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RESUMO 

 

 

Este estudo epidemiológico é do tipo ecológico, de abordagem quantitativa e descritiva de série 

temporal. O presente trabalho tem o objetivo de investigar a influência do clima na variabilidade 

interanual do número de casos de dengue e prever situações epidemiológicas em áreas urbanas, 

de clima tropical semi-árido, no Ceará. Para isso, utilizou-se diversos modelos de regressão 

linear de mínimos quadrados ordinário baseados nas variáveis meteorológicas (precipitação e 

temperatura) com correlações mais significativas com a ocorrência de casos de dengue. As 

correlações amostrais foram calculadas para associações sem lag e com lag de 1 a 3 meses, a 

fim de verificar a influência da defasagem temporal entre os dados climáticos e os dados de 

dengue. Dos resultados extrai-se que a temperatura mínima com defasagem de 3 meses foi a 

variável que mais influenciou o número de casos de dengue, participando como variável 

preditora mais significativa em 6 dos 12 municípios analisados no estudo. Outro achado 

interessante é que o modelo calibrado para Fortaleza foi o que apresentou melhor qualidade 

entre os demais municípios, com um SRMSE de ~0,799. Juazeiro do Norte, Tianguá e Sobral 

foram os municípios em que nenhuma das variáveis preditoras possuíam correlação com 

significância estatística. Com isso, pode-se concluir que a relação entre variáveis climáticas e a 

incidência de dengue varia entre os municípios, não tendo um padrão bem definido de 

influência, podendo indicar que o clima sozinho não explica a variabilidade interanual do 

número de casos de dengue, outros fatores como urbanização, diminuição da vegetação e a 

expansão populacional podem modular/influenciar a incidência da dengue. Adicionalmente 

pode-se ainda concluir que modelos mais simples, baseados em variáveis significativas, 

apresentaram melhor desempenho. Em alguns casos, a previsão capturou bem as tendências 

sazonais da dengue, mas houve limitações como superestimação e subestimação em certos 

períodos. 

 

Palavras-chave: Regressão Linear; Previsão Epidemiológica; Dengue. 



ABSTRACT 

 

 

This epidemiological study is ecological, with a quantitative and descriptive time series 

approach. The present work aims to investigate the influence of climate on the interannual 

variability of the number of dengue cases and epidemiological pre-situations in urban areas, 

with a semi-arid tropical climate, in Ceará. For this, several ordinary least squares linear 

regression models were used based on the detrimental variables (precipitation and temperature) 

with the most significant correlations with the occurrence of dengue cases. The sample 

correlations were calculated for associations without delay and with a delay of 1 to 3 months, 

in order to verify the influence of the time lag between the climate data and the dengue data. 

From the results it is extracted that the minimum temperature with a lag of 3 months was a 

variable that most influenced the number of dengue cases, participating as the most significant 

predictor variable in 5 of the 12 cities proven in the study. Another interesting finding is that 

the model calibrated for Fortaleza was the one that presented the best quality among the other 

municipalities, with a SRMSE of ~0.799. Juazeiro do Norte, Tianguá and Sobral were the cities 

in which none of the predictor variables had statistically significant brightness. Therefore, we 

can conclude that the relationship between climate variations and the incidence of dengue varies 

among municipalities, with no well-defined pattern of influence, even indicating that climate 

alone does not explain the interannual variability in the number of dengue cases; other factors 

such as urbanization, increased vegetation and population expansion can modulate/influence 

the incidence of dengue. Additionally, it can also be concluded that simpler models, based on 

significant variables, presented better performance. In some cases, the forecast captured the 

seasonal trends of dengue well, but there were limitations such as overestimation and 

underestimation in certain periods. 

 

Key words: Linear Regression; Epidemiological Forecast; Dengue. 



 

 

LISTA DE FIGURAS 

Figura 1: Fluxograma de delineamento. .................................................................................. 26 

Figura 2: Localização dos 12 município cearenses estudados. ............................................... 28 

Figura 3: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses 

para Aracati .............................................................................................................................. 35 

Figura 4: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º 

autocorrelação, 4º autocorrelação parcial de Aracati ................................................................ 36 

Figura 5: Valor do Critério de Informação de Akaike (AIC) para Aracati ............................. 37 

Figura 6: Valor do Critério de Informação de Bayesiana (BIC) para Aracati. ........................ 37 

Figura 7: Variável de desempenho- RMSE para Aracati ........................................................ 38 

Figura 8: Variável de desempenho- SRMSE para Aracati ...................................................... 38 

Figura 9: Série temporal de validação para Aracati. ............................................................... 39 

Figura 10: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses 

para Canindé. ............................................................................................................................ 40 

Figura 11: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º 

autocorrelação, 4º autocorrelação parcial de Canindé .............................................................. 40 

Figura 12: Valor do Critério de Informação de Akaike (AIC) para Canindé. ......................... 41 

Figura 13: Valor do Critério de Informação de Bayesiana (BIC)para Canindé ...................... 41 

Figura 14: Variável de desempenho- RMSE para Canindé. .................................................... 42 

Figura 15: Variável de desempenho- SRMSE para Canindé. ................................................. 42 

Figura 16: Série temporal para validação para Canindé. ......................................................... 43 

Figura 17: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses 

para Cratéus. ............................................................................................................................. 44 

Figura 18: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º 

autocorrelação, 4º autocorrelação parcial de Crateús. .............................................................. 44 

Figura 19: Valor do Critério de Informação de Akaike (AIC) para Crateús ........................... 45 

Figura 20: Valor do Critério de Informação de Bayesiana (BIC) para Crateús. ..................... 45 

Figura 21: Variável de desempenho - RMSE para Cratéus. .................................................... 46 

Figura 22: Variável de desempenho- SRMSE para Crateús.................................................... 46 

Figura 23: Série temporal para validação para Crateús ........................................................... 47 

Figura 24: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses 

para Fortaleza ........................................................................................................................... 48 

Figura 25: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º 

autocorrelação, 4º autocorrelação parcial de Fortaleza ............................................................. 49 

Figura 26: Valor do Critério de Informação de Akaike (AIC) para Fortaleza ........................ 49 

Figura 27: Valor do Critério de Informação de Bayesiana (BIC) para Fortaleza .................... 50 

Figura 28: Variável de desempenho- RMSE para Fortaleza ................................................... 50 

Figura 29: Variável de desempenho- SRMSE para Fortaleza ................................................. 51 

Figura 30: Série temporal para validação para Fortaleza ........................................................ 51 

Figura 31: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses 

para Iguatu. ............................................................................................................................... 52 

Figura 32: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º 

autocorrelação, 4º autocorrelação parcial de Iguatu ................................................................. 53 



Figura 33: Valor do Critério de Informação de Akaike (AIC) para Iguatu. ............................ 54 

Figura 34: Valor do Critério de Informação de Bayesiana (BIC) para Iguatu. ....................... 54 

Figura 35: Variável de desempenho- RMSE para Iguatu. ....................................................... 55 

Figura 36: Variável de desempenho- SRMSE para Iguatu...................................................... 55 

Figura 37: Série temporal para validação para Iguatu. ............................................................ 56 

Figura 38:Correlação Linear de Pearson considerando defasagens temporais de até 3 meses 

para Itapipoca ........................................................................................................................... 57 

Figura 39: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º 

autocorrelação, 4º autocorrelação parcial de Itapipoca ............................................................. 57 

Figura 40: Valor do Critério de Informação de Akaike (AIC) para Itapipoca ........................ 58 

Figura 41: Valor do Critério de Informação de Bayesiana (BIC) para Itapipoca .................... 58 

Figura 42: Variável de desempenho- RMSE para Itapipoca ................................................... 59 

Figura 43: Variável de desempenho- SRMSE para Itapipoca ................................................. 59 

Figura 44: Série temporal para validação para Itapipoca ........................................................ 60 

Figura 45: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses 

para Juazeiro do Norte. ............................................................................................................. 61 

Figura 46: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses 

para Morada Nova .................................................................................................................... 62 

Figura 47: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º 

autocorrelação, 4º autocorrelação parcial de Morada Nova ..................................................... 62 

Figura 48: Valor do Critério de Informação de Akaike (AIC) para Morada Nova ................. 63 

Figura 49: Valor do Critério de Informação de Bayesiana (BIC) para Morada Nova ............ 63 

Figura 50: Variável de desempenho- RMSE para Morada Nova ............................................ 64 

Figura 51: Variável de desempenho- SRMSE para Morada Nova .......................................... 64 

Figura 52: Série temporal para validação para Morada Nova ................................................. 65 

Figura 53: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses 

para Quixadá ............................................................................................................................. 66 

Figura 54: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º 

autocorrelação, 4º autocorrelação parcial de Quixadá .............................................................. 66 

Figura 55: Valor do Critério de Informação de Akaike (AIC) para Quixadá .......................... 67 

Figura 56: Valor do Critério de Informação de Bayesiana (BIC) para Quixadá ..................... 68 

Figura 57: Variável de desempenho- RMSE para Quixadá .................................................... 68 

Figura 58:Variável de desempenho- SRMSE para Quixadá ................................................... 69 

Figura 59: Série temporal para validação para Quixadá .......................................................... 69 

Figura 60: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses 

para Sobral. ............................................................................................................................... 70 

Figura 61: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º 

autocorrelação, 4º autocorrelação parcial de Sobral. ................................................................ 71 

Figura 62: Valor do Critério de Informação de Akaike (AIC) para Sobral. ............................ 72 

Figura 63: Valor do Critério de Informação de Bayesiana (BIC) para Sobral. ....................... 72 

Figura 64: Variável de desempenho- RMSE para Sobral. ...................................................... 73 

Figura 65: Variável de desempenho- SRMSE para Sobral ..................................................... 73 

Figura 66: Série temporal para validação para Sobral. ............................................................ 74 

Figura 67: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses 

para Tauá .................................................................................................................................. 75 

Figura 68: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º 

autocorrelação, 4º autocorrelação parcial de Tauá ................................................................... 75 



Figura 69: Valor do Critério de Informação de Akaike (AIC) para Tauá ............................... 76 

Figura 70: Valor do Critério de Informação de Bayesiana (BIC) para Tauá ........................... 76 

Figura 71: Variável de desempenho- RMSE para Tauá .......................................................... 77 

Figura 72: Variável de desempenho- RMSE para Tauá .......................................................... 77 

Figura 73: Série temporal para validação para Tauá ............................................................... 78 

Figura 74: Análise da Correlação Linear de Pearson para Tianguá ........................................ 78 



LISTA DE TABELAS 

Quadro 1: MARCO DPSEEA (FORÇAS MOTRIZES, PRESSÃO, SITUAÇÃO, 

EXPOSIÇÃO, EFEITO, AÇÃO) .............................................. Erro! Indicador não definido. 



