_treino + tsatlgrad5_treino

prev_treino.ts
start=c(2008,7) se treinamento ~ tsTmin_treino + tsTmax5_treino
tsp6_treino

plot(treinamento)
lines(prev_treino.ts,col="blue")

#Validacao do modelo
validacao<-ts(logtsd[94:132],start=c(2015,10),freq=12)

tsTmin3_validacao<-ts(tsTmin3[94:132],start=c(2015,10),freq=12)
tspl_validacao<-ts(tspl[94:132],start=c(2015,10),freq=12)
tsp2_validacao<-ts(tsp2[94:132],start=c(2015,10),freq=12)

df_validacao<-
data.frame(tsTmin3 validacao,tspl validacao,tsp2 validacao)

colnames(df_validacao)

c("tsTmin3_treino","tspl_treino","tsp2_treino")

prev_validacao<-
predict(fit.gls_treino,newdata=df_validacao,na.action=na.omit)
#TENTATIVA 3, SEM CORRELACAO#

prev_validacao
prev_validacao.ts<-ts(prev_validacao,start=c(2015,10),freq=12)
prev_validacao.ts

plot(validacao)
lines(prev_validacao.ts,col="blue")