SUMÁRIO 

 
1. INTRODUÇÃO ........................................................................................................................14 

1.1. Objetivos ................................................................................................................................... 16 

1.1.1. Objetivo Geral .................................................................................................................. 16 

1.1.2. Objetivos Específicos ........................................................................................................ 16 

2. REVISÃO DA LITERATURA ...............................................................................................17 

2.1. Dinâmica climática do nordeste brasileiro (NEB) e do Ceará ............................................. 17 

2.2. Clima e saúde pública .............................................................................................................. 19 

2.3. Arboviroses e vetores climáticos ............................................................................................. 21 

2.4. Previsão epidemiológica dos casos de dengue ........................................................................ 23 

3. METODOLOGIA ....................................................................................................................26 

3.1. Tipo de Pesquisa....................................................................................................................... 26 

3.2. Área de Estudo ......................................................................................................................... 27 

3.3. Modelo Epidemiológico da Dengue ........................................................................................ 29 

3.4. Software Rstudio ...................................................................................................................... 31 

3.5. Métricas de Avaliação ............................................................................................................. 32 

3.5.1. AIC ................................................................................................................................... 32 

3.5.2. BIC .................................................................................................................................... 32 

3.5.3. RMSE ............................................................................................................................... 33 

3.5.4. SRMSE ............................................................................................................................. 33 

4. RESULTADOS ........................................................................................................................34 

4.1. Análise para Aracati ................................................................................................................ 34 

4.2. Análise para Canindé .............................................................................................................. 39 

4.3. Análise para Crateús ............................................................................................................... 43 

4.4. Análise para Fortaleza ............................................................................................................. 47 

4.5. Análise para Iguatu ................................................................................................................. 51 

4.6. Análise para Itapipoca ............................................................................................................. 56 

4.7. Análise para Juazeiro do Norte .............................................................................................. 60 

4.8. Análise para Morada Nova ..................................................................................................... 61 

4.9. Análise para Quixadá .............................................................................................................. 65 

4.10. Analise para Sobral ........................................................................................................ 69 

4.11. Análise para Tauá ........................................................................................................... 74 

4.12. Análise para Tianguá ..................................................................................................... 78 

5. DISCUSSÃO ............................................................................................................................79 

6. CONCLUSÃO ..........................................................................................................................81 

REFERÊNCIAS ...................................................................................................................................83 

APÊNDICE ...........................................................................................................................................92 



1. INTRODUÇÃO 

 

O aumento da incidência do Zika vírus (ZIKV) e da Chikungunya (CHIKV) em áreas 

com alta presença do vírus da dengue (DENV) tornou-se um grande desafio para os serviços de 

saúde em diversos países. O crescimento dessas arboviroses1, transmitidas principalmente pelo 

mosquito Aedes aegypti (do gênero Aedes), passou a ser uma questão de extrema relevância, 

especialmente em áreas urbanas, onde ocorre a maior proliferação do mosquito. Isso tem gerado 

um debate constante nas políticas de saúde pública (SIQUEIRA, 2022). 

A dengue, atualmente, é definida como a arbovirose mais predominante do mundo. 

Anualmente, o número de casos de dengue clássica (DC) e da febre hemorrágica da dengue 

(FHD) vem aumentando (VIANA & IGNOTTI, 2013). A infecção pelo vírus da dengue resulta 

em diferentes quadros clínicos, desde assintomáticos até quadros sintomatológicos: Febre do 

Dengue (FD), quadros graves de Febre Hemorrágica do Dengue (FHD) e Síndrome do Choque 

do Dengue (SCD), dessa forma essas instabilidades de quadros podem evoluir para sintomas 

graves, em alguns casos resultando a morte. Diante disso, nas últimas décadas a doença se 

configurou como uma grande causa de morbidade e mortalidade no Brasil (MALECK, 2019). 

O clima pode favorecer a disseminação de locais propícios para proliferação de vetores 

da Dengue. Elementos climáticos, como mudanças nos padrões de pluviometria e aumento 

de temperatura, podem acelerar as taxas de maturação e reprodução do mosquito, elevando 

a capacidade de transmissão do vírus (SAJIB et al., 2024). Nesse contexto, nos últimos anos, tem- 

se intensificado a busca de metodologias e estratégias que possam identificar e minimizar as 

causas e efeitos de doenças e suas relações com os fenômenos climáticos (SOUSA et al, 2018). 

Nessa perspectiva, Rahman et al. (2021) observaram que as variáveis climáticas exercem 

interferência direta no desenvolvimento, sobrevivência e hábitos alimentares do mosquito. 

Foi percebido que o ciclo de vida desse inseto sofre influência da temperatura, tendo propensão 

a ocorrer no intervalo térmico de 28 °C a 32 °C. Desvios nesses valores, seja em termos 

excessivamente baixos ou altos, podem ocasionar retardo no seu desenvolvimento ou aumentar 

sua mortalidade (HARRIS; CALDWELL; MORDECAI, 2019; MOREIRA et al., 

2020). 

Costa et al. (2022) investigaram a associação entre variabilidade hidroclimática 

interanual e sazonal e a incidência de dengue (2008-2018) em sete municípios de grande 

relevância socioeconômica no Ceará. A relação entre a incidência de dengue e variáveis 

 

 1 Arboviroses são doenças causadas por arbovírus (Arthropod-borne virus), que por sua vez, são vírus transmitidos 
por artrópodes. 

 



hidroclimáticas foi analisada por meio de regressão de mínimos quadrados generalizados 

(GLS). Os autores notaram que o início da quadra chuvosa, em fevereiro, também abre a 

temporada de dengue no estado do Ceará. Além disso, perceberam que no final da atuação da 

Zona de Convergência Intertropical (ZCIT) no Ceará, principal sistema indutor de chuvas no 

Estado, é o período de maior ocorrência de casos de dengue nos municípios de Fortaleza, Sobral 

e Barbalha. Quanto à modelagem da incidência de dengue, verificaram que as regressões GLS 

foram capazes de reproduzir o início, o desenvolvimento e o final da temporada de dengue, 

embora tenham encontrado subestimação dos picos e superestimação dos baixos índices de 

incidência. 

Segundo Roy et al. (2024), elementos climáticos e sociodemográficos afetam a 

propagação da dengue. Embora precipitação, temperatura do ar e umidade relativa do ar possam 

influenciar o ciclo de vida dos mosquitos, a prevalência da dengue também está correlacionada 

com a urbanização, a diminuição da vegetação e a expansão populacional. Por isso, os índices 

de dengue tendem a ser maiores na zona urbana. 

Conforme FERREIRA et al. (2023) e COSTA et al. (2022), o desenvolvimento de 

estudos de previsão epidemiológica dos casos de dengue também pode auxiliar na investigação 

dos efeitos do clima na saúde pública. As implicações na saúde variam de acordo com as escalas 

espaciais e de tempo, e depende de condições socioeconômicas e ambientais, com 

possibilidades de aumento da incidência de doenças ou modificação de sua abrangência 

geográfica. A avaliação de tendências e a quantificação da influência interanual na incidência 

da dengue é essencial na prevenção de surtos e no direcionamento de políticas públicas mais 

eficientes no combate à doença. 

Nesse contexto, observa-se que os efeitos do clima nos casos de dengue são muito 

dependentes da localização e escala, o que dificulta a generalização dos resultados de pesquisa 

para regiões geográficas não estudadas. Além disso, pouco se sabe sobre os efeitos da 

variabilidade climática interanual na incidência de dengue em áreas urbanas de regiões tropicais 

secas (PAUL et al., 2021; BHATIA et al., 2022; COSTA et al., 2022; FERREIRA, 2023). 

Investigações direcionadas a populações urbanizadas, localizadas em regiões 

climaticamente e sociodemograficamente favoráveis à incidência de dengue, são essenciais para 

identificar os elementos climáticos locais que influenciam a transmissão da doença. Com isso, 

é possível antecipar mudanças na magnitude e na sazonalidade dos surtos. A justificativa para 

esta pesquisa reside na necessidade de compreender como as variáveis hidroclimáticas 

impactam a dinâmica da transmissão da dengue, contribuindo para o desenvolvimento de 

modelos preditivos mais eficazes. A hipótese do trabalho é que as variações climáticas, como 

precipitação e temperatura, têm uma influência significativa na proliferação do mosquito Aedes 



aegypti, e, portanto, na intensidade e periodicidade dos surtos de dengue nas áreas estudadas. 

Esse conhecimento pode fornecer subsídios cruciais para o planejamento de estratégias de 

controle mais eficientes, auxiliando os tomadores de decisão na implementação de medidas 

preventivas. (SIQUEIRA, 2018; BATISTA et al., 2021). 

1.1. Objetivos  

1.1.1. Objetivo Geral 

Investigar a influência da precipitação e temperatura (máxima, média e mínima) na 

variabilidade interanual das incidências de casos de dengue e prever situações epidemiológicas 

em áreas urbanas, de clima tropical semi-árido, no Ceará. 

1.1.2. Objetivos Específicos 

● Analisar se variáveis climáticas, como precipitação e temperatura do ar, influenciam o 

número de casos de dengue; 

● Criar um modelo de previsão epidemiológica com base nas variáveis que mais 

influenciam o crescimento de casos da doença; 

● Validar o modelo de previsão epidemiológica dos casos de dengue. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. REVISÃO DA LITERATURA 

2.1. Dinâmica climática do nordeste brasileiro (NEB) e do Ceará 

 

O clima do Nordeste Brasileiro (NEB) se distingue por amplas variações na distribuição 

da precipitação em escala espacial e temporal. No NEB, tanto os períodos prolongados de 

estiagem quanto os de alta pluviometria causam sérios problemas sociais e econômicos. A 

região está localizada na Zona Intertropical e seus sistemas meteorológicos mais atuantes em 

escala sazonal são Zona de Convergência Intertropical (ZCIT), Linhas de Instabilidade (LI), 

Vórtices Ciclônicos de Altos Níveis (VCAN), Distúrbios Ondulatórios de Leste (DOL) e 

Sistemas Frontais (SF). Outros fatores que afetam o clima da região são os fenômenos El Niño 

- Oscilação Sul (ENOS) e a Oscilação Decadal do Pacífico (ODP), que ocorrem em escala 

interanual e decadal, respectivamente (ARAÚJO JÚNIOR, 2018; FERREIRA & MELLO, 

2005). 

Na pré-estação chuvosa no NEB, que ocorre entre novembro e janeiro, os VCAN 

caracterizados por serem um sistema de baixa pressão em altos níveis da atmosfera, com 

circulação de ventos no sentido horário, comumente provocam chuvas significativas no 

Semiárido Brasileiro (REIS et al., 2021; FERREIRA et al., 2019). Os SF, como as Frentes Frias, 

que se formam no encontro entre uma massa de ar frio (mais densa) com uma massa de ar 

quente (menos densa), embora menos frequentes, podem atingir a região durante esse período, 

contribuindo para a formação de chuvas, especialmente nas áreas mais ao sul do Nordeste 

(FEDOROVA et al., 2016). 

Durante a quadra chuvosa no NEB, de fevereiro a maio, o principal sistema indutor de 

chuvas no estado do Ceará é a ZCIT, que é uma zona de baixa pressão na região equatorial, 

formada pelo encontro dos ventos Alísios de Sudeste e de Nordeste em baixos níveis. Este 

realiza um deslocamento sazonal entre os hemisférios norte e sul, de modo que em anos 

normais2, migra de uma posição mais ao norte, entre agosto e outubro, para uma posição mais 

ao sul, entre fevereiro e maio. Esse deslocamento está relacionado aos padrões de Temperatura 

da Superfície do Mar (TSM) sobre a bacia do oceano Atlântico Tropical e do Pacífico, 

dimensionando a pluviometria sobre o NEB (NOGUEIRA et al., 2024; OLÍMPIO & 

ZANELLA, 2015; FERREIRA & MELLO, 2005). 

 

 

 

 

2 Anos normais, são aqueles em que a pluviometria ficou em torno da média climatológica. 



As Linhas de Instabilidade, formadas por nuvens do tipo cumulus de alta atividade 

convectiva, com bandas de nuvens em forma de linha, também tendem a atuar no NEB tanto 

durante o período da estação chuvosa, aumentando com a proximidade da ZCIT, principalmente 

em fevereiro e março, como durante o segundo semestre do ano, especialmente entre agosto e 

novembro (FERREIRA & MELLO, 2005). 

Na pós-estação chuvosa no NEB, os DOL que são perturbações ondulatórias no campo 

dos ventos alísios, têm origem no Oceano Atlântico Tropical próximos à costa oeste da África 

e se propagam em direção ao oeste, tendo atuação mais pronunciada entre maio e julho, são 

responsáveis por chuvas intensas em estados litorâneos, como Ceará, Pernambuco, Alagoas, 

Sergipe e Bahia (SILVA et al, 2020; CAVALCANTE et al., 2020). 

Anos secos ou chuvosos também estão relacionados à variabilidade climática interanual, 

que é significativamente influenciada por fenômenos como, El Niño-Oscilação Sul (ENOS) e o 

Gradiente Inter- Hemisférico da Temperatura da Superfície Mar (GRADM) do Atlântico no 

Brasil (LUCENA et al., 2010; WAINER et al., 2010; VASCONCELOS JÚNIOR et al., 2018). 

O ENOS é dado como referência nas situações nos quais o oceano Pacífico Equatorial 

está mais quente (El Niño) ou mais frio (La Niña) do que a média normal histórica. As mudanças 

climáticas do oceano Pacífico Equatorial acarretam efeitos globais na temperatura e 

precipitação. O ENOS na fase positiva, estado mais quente, historicamente produz escassez 

hídrica no NEB e chuvas intensas no Sul/Sudeste do país. Já, o ENOS na fase negativa, estado 

mais frio, influencia a precipitação em grande parte da Região Norte e também em parte da 

Região Nordeste, com chuvas acima da média histórica para a atualidade, enquanto no 

Sul/Sudeste há uma tendência de redução da pluviometria (MEDEIROS & OLIVEIRA, 2021; 

ABREU et al., 2023) 

O GRADM está relacionado a mudanças no regime de ventos alísios nos dois 

hemisférios do planeta devido ao gradiente de temperatura das águas do Atlantico Norte e do 

Atlantico Sul. No NEB, o GRADM influencia o deslocamento meridional da ZCIT tendendo a 

ocasionar escassez de chuvas na sua fase positiva (quando as águas do Atlantico Norte estão 

mais aquecidas que do Atlantico sul), enquanto que nos anos de precipitação intensa tal 

comportamento é oposto, sendo esta característica da fase negativa (LUCENA et al., 2011; 

CAVALCANTI, 2015; SILVA et al., 2021b). 

O clima do NEB é significativamente influenciado pelas anomalias de temperatura da 

superfície do Oceano Pacífico tanto na escala interanual, já comentada acima, como na escala 



decadal (SANTOS et al., 2023). A ODP, assim como o ENOS possui duas fases, quente e fria. 

As temperaturas das superfícies dos oceanos ficam mais aquecidas durante 20 a 30 anos e, em 

seguida, se resfriam durante outros 20 a 30 anos, totalizando um ciclo de 50 a 60 anos (Andreoli 

& Kayano, 2004; CAVALCANTI et al., 2009). 

Estudos como o de Molion (2005), Andreoli e Kayano (2005) e Oliveira et al. (2017), 

mostraram que na fase negativa (ou fria) a ODP acarreta uma redução da frequência dos eventos 

de El Niño, e na fase positiva (ou quente) há uma tendência de aumento em número e 

intensidade de eventos de El Niño. Sendo, assim, a fase fria da ODP mais favorável a 

precipitação para o Nordeste Brasileiro. 

2.2. Clima e saúde pública 

 

As relações entre o clima e saúde humana são complexas, o aumento das temperaturas, 

a mudança de padrões climáticos e a degradação ambiental estão correlacionadas a doenças, 

como distúrbios respiratórios, problemas cardiovasculares e a disseminação de doenças 

transmitidas por vetores biológicos, afetando populações, especialmente as mais vulneráveis, 

em regiões socioeconômicas mais marginalizadas (Omeye, 2024). 

Segundo Adamopoulos & Syrou (2024), a poluição do ar, aliada ao aumento de 

temperatura do planeta, tem intensificado doenças respiratórias e cardíacas. Estudos como os 

de Hasunuma et al. (2021), Hu et al. (2022) e Makrufardi et al. (2023) evidenciam a relação 

entre fatores ambientais e o aumento da prevalecência e severidade da asma em crianças, por 

meio da tendencia de crescimento de morbidade e mortalidade nesse público. Doenças 

cardiovasculares, como o Acidente Vascular Cerebral (AVC) e o Infarto Agudo do Miocárdio 

(IAM) podem ser influenciados pelo estresse térmico, predispondo potencialmente indivíduos 

vulneráveis a ruptura ou bloqueio dos vasos sanguíneos cerebrais ou cardíacos (MOREIRA et 

al., 2024). Silveira et al. (2021), Zhao et al. (2022) e Ohashi et al. (2023) notaram um aumento 

de internações e de mortalidade por AVC ou IAM associados a temperaturas extremas (muito 

elevadas e muito baixas) 

Athirsha et al. (2024), em seu estudo de revisão, destacaram que a mudança climática 

em curso pode, alterar a sazonalidade de muitas doenças vetoriais, acelerar os ciclos de vida 

dos vetores e criar condições favoráveis para patógenos, aumentando o risco de transmissão e 

levando a surtos mais frequentes e graves. 



O clima não é o único aspecto que influência geograficamente e que afeta as doenças 

suscetíveis aos elementos climáticos. As componentes não climáticas podem ter um efeito 

predominante, seja de maneira independente ou através de modificações do clima. Além disso, 

a compreensão das diversas causas que vão da mudança climática até os impactos na saúde, é 

importante na identificação das oportunidades de abordar os determinantes ambientais dos 

resultados deficientes de saúde (OPAS, 2014). 

Os efeitos climáticos podem ter limitações de longo alcance para a saúde pública por 

meio de vulnerabilidades sociais inerentes que podem ampliar os impactos de vias de risco em 

cascata. Desenvolvimento de programas de controle podem ser incorporados ao uso da terra e 

determinantes socioeconômicos, buscando minimizar ou neutralizar indiretamente os impactos 

do aumento da variabilidade climática na transmissão ou exacerbação de doenças. Entender as 

fraquezas do sistema pode ajudar a promover a capacidade adaptativa e as medidas de 

intervenção (SEMENZA et al., 2022). 

Pensando em estratégias para que os problemas de saúde fossem minimizados e em 

busca de compreender como o clima impacta na saúde pública, Kovats et al. (2005) desenvolveu 

um modelo hierárquico, denominado Marco DPSEEA (Forças Motrizes, Pressão, Situação, 

Exposição, Efeito, Ação), ver Quadro 1, afim de identificar os condicionantes ambientais ou de 

comportamento que afetam a saúde. 

 

QUADRO 1: MARCO DPSEEA (FORÇAS MOTRIZES, PRESSÃO, SITUAÇÃO, EXPOSIÇÃO, 

EFEITO, AÇÃO) 

 
F 

O 

R 

Ç 

A 

S 

M 

O 

T 

R 

I 

Z 

E 
S 

MARCO DPSEEA AÇÕES 

 

 

 

 

Políticas de Energia, agricultura e transporte; 

mudanças demográficas; mudanças no 

aproveitamento da terra; processo de urbanização. 

 

 

 

 

Acordos internacionais (por exemplo, 

convenções das Nações Unidas como a 

CMNUCC, o CDB ou a CNULD) 

P 

R 

E 

S 

S 

Õ 

E 
S 

 

 

Emissões de gases de efeito estufa 

 

 

Políticas nacionais de mitigação. 



E 

S 

T 

A 

D 
O 

 

 

A mudança climática. 

 

Políticas de adaptação e programas de 

gestão de riscos. 

E 

X 

P 

O 

S 

I 

Ç 

Ã 
O 

 

Fenômenos meteorológico extremos (secas, 

inundações, ondas de calor); mudanças em 

ecossistemas; escassez de água; disponibilidade de 

alimentos; mudanças na distribuição de vetores. 

 

 

Indicadores, acompanhamento, sistemas 

de vigilância, políticas de saúde pública, 

proteção ambiental. 

E      

F   

E 

I 

T 

O 

Doenças suscetíveis ao clima, entre elas 

cardiovasculares, respiratórias agudas e crônicas, 

diarreias agudas, mentais, transmitidas por vetores; 
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Diagnóstico e tratamento. 

 

Fonte: Adaptado de OPAS (2014). 

 

 

Então através das forças motrizes, entendeu-se, os principais fatores que geram os 

processos ambientais resultando em pressões sobre o ambiente. Dessa forma, o estado do meio 

ambiente é alterado com mudanças que podem ser mais complexas, de ampla abrangência e de 

diferentes escalas geográficas (OPAS, 2014). 

Para que ocorra uma melhora atraente nos resultados entre a saúde e a dinâmica 

climática, programas e instituições de saúde pública têm buscado implementar, monitorar e 

avaliar serviços, programas e políticas inclusivos para proteger a saúde das pessoas dos riscos 

ambientais (OPAS, 2014). 

2.3. Arboviroses e vetores climáticos 

 

O arbovírus são transmitidos por artrópodes e são identificados não somente pela sua 

forma de veiculação, mas, principalmente, pelo fato de parte de seu ciclo de desenvolvimento 

ocorrer nos insetos. Os sintomas que podem aparecer em seres humanos podem variar desde de 

doença febril a um quadro moderado ou grave, apresentando erupções cutâneas, artralgia, 

síndrome neurológica e síndrome hemorrágica em alguns casos (CHAVES, 2021). O Brasil por 

sua larga extensão territorial, aproximadamente 8.510.000 km², está localizado em uma área de 

clima predominantemente tropical sendo um local adequado para a disseminação de insetos e 

vetores, consequentemente a proliferação de doenças. 

O vírus do Nilo Ocidental (WNV) pode causar epidemias inclusive em áreas urbanas. É 

transmitido por mosquitos do gênero Culex e tem as aves como principais reservatórios. Alguns 



vírus perderam a exigência de amplificação enzoótica3 e produzem epidemias urbanas tendo 

exclusivamente o homem como amplificador vertebrado. É o caso dos vírus da Dengue, 

Chikungunya e, mais recentemente, Zika. 

A circulação de infecção por Dengue, Chikungunya e Zika no país dificulta o manejo 

dentro dos hospitais ou clínicas, devido a similaridade entre os sintomas. Implicações na 

transmissão de idosos, grávidas e crianças apresenta uma maior atenção. A interação de 

arboviroses (DENV sorotipos 1-4, CHIKV e ZIKV) poderia teoricamente resultar em viremias 

mais intensas ou outras alterações imunológicas que, por sua vez, agiriam como gatilho para 

doenças autoimunes, como a síndrome de Guillain-Barré (CHAVES, 2021). O Tempo e o clima 

são fatores importantes na determinação do comportamento do mosquito e na eficácia da 

transmissão do vírus da dengue. No entanto, a investigação sobre a relação entre as variáveis 

meteorológicas e a dengue limita-se principalmente aos valores médios de temperatura e estes 

ignoram o importante papel da variabilidade a curto prazo (LIU-HELMERSSON et al., 2014). 

O desenvolvimento social e econômico faz com que o Dengue acompanhe o homem em 

seus empreendimentos, migrações e aglomerações no decorrer da história. E vários estudos 

veem mostrando os diversos caminhos que levam a transmissão. Mesmo sendo considerada 

uma doença urbana, casos frequentes estão sendo registrados em áreas rurais, abrindo 

ferramentas para que sejam desenvolvidos estudos para realizar análise da situação. O mosquito 

possui uma forte capacidade de adaptação (DONALÍSIO & GLASSER, 2002). 

O referido autor ainda ressalta que o Aedes aegypti vetor marcadamente domiciliado, 

utiliza diversos tipos de criadouros, independentemente dos períodos de chuva, sugerindo que 

o pico de transmissão não está relacionado com a densidade do vetor, mas sim com o 

prolongamento da vida do mosquito em sua fase adulta nas condições de temperatura e umidade 

da estação chuvosa aumentando a probabilidade de as fêmeas infectadas completarem o período 

de replicação do vírus. 

De acordo um estudo realizado no Estado de Góias foi constatado a associação e 

pluviosidade e aumento dos casos de Dengue nos municípios de estudo. Havendo picos 

específicos nos 4 primeiros meses dos anos, dos quais são considerados os mais chuvosos. 

Sendo que a infestação do mosquito chegou a 97,5% de infestação em diversos municípios 

 

3 Enzoótica é o equivalente não humano de endêmico e significa, em sentido amplo, "pertencente a" ou "nativo 
de", "característica de" ou "prevalente em" uma determinada geografia, raça, campo, área ou ambiente; nativo 
de uma área ou escopo. 



goianos. Assim o autor também aponta a longevidade do Aedes aegypti durante o período 

chuvoso e o aumento de temperatura. Este último tem sido usado como um fator modelador 

para outros estados adotando a pluviosidade como um fator de pequenas interferências 

(SOUSA, 2010). 

2.4. Previsão epidemiológica dos casos de dengue 

 

De acordo um estudo realizado no Estado de Góias foi constatado a associação e 

pluviosidade e aumento dos casos de Dengue nos municípios de estudo. Havendo picos 

específicos nos 4 primeiros meses dos anos, dos quais são considerados os mais chuvosos. 

Sendo que a infestação do mosquito chegou a 97,5% de infestação em diversos municípios 

goianos. Assim o autor também aponta a longevidade do Aedes aegypti durante o período 

chuvoso e o aumento de temperatura. Este último tem sido usado como um fator modelador 

para outros estados adotando a pluviosidade como um fator de pequenas interferências 

(SOUSA, 2010). 

A criação de ferramentas para prever os casos de dengue é considerado algo complexo, 

mas diversos estudos e técnicas estão sendo elaborados, pois existem fatores que podem 

contribuir significativamente, ajudando as pesquisas na área de proliferação e aparecimento da 

doença. Técnicas de Machine Learning e de Deep Learning, vem influenciando nos estudos de 

análises de dados climáticos, como dados de temperatura, precipitação e umidade (BATISTA 

et al., 2021). A progressão da dengue, depende de condições ecológicas e sócio-ambientais que 

facilitam a dispersão do vetor. 

Para os estudos de séries temporais, modelos matemáticos e estatísticos, mais 

especificamente as ferramentas de análises de séries temporais, têm sido amplamente utilizados 

para monitorar e predizer a incidência de dengue e outras doenças infecciosas. Permitindo 

predições do número de casos em períodos posterior a séries estudada. SARIMA (Seasonal 

Autoregressive Integrate Moving Average), destaca-se como um modelo útil em situações em 

que os dados das séries temporais exibem flutuações sazonais constantes (LIZZI et al., 2012). 

Segundo Silva & Rosa (2018), um modelo matemático aplicado à sistemas dinâmicos 

epidemiológicos é a representação de um sistema, utilizando uma linguagem e ferramentas 

matemáticas, na busca de explicar o comportamento da doença, a sua propagação, os seus 

efeitos. Podendo ainda servir para prever os impactos da disseminação e das formas de controle 

de doenças. Dessa forma os modelos matemáticos aplicados a epidemiologia, podem ser úteis 

para fornecer estimativas sobre as formas mais eficazes de controle. 



Costa et al. (2022) investigaram a associação entre a variabilidade hidroclimática e a 

incidência de dengue em uma grande área tropical seca. A influência entre as variáveis foi 

extraída por meio da regressão de mínimos quadrados generalizados (GLS). Os resultados 

mostraram que a variação interanual da dengue na região de estudo é modulada pela 

precipitação e temperatura. As regressões foram capazes de capturar o início, o 

desenvolvimento e o fim da temporada de dengue, apesar da subestimação dos picos e 

superestimação dos vales de incidência do vetor. Os autores ainda ressaltam que os desvios 

entre os dados previstos e observados não são um problema no caso de os modelos serem 

utilizados para avaliação do impacto de mudanças climáticas na incidência de dengue em escala 

municipal, visto que conseguiram representar bem a sazonalidade da incidência de dengue. 

Batista et al. (2021) fazem uma revisão sistemática dos modelos de previsão de casos de 

dengue através de técnicas de machine learning e deep learning. A revisão diagnosticou que as 

técnicas de Random Forest (RF), Support Vector Regression (SVR) e Long Short-Term 

Memory (LSTM) são as mais utilizadas para prever os casos de dengue usando informações 

climáticas. O artigo ainda ressalta que a técnica de Root Mean Absolute Error (RMSE) é a 

preferida para mensurar o erro. 

Em um estudo realizado no México, dados em escalas anuais relacionando dengue e 

temperaturas foram utilizados para analisar a dinâmica temporal e produzir previsões precisas 

da dengue. A dinâmica temporal dos dados foi obtida através de métodos de autocodificação, 

janelas de contagem e agrupamento de séries temporais colocados em cascata para capturar 

possíveis associações entre dengue e temperatura. Em seguida, foi utilizado o método de 

previsão do vizinho mais próximo (KNN) baseado em associação de tendência para prever o 

número de casos de dengue. Os resultados comprovaram a viabilidade da metodologia proposta, 

podendo esta concorrer com outros métodos de previsão de última geração (APPICE, 2020). 

Mittelmann e Soares (2017) usam dois tipos de arquitetura de redes neurais artificiais 

(RNAs) para prever o número de casos de dengue em Guarulhos - São Paulo. Dados de 

precipitação total, temperatura máxima média, temperatura mínima média e umidade relativa 

são utilizados para treinar redes de perceptron multicamadas (MLP) e redes autorregressivas 

com entradas exógenas (NARX). As redes MLP adota no estudo foram constituídas de cinco 

entradas uma camada intermediária com “n” neurônios e um neurônio na camada de saída, já 

as redes NARX utilizou 12 entradas, em que se considerou os mesmos dados de entrada das 

redes MLP porém defasados até dois meses em relação a dengue, além de dois atrasos de 



retroalimentação. O melhor desempenho foi obtida pela MLP com 10 neurônios na camada 

oculta, função de ativação logística e algoritmo de treinamento de regularização Bayesiana. 

Diante do exposto, é evidente que o enfrentamento das arboviroses no Brasil exige uma 

abordagem integrada, que considere tanto os elementos climáticos quanto os socioambientais. 

A combinação de dados meteorológicos com técnicas avançadas de previsão, como os modelos 

matemáticos e métodos de aprendizado de máquina, apresenta-se como uma ferramenta 

promissora para antecipar surtos e orientar estratégias de prevenção. No entanto, a eficácia 

dessas iniciativas depende de investimentos contínuos em pesquisa, infraestrutura de saúde 

pública e educação sanitária da população. Somente com ações coordenadas entre governo, 

comunidade científica e sociedade civil será possível reduzir de forma significativa os impactos 

das doenças transmitidas por vetores, promovendo um ambiente mais seguro e saudável para 

todos.



3. METODOLOGIA 

3.1. Tipo de Pesquisa 

Trata-se de um estudo epidemiológico do tipo ecológico, de abordagem quantitativa e 

descritiva, de série temporal. Optou-se pelo estudo ecológico porque possibilita a comparação 

de um determinado objeto de estudo, no caso a dengue, com uma ou mais variáveis de interesse 

(LIMA-COSTA & BARRETO, 2003). Os dados coletados são correspondentes ao período 

2008-2018 (11 anos) e incluem, os casos confirmados por dengue e dados meteorológicos para 

12 município do estado do Ceará (Ver Figura 02). O estudo será realizado utilizando a 

correlação entre a dinâmica climática e a ocorrência de casos de dengue. 

O fluxograma, mostrado na Figura 01, detalha as etapas do delineamento do estudo. 

Inicialmente, são obtidos os dados de dengue do Sistema de Informação de Agravos de 

Notificação (SINAN) e variáveis hidroclimáticas de Xavier et al. (2022), referentes a 12 

municípios do Ceará no período de 2008 a 2018. Em seguida, os dados são organizados em uma 

série temporal mensal, com normalização e padronização, se necessário. Define-se o modelo 

estatístico com o ln (Dengue) como variável dependente e variáveis explicativas como 

precipitação e temperaturas mínima, média e máxima, que podem ser defasadas até 3 meses em 

relação a Dengue. Os parâmetros do modelo de regressão linear múltipla (MLR) são 

inicialmente estimados pelo método dos Mínimos Quadrados Ordinários (OLS), assumindo 

erros não correlacionados. A série histórica é dividida em 70% para calibração (2008-2014) e 

30% para validação (2015-2018). Após o ajuste, os modelos são testados e comparados com 

métricas de desempenho, selecionando o mais adequado. Por fim, os resultados são avaliados e 

interpretados para compreender a associação entre o Índice de Dengue e as variáveis 

hidroclimáticas. Mais informações sobre as etapas serão apresentadas nas seções a seguir. 

3.2. Área de Estudo 

 

O estado do Ceará é composto por 184 municípios, entre os quais destacam-se Aracati, 

Canindé, Crateús, Fortaleza, Iguatu, Itapipoca, Juazeiro do Norte, Morada Nova, Quixadá, 

Sobral, Tauá e Tianguá (Ver Figura 02). Esses municípios apresentam características 

socioeconômicas diversas que refletem a heterogeneidade do estado. 

Fortaleza, a capital estadual, é o principal centro econômico e populacional do Ceará, 

concentrando grande parte das atividades industriais, comerciais e de serviços. Municípios 

como Sobral e Juazeiro do Norte também se destacam como polos regionais de 

desenvolvimento (Ver Tabela 1), possuindo economias diversificadas e infraestrutura 

significativa.



 
Figura 1: Fluxograma de delineamento.

 
 

Fonte: Autora, 2025. 



De acordo com as estimativas populacionais mais recentes do Instituto Brasileiro de 

Geografia e Estatística (IBGE, 2023), o Ceará possui uma população de 8.794.957 de 

habitantes. A distribuição populacional é desigual, com maior concentração nas áreas 

metropolitanas e litorâneas, enquanto regiões do interior apresentam densidades demográficas 

menores. A maioria dos municípios possuem índice de desenvolvimento humano (IDH) entre 

0,600 e 0,699, classificado como de categoria média. Logo abaixo apresentasse o IDH 

juntamente com outras dados socioeconômicos relevantes para cada um dos municípios em 

estudo (Ver Tabela 1). 

O IDH é uma métrica que avalia o desenvolvimento de municípios, regiões, estados ou 

países em 3 dimensões básicas, saúde, educação e renda. Entre os municípios selecionados para 

o estudo, Fortaleza é o que possui o maior IDH, 0,754, evidenciando a qualidade de vida dos 

fortalezenses devido a uma maior qualidade da educação e maior renda dos seus habitantes em 

relação aos outros municípios. 

Tabela 1– Dados Socioeconômicos de 12 municípios cearenses. 
 

 

 

MUNICÍPIO 

 

ÁREA 

TERRITORIAL 

(Km²) 

 

Nº DE 

HABITANTES 

ÍNDICE DE 

DESENVOLVIME 

NTO HUMANO 

MUNICIPAL- 
IDHM 

 

ÁREA 

URBANIZADA 

(Km²) 

ESGOTAMENT 

O SANITÁRIO 

ADEQUADO 

(%) 

ARACATI 1227,197 75.113 0,655 19,83 4,50 

CANINDÉ 3032,390 74.174 0,612 10,20 23,2 

CRATEÚS 2981,459 76.390 0,644 14,92 47,9 

FORTALEZA 312353 2428708 0,754 253,69 74,0 

IGUATU 992208 98064 0,677 19,46 27,4 

ITAPIPOCA 1600,358 131123 0,640 25,40 32,9 

JUAZEIRO 

DO NORTE 
258788 286120 0,694 51,44 47,20 

MORADA 

NOVA 
2763971 61443 0,610 11,69 9,10 

QUIXADÁ 2020,586 84168 0,659 11,27 52,70 

SOBRAL 2068,474 203023 0,714 31,17 75,60 

TAUÁ 4010,618 61227 0,633 10,29 32,30 

TIANGUÁ 909853 81506 0,657 18,88 39,40 

Fonte: Instituto Brasileiro de Geografia e Estatística- IBGE, 2022. 

 

 

A cobertura de esgotamento sanitário é um indicador crucial de infraestrutura e saúde 

pública, pois quando maior seu percentual, menores são as chances de contaminação do solo, 

da água e de propagação de doenças. Conforme Tabela 01, Fortaleza tem a maior cobertura, 

com 74% de esgotamento sanitário adequado, enquanto Aracati só tem um percentual de 4,5%. 

Segundo o ranking do saneamento do Instituto Trata Brasil de 2024 (ITB, 2024), entre as 100 

cidades brasileiras com melhor nível de atendimento de esgotamento sanitário, Fortaleza está 

na 68ª posição. 

 

 

 

 

 



Figura 2: Localização dos 12 município cearenses estudados. 

Fonte: Autora, 2025. 

 

Considerando componentes climáticas, o Ceará é marcado por altas temperaturas, baixos 

níveis de umidade e chuvas irregulares, devido seu ambiente semiárido. A temperatura média 

frequentemente excede 30 ºC, especialmente durante a estação seca (Rodrigues et al., 2021). A 

quadra chuvosa, que ocorre de fevereiro a maio, é o período mais úmido do ano no Ceará. 

Durante esses meses, o estado recebe a maior parte de sua precipitação anual, sendo crucial para 

a agricultura e o abastecimento hídrico (NOGUEIRA et al., 2024; OLÍMPIO & ZANELLA, 

2015). Em 2024, por exemplo, a quadra chuvosa registrou um acumulado de 764 mm, ficando 

acima da média histórica (CEARÁ, 2024). O principal sistema meteorológico responsável pelas 

chuvas no Ceará durante a quadra chuvosa é a ZCIT. 

Em relação a presença de mosquito Aedes aegypti, no Ceará há registros desde o ano de 

1851 com noticiada erradicação em 1950. Em 1986 houve a reintrodução dos casos de dengue 

nos municípios de Fortaleza, Aquiraz e Beberibe. Desde então, a doença permanece como um 

problema grave de saúde pública com epidemias cada vez mais frequentes. A partir de 1986, 

registrou-se ao menos 14 anos com epidemia de dengue no Ceará, com a circulação de quatro 

sorotipos da doença (DENV1 - 1986, DENV2 - 1994, DENV3 - 2002 e DENV4 - 2011). A 

partir de 2015, o Ceará passou a apresentar um cenário diferenciado de tripla epidemia, com a 

circulação autóctone de dois outros arbovírus Chikungunya e Zika (Cavalcanti et al., 2018). 

 

 

 



3.3. Modelo Epidemiológico da Dengue 

 

Nesta pesquisa analisaram-se as variáveis dependentes de casos confirmados de dengue, 

juntamente com variáveis independentes, como precipitação, temperatura máxima, temperatura 

média e temperatura mínima do ar. Na regressão linear simples tem-se uma variável 

independente X e uma variável dependente Y. Para um determinado valor de X, estima-se o 

valor médio de Y escrevendo essa relação numa perspectiva condicional E (Y | X), ou apenas 

como μ(X). Como μ(X) varia com X, então é permitido dizer que Y tem uma regressão em X. 

A presença ou ausência de relação linear pode ser investigada sob dois pontos de vista: 

I. Quantificando a força dessa relação: Correlação. 

II. Explicitando a forma dessa relação: Regressão. 

 

A regressão linear múltipla é uma técnica estatística que usa várias variáveis explicativas 

para prever o resultado de uma variável de resposta. A regressão múltipla é uma extensão da 

regressão linear simples que usa apenas uma variável explicativa. Em busca de analisar e avaliar 

a força da relação entre um resultado (variável dependente) e variáveis preditoras, bem como a 

importância de cada um dos preditores para a relação. 

Os dados utilizados, extraídos dos bancos de dados de Xavier et al. (2022), são 

correspondentes ao período de 2008 a 2018 para as variáveis temperatura média (Tmed), 

temperatura máxima (Tmax), temperatura mínima (Tmin), precipitação acumulada (Prec) e 

número de casos confirmados de dengue, com um intervalo mensal. O estudo foi realizado 

utilizando a correlação de Pearson, com variáveis relacionadas a dinâmicas climáticas 

(precipitação e temperatura) com a ocorrência de casos de dengue. 

O coeficiente de correlação de Pearson é uma medida de associação bivariada do grau 

de relacionamento entre duas variáveis. A correlação mensura a direção e o grau da relação 

linear entre duas variáveis quantitativas. Sua fórmula é apresentada abaixo: 

𝑟 =  
1 

𝑛−1 
∑(

𝑥𝑖−𝑋 

𝑆𝑐 

𝑦𝑖−𝑌 
)( ) 

𝑆𝑦 
(1) 



Em relação as análises estatísticas, duas variáveis se associam quando elas guardam 

semelhanças nas distribuições. No caso da correlação de Pearson (r), a associação ocorre pela 

variância compartilhada entre duas variáveis. A relação linear desse coeficiente sugere que o 

aumento ou diminuição da variável X gera um impacto proporcional em Y, isto implica que a 

melhor forma de ilustrar o relacionamento entre duas variáveis é por meio uma linha reta, 

portanto a correlação de Pearson exige uma distribuição linear dessa variação (FIGUEIREDO 

FILHO & SILVA JÚNIOR, 2009). 

As correlações amostrais foram calculadas para associações sem lag e com lag de 1 a 3 

meses, em que lag é o período de tempo que separa as séries temporais, a fim de verificar a 

influência da defasagem temporal de no máximo 3 meses entre os dados climáticos e os dados 

de dengue. 

A fim de compreender se as correlações obtidas são estatisticamente significativas é 

necessário, para tanto, partindo do objetivo, formular: H0 e H1, estabelecer os graus de 

liberdade (N-2) e realizar o teste t-student para 𝑟𝑥𝑦, em que: 

𝑡 =  
𝑟 √𝑁 − 2

√1 − 𝑟2
                                                                                                                       (2) 

Para o teste de significância, que busca comprovar a relevância estatística da influência 

dos dados de climáticos nos casos de dengue, formulou-se as seguintes hipóteses: 

H0: ρ=0 (Não existe correlação) 

 

H1: ρ≠0 (Existe correlação) 

 
Arbitrando-se nível crítico de significância para 5% (0,05), como a probabilidade de 

rejeitar a hipótese nula. 

O conjunto de dados de observações mensais caracteriza uma série temporal onde foi 

usado a aplicação da Correlação de Pearson, uma vez que este modelo considera a correlação 

linear entre duas variáveis. (FAGUNDES et al., 2021). Para nosso caso será aplicado o uso de 

Correlação Cruzada (ACF) que permite identificação de correlações que ocorrem em qualquer 

período. Esse método é capaz de estimar estatisticamente a correlação entre duas séries 

temporais tendo o tempo incluído como uma variável. Dentro do contexto conseguimos 

identificar um atraso ou defasagem que chamamos de lag, podendo adquirir valores positivos 

ou negativos. 

Após encontrar as variáveis independentes mais significativas estatisticamente, um 

modelo epidemiológico da dengue foi ajustado considerando o logaritmo natural do número de 



casos de dengue (Yt) como variável alvo e as variáveis climáticas selecionadas (xt1, …, xtp), 

como a precipitação (mm) e a temperatura do ar (mínima, média e máxima, ◦C), que podem 

estar defasadas em relação ao alvo ou não, como potenciais variáveis explicativas: 

Yt = β0 + β1xt1 + ... + βpxtp + Et (3) 

 

Usando o algoritmo dos mínimos quadrados ordinários (OLS), os parâmetros β1, … βp 

são estimados assumindo o termo de erro Et com média zero, variância constante e nenhuma 

correlação. Aplicando OLS, o método passo a passo reverso produziu preditores com defasagem 

variando de 0 a 3.  

O Apêndice mostra o código na linguagem R, comentado no subtópico abaixo, aplicado 

ao município de Fortaleza, informando todos os passos realizados para o desenvolvimento, 

aplicação e validação do modelo epidemiológico. Ressalta-se que a função “gls” que aparece 

no código se refere apenas a sintaxe  da linguagem de programação, mas é a função OLS que 

está sendo aplicada, visto que quando as suposições clássicas são válidas, ou seja considera-se 

os erros independentes com distribuição normal, média zero e variância constante, a GLS se 

reduz a OLS conforme o teorema de Gauss-Markov (MAIA, 2017). 

3.4. Software Rstudio 

 

As análises estatísticas, bem como as análises gráficas, apresentadas neste trabalho 

foram realizadas por meio do ambiente de desenvolvimento integrado (do inglês, IDE) do 

RStudio®. O RStudio IDE constitui uma plataforma moderna que integra programação, geração 

de imagens e importação de dados em um único ambiente. O RStudio IDE opera através da 

linguagem de programação R, uma linguagem aberta, livre e com destaque na área de análise 

de dados e modelagem. Por operar através de bibliotecas de funções, muitas desenvolvidas e 

validadas pela comunidade de programadores de R, a linguagem R possui aplicações em 

diferentes áreas do conhecimento, desde a estatística clássica, psicologia, biologia até tópicos 

modernos como a big data. Além de contribuir para uma pesquisa com foco na reprodutibilidade 

dos resultados, o desenvolvimento de pesquisas quantitativas aliadas a uma linguagem de 

programação torna possível a implementação de soluções não disponíveis em softwares 

comerciais. (MASSA, 2017). 

3.5. Métricas de Avaliação 

 

As métricas de avaliação são utilizadas principalmente para averiguar a assertividade de 

modelos preditivos. Elas são capazes de retornar de maneira objetiva em um único valor o 

desempenho entre as previsões e os valores reais, sendo utilizadas como um parâmetro de 

comparação para os resultados obtidos com diferentes algoritmos aplicados em um mesmo 

conjunto de dados. A combinação dessas métricas em um sistema de avaliação é capaz de gerar 



conclusões mais consistentes a respeito da usabilidade dos modelos. Neste capítulo serão 

apresentados as quatro métricas utilizadas para parametrizar e escolher o melhor modelo 

preditivo, sendo elas: AIC, BIC, RMSE, SMRSE. 

3.5.1. AIC 

 

O Critério de Informação de Akaike (AIC) é fundamentado na teoria da informação. Esta 

métrica mensura a qualidade de um modelo estatístico considerando sua simplicidade. Em 

outras palavras, o AIC estima a quantidade relativa de informação perdida por um determinado 

modelo. Quanto menor a perda de informação maior é a qualidade do modelo e menor é o valor 

AIC (TRAN, 2011; McELREATH, 2016). Matematicamente, o AIC tem a seguinte formulação: 

𝐴𝐼𝐶 = −2𝑙𝑛(𝐿) + 2𝑘 (4) 

 

              L = verossimilhança do modelo (mede o ajuste do modelo aos dados); 

              k = número de parâmetros estimados no modelo. 

 

3.5.2. BIC 

O Critério de Informação de Bayesiana (BIC) é similar ao AIC, mas penaliza mais 

fortemente modelos complexos, especialmente quando o tamanho da amostra (n) é 

grande.Semelhante ao AIC, quanto menor o valor BIC melhor é o modelo (TRAN, 

2011; AGIAKLOGLOU & TSIMPANOS, 2022). A formulação do BIC é dada por: 

𝐵𝐼𝐶 = −2𝑙𝑛(𝐿) + 𝑘. 𝑙𝑛(𝑛) (5) 

             L = verossimilhança do modelo (mede o ajuste do modelo aos dados); 

             k = número de parâmetros estimados no modelo. 

              𝑛 = número de observações do modelo; 

 

3.5.3. RMSE 

 

A raiz do erro quadrático médio (RMSE, do inglês Root Mean Square Error) é uma 

métrica que estima a diferença média entre os valores previstos e os valores observados, em 

outras palavras, ela fornece a precisão da previsão em relação ao valor alvo. Uma característica 

interessante do RMSE é que ele estima o erro na unidade de medida da variável alvo, facilitando 

a interpretação do resultado. Valores elevados de RMSE, indicam o modelo não é de boa 

qualidade, enquanto valores baixos de RMSE, demonstram modelos de boa qualidade. Ressalta- 

se que valores altos ou baixos dependem do contexto da análise (CHAI et al., 2014; GANJI & 

KAJISA, 2019; HODSON, 2022). A definição matemática de RMSE é dada por: 

 
 

𝑅𝑀𝑆𝐸 = √
1 

∑𝑛 (𝑦𝑖 − 𝑝𝑖)² (6) 

𝑛 𝑖=1 



             𝑛 = número de observações do modelo; 

             𝛾𝑖 = valor real da observação 𝑖; 

             𝑝𝑖 = valor previsto pelo modelo para a observação. 

 

3.5.4. SRMSE 

O erro quadrático médio padronizado (SRMSE) é definido como o RMSE dividido pelo 

desvio padrão da série observada (Perreti et al., 2013). A padronização do RMSE permite a 

comparação entre diferentes conjuntos de dados ou modelos, facilitando a interpretação e a 

comparação entre diferentes contextos. Se o SRMSE for maior que 1(um) indica que o resultado 

da modelagem é menos precisa do que simplesmente assumir a média dos dados observados, se 

próximo de 0 (zero) implica em uma melhor correspondência entre o dado modelado e o 

observado. 



4. RESULTADOS 

 

O presente estudo investiga a influência da precipitação e temperaturas (máxima, média 

e mínima) na variabilidade inter anual das incidências de casos de dengue em 12 áreas urbanas, 

de clima tropical semi-árido. Considerando as correlações encontradas, para cada município 

descrito, entre as variáveis explanatórias e de resposta no intervalo definido entre 2008 e 2018. 

Considerando os diversos pré-testes realizados, estabeleceu-se como regra inicial de escolha 

das variáveis preditoras (temperaturas mínima, média, máxima, precipitções), aquelas cuja 

correlação apresentou valores maiores que 0,20 ou menores que -0,20. Em seguida, é feita uma 

análise de quais dessas variáveis explicativas têm significância estatística (ver Tabela 2) e 

verificado se os erros não estão autocorrelacionados. Com isso, procede-se com o 

treinamento/calibração e validação dos modelos., conforme explanado no capítulo 

metodológico (Seção 3). 

4.1. Análise da Correlação Linear e dos Resíduos 

 

As Figuras 3 a 14 retratam a Correlação Linear de Pearson considerando defasagens 

temporais de até 3 meses para os 12 municípios em estudo. Já as Figuras 15 a 24 mostram uma 

análise dos resíduos, por meio da plotagem os erros, por meio da comparação de distribuições 

de probabilidades Normais (Normal Q-Q plot), avaliação da autocorrelação total e parcial.  

Considerando a defasagem máxima de 3 meses para todas as variáveis independentes, 

observa-se que, para o município de Aracati, a variável precipitação com defasagens de (t-1) e 

(t-2) encontra-se dentro do intervalo estabelecido pela regra inicial de seleção de variáveis. 

Quanto às temperaturas, apenas a temperatura mínima com defasagem (t-3) se enquadra, 

conforme ilustrado na Figura 3. 

Na sequência, foi realizada a verificação do ajuste dos resíduos do modelo, com o 

objetivo de quantificar a discrepância em relação aos valores observados e avaliar a qualidade 

do ajuste (Figura 15). No quadrante 1, apresenta-se o gráfico de probabilidades “Normal Q-Q 

plot”, que compara dados independentes gerados aleatoriamente (eixo vertical) a uma 

distribuição normal teórica (eixo horizontal). A linearidade dos pontos sugere que os resíduos 

seguem uma distribuição normal. 

No quadrante 2, o gráfico dos resíduos indica que os erros se distribuem aleatoriamente 

em torno de zero, variando entre -2 e 2, sem exibir tendência estatística, o que sugere que o 

modelo é adequado. O terceiro quadrante mostra a autocorrelação do erro, ou seja, a correlação 

do erro com ele mesmo considerando defasagens seriais. As linhas tracejadas horizontais 

indicam um intervalo de confiança de 95% para a significância das correlações, revelando que, 

para Aracati, apenas a série sem defasagem apresentou autocorrelação, indicando que o erro é 



aleatório e não tende a se repetir ao longo da distribuição. O quarto quadrante apresenta a 

autocorrelação parcial do erro, que identifica a relação entre o resíduo e suas próprias 

defasagens, eliminando a influência das defasagens intermediárias. Assim como no quadrante 

anterior, as linhas tracejadas indicam um intervalo de confiança de 95%. A análise mostra que 

os resíduos não são autocorrelacionados, permitindo a utilização de modelos de regressão linear. 

Em Canindé, município com 74.174 habitantes, as variáveis selecionadas dentro do 

intervalo definido foram: precipitação sem defasagem e com defasagem de 1 mês (t-1); 

temperatura máxima sem defasagem e com lag de 1 mês (t-1); temperatura mínima com 

defasagens (t-1, t-2 e t-3); e temperatura média sem lag e com defasagem (t-3), conforme 

apresentado na Figura 4. 

A Figura 16 exibe o estudo detalhado dos resíduos do modelo aplicado. No quadrante 

1, observa-se que o gráfico Q-Q tende a repousar sobre a linha y = x, indicando que o erro segue 

uma distribuição normal. No quadrante 2, verifica-se que os erros dos 132 pontos de previsão 

são aparentemente aleatórios e independentes, característica confirmada pelos quadrantes 3 e 4, 

os quais indicam ausência de correlação serial dos resíduos. 

Para Crateús, a Figura 5 apresenta as correlações entre cada variável climática e a série 

de número de casos de dengue. As variáveis selecionadas, por estarem dentro do intervalo 

predefinido, foram: precipitação (t-1); temperatura máxima sem defasagem e com defasagem 

(t-1); temperatura mínima (t-3); e temperatura média sem defasagem e com defasagem (t-1).  

Na etapa de ajuste dos resíduos, conforme o Quadrante 1 da Figura 17, os dados cobrem 

toda a extensão da reta, com maior concentração entre os intervalos de -1 e 1, indicando boa 

adequação dos erros à distribuição normal. Os quadrantes 2, 3 e 4 indicam que os erros são 

irregulares, mas não significativamente autocorrelacionados, o que valida o desenvolvimento 

do modelo de regressão por mínimos quadrados ordinários. 

Em Fortaleza, capital metropolitana do estado do Ceará, a análise revelou que várias 

variáveis apresentaram correlações dentro do intervalo estabelecido: precipitação sem 

defasagem e com defasagens (t-1, t-2 e t-3); temperatura máxima sem defasagem e com 

defasagem (t-1); temperatura mínima (t-3); e temperatura média sem defasagem, conforme a 

Figura 6. 

A análise do ajuste dos resíduos, ilustrada na Figura 18, mostra que no quadrante 1, o 

gráfico de probabilidade “Normal Q-Q plot” apresenta linearidade das séries, com leve desvio 

nos dados extremos, sem comprometer a suposição de normalidade dos erros. No quadrante 2, 

os resíduos variam entre -2 e 2, sem exibir tendência estatística, o que valida a adequação do 

modelo. Nos quadrantes 3 e 4, verifica-se que não há valores acima da linha pontilhada azul, 

indicando ausência de autocorrelação significativa, o que reforça a viabilidade do uso de 

modelos de regressão linear. 



Para Iguatu, conforme a Figura 7, as variáveis selecionadas foram: precipitação com 

defasagens (t-1), (t-2) e (t-3); temperaturas máxima e média sem defasagem e com defasagens 

(t-1) e (t-2); e temperatura mínima sem defasagem, todas dentro do limite inicialmente definido. 

Na Figura 19, a análise do ajuste residual evidencia que, no quadrante 1, há linearidade 

nos pontos do gráfico “Normal Q-Q plot”, indicando boa distribuição dos resíduos. No 

quadrante 2, os erros se distribuem aleatoriamente em torno de zero, variando entre -3 e 1, 

sugerindo a adequação do modelo. Nos quadrantes 3 e 4, observa-se que nenhuma variável 

ultrapassa o limite de confiança de 95%, o que confirma a inexistência de autocorrelação 

significativa nos resíduos. 

Em Itapipoca, conforme a Figura 8, as variáveis pré-selecionadas foram precipitação, 

temperatura máxima e temperatura média, todas sem defasagem, além da temperatura mínima 

com defasagem em (t-3). A Figura 20 apresenta o estudo dos resíduos, indicando, no quadrante 

1, que o gráfico se aproxima da linha que define a distribuição teórica, sugerindo normalidade 

dos erros. No quadrante 2, verifica-se que a previsão é aleatória e independente, sendo 

corroborada pelos quadrantes 3 e 4, que mostram ausência de autocorrelação significativa, com 

todos os valores abaixo do limite estabelecido pelo tracejado azul. 

No município de Juazeiro do Norte, conforme indicado na Figura 9, os dados não 

apresentaram correlação dentro do critério inicial de seleção, inviabilizando a construção de um 

modelo de série temporal ajustado aos dados. Mesmo ao extrapolar os critérios e testar modelos 

com todas as variáveis explicativas (com ou sem defasagens), não foi possível encontrar um 

modelo de regressão satisfatório. 

Em Morada Nova, as variáveis selecionadas dentro do intervalo inicial foram: 

precipitação com defasagens (t-1), (t-2) e (t-3); temperatura máxima sem defasagem e com 

defasagens (t-1), (t-2) e (t-3); temperatura mínima (t-3); e temperatura média sem defasagem e 

com defasagens (t-1) e (t-2), conforme apresentado na Figura 10.  

Na Figura 21, a aplicação do modelo revela, no quadrante 1, que o ajuste do erro permitiu 

maior linearidade dos resíduos em relação à reta de distribuição normal. No quadrante 2, 

observa-se variação independente e aleatória dos resíduos, sem indícios de periodicidade, o que 

é confirmado pelos quadrantes 3 e 4, que mostram ausência de defasagens do resíduo 

estatisticamente significativas. 

Em Quixadá, conforme a Figura 11, foram selecionadas as seguintes variáveis: 

precipitação com defasagens (t-1) e (t-2); temperatura máxima sem defasagem e com defasagem 

(t-1); temperatura mínima com defasagens (t-2) e (t-3); e temperatura média sem defasagem. A 

Figura 22, que avalia o ajuste dos resíduos, demonstra, nos quadrantes 1 e 2, que o erro se 

comporta como ruído branco com distribuição normal. Nos quadrantes 3 e 4, apenas a 

autocorrelação do erro sem defasagem fica fora do intervalo de confiança, enquanto a 



autocorrelação parcial não apresenta defasagens acima dos limites, permitindo a aplicação de 

modelos de regressão linear. 

Em Sobral, conforme a Figura 12, foram selecionadas: temperatura máxima com 

defasagens (t-2) e (t-3) e temperatura mínima sem defasagem. A Figura 23 evidencia, no 

quadrante 1, linearidade dos resíduos, indicando bom ajuste à distribuição normal. No quadrante 

2, observa-se variação entre -2 e 2, com forte presença de picos ao longo da série. O quadrante 

3 apresenta dois valores de autocorrelação acima do limite, mas estes ocorrem fora do período 

de defasagem considerado (até 3 meses). No quadrante 4, há correlações significativas para os 

lags 2, 5 e 11; contudo, estas são de baixa amplitude, consideradas insignificantes. 

Em Tauá, as variáveis selecionadas foram: temperatura mínima com defasagens (t-1), 

(t-2) e (t-3); e temperatura média com defasagem (t-3), conforme a Figura 13. A análise dos 

resíduos, apresentada na Figura 24, confirma nos quadrantes 1 e 2 que o erro é aleatório e 

normalmente distribuído. Nos quadrantes 3 e 4, verifica-se que não há autocorrelação 

significativa, mantendo-se todas as lags dentro do intervalo de confiança de 95%. 

Por fim, no município de Tianguá, conforme Figura 14, as variáveis explicativas não 

apresentaram correlação significativa com a dengue dentro do critério inicial, inviabilizando a 

construção de um modelo de série temporal. Assim como em Juazeiro do Norte, não foi possível 

desenvolver um modelo viável para este município. 

 

Figura 3: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses para Aracati. 

 

Fonte: Autor, 2024. 
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Figura 4: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses para 

Canindé. 

 

Fonte: Autor, 2024. 

 

Figura 5: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses para Crateús. 

 

Fonte: Autor, 2024. 
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Figura 6: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses para 

Fortaleza. 

 

Fonte: Autor, 2024. 

 

Figura 7: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses para Iguatu. 

 

Fonte: Autor, 2024. 
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Figura 8: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses para 

Itapipoca. 

 

Fonte: Autor, 2024. 

 

Figura 9: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses para Juazeiro 

do Norte. 

 

Fonte: Autor, 2024. 
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Figura 10: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses para 

Morada Nova. 

 

Fonte: Autor, 2024. 

 

Figura 11: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses para 

Quixadá. 

 

Fonte: Autor, 2024. 
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Figura 12: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses para Sobral. 

 

Fonte: Autor, 2024. 

 

Figura 13: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses para Tauá. 

 

Fonte: Autor, 2024. 
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Figura 14: Correlação Linear de Pearson considerando defasagens temporais de até 3 meses para Tianguá. 

 

Fonte: Autor, 2024. 

 

Figura 15: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º autocorrelação, 4º 

autocorrelação parcial de Aracati. 

 

 

Fonte: Autor, 2024. 
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Figura 16: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º autocorrelação, 4º 

autocorrelação parcial de Canindé. 

 

Fonte: Autor, 2024. 

 

Figura 17: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º autocorrelação, 4º 

autocorrelação parcial de Crateús. 

 

 

 

Fonte: Autor, 2024. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figura 18: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º autocorrelação, 4º 

autocorrelação parcial de Fortaleza. 

 

 

Fonte: Autor, 2024. 

 

Figura 19: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º autocorrelação, 4º 

autocorrelação parcial de Iguatu. 

 

 

 

Fonte: Autor, 2024. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figura 20: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º autocorrelação, 4º 

autocorrelação parcial de Itapipoca. 

 

 

 

 

Fonte: Autor, 2024. 

 

Figura 21: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º autocorrelação, 4º 

autocorrelação parcial de Morada Nova. 

 

 

 

Fonte: Autor, 2024. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figura 22: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º autocorrelação, 4º 

autocorrelação parcial de Quixadá. 

 

 

Fonte: Autor, 2024. 

 

Figura 23: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º autocorrelação, 4º 

autocorrelação parcial de Sobral. 

 

 

Fonte: Autor, 2024. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figura 24: Ajuste dos resíduos - Quadrantes: 1º Normal Q-Q, 2º Plot dos resíduos, 3º autocorrelação, 4º 

autocorrelação parcial de Tauá. 

 

 

 

 

Fonte: Autor, 2024. 

4.1.1. Variáveis mais significativas 

 

A relação entre as variáveis ocorreu por meio do ajuste do modelo de regressão usando 

o método dos mínimos quadrados ordinários (GLS, do Inglês), em que a dengue é o principal 

alvo de estudo e as variáveis hidroclimáticas de maior significância podem possuir uma 

defasagem de até 3 meses em cada município. 

Para Aracati apenas a temperatura mínima defasada de 3 meses (t-3), passou no teste de 

significância, de modo que a calibração foi realizada considerando apenas essa variável. 

Em Canindé o treinamento dos dados foi realizado considerando a temperatura máxima 

e média sem lag, conforme definido pelo teste de significância da correlação realizado no 

modelo de aplicação. 

Para Crateús, após o teste de significância apenas a temperatura média (t-1) foi excluída 

por não atingir o limite de confiabilidade. Com isso as variáveis precipitação (t-1), temperatura 

máxima sem defasagem, temperatura mínima (t-3), e temperatura média sem defasagem e com 

defasagem (t-1) foram utilizada como variáveis preditoras do modelo epidemiológico. 

Em Fortaleza, considerando o intervalo de confiança de 95% para a significância das 

correlações, três variáveis foram selecionadas: precipitação com defasagens (t-1) e (t-2) e 

temperatura mínima (t-3), compondo assim o modelo de aplicação. 

Para Iguatu, apenas a precipitação defasada em 1 mês (t-1) e temperatura mínima sem 

defasagem, passaram no teste de significância, considerando apenas essas variáveis para 

realização da calibração do modelo. 

Em Itapipoca em seguida ao teste de significãncia, obteve-se temperatura mínima 

defasada em 3 meses (t-3), sendo connsidera apenas esta para a calibração do modelo previsto. 

 



 

Tabela 2: Coeficientes das varriáveis mais significativas para cada município. 

Fonte: Autor, 2024. 

 

Juazeiro do Norte não possui modelo de regressão viável dentro do contexto da pesquisa, 

mesmo após extrapolação da selecão inicial de variáveis explanatórias, em que foi considerada 

todas as variáveis explicativas (precipitação, temperatura máxima, temperatura mínima e 

temperatura média com ou sem defasagens) em estudo. 

No município de Morada Nova, das 11 variáveis dentro do intervalo de seleção inicial, 

considerando as possibilidade de sem defasagem e com defasagem citadas na seção anterior, 

apenas a precipitação (t-3) foi considerada significativa. 

Após o ajuste do modelo de regressão para Quixadá, as variáveis que tiveram o melhor 

resultado de significância após a realização dos testes foi a temperatura mínima (t-3), que será 

considerada para calibração do modelo. 

Para Sobral, após a seleção das variáveis preditoras com os resultados dentro do 

intervalo permitido, não houve valor que atendesse ao nível de significância. Entranto, um 

modelo foi gerado considerando as variáveis previamente selecionadas. 

Em Tauá, das 4  variáveis selecionadas conforme critérios iniciais, apenas a 

Município Intercept 
Variável significativa de 

treinamento 
Coeficiente 

Aracati -14,624 Temperatura mínima(t-3) 0,712 

Canindé 10,630 
Temperatura máxima -1,222 

Temperatura média 1,103 

Crateús 12,697 

Temperatura máxima -0,449 

Temperatura máxima(t-1) -0,471 

Temperatura média 0,519 

Temperatura média(t-1) 0,227 

Precipitação(t-1) -0,001 

Fortaleza -5,626 

Temperatura mínima(t-3) 0,500 

Precipitação(t-1) 0,003 

Precipitação(t-2) 0,002 

Iguatu 11,502 
Temperatura mínima -0,460 

Precipitação(t-1) 0,005 

Itapipoca -13,041 Temperatura mínima(t-3) 0,611 

Juazeiro do 

Norte 
Não possui variáveis estatisticamente significativas 

Morada Nova 0,441 Precipitação(t-3) 0,006 

Quixadá -14,521 Temperatura mínima(t-3) 0,710 

Sobral -8,923 
Temperatura máxima(t-3) -0,174 

Temperatura mínima(t-3) 0,739 

Tauá -10,713 Temperatura mínima(t-3) 0,623 

Tianguá Não possui variáveis estatisticamente significativas 



temperatura mínima com defasagem (t-3) foi considerada significativa. 

Tianguá não possui modelo de regressão viável dentro do contexto da pesquisa, assim 

como Juazeiro do Norte. 

 

4.2. Análise de desempenho e validação 

 

4.2.1. Aracati 

 

Uma comparação da aplicação e do ajuste/calibração pode ser observada por meio dos 

índices de desempenho AIC e BIC, nas Figuras 25 e 26, respectivamente. Comparativamente, 

nota-se que os valores de AIC e BIC foram melhores após o ajuste da função GLS, mostrando 

que apesar de ser um modelo relativamente mais simples que a aplicação, a qualidade é melhor, 

devido a uma menor perda de informação. 

Figura 25: Valor do Critério de Informação de Akaike (AIC) para Aracati. 

 

Fonte: Autor, 2024. 
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Figura 26: Valor do Critério de Informação de Bayesiana (BIC) para Aracati. 

 

Fonte: Autor, 2024. 

 

Outras variáveis de desempenho analisadas no estudo foram RMSE e SRMSE (ver 

Figuras 27 e 28). Considerando que quanto menor o valor do RMSE melhor a acurácia da 

previsão, a Figura 27 mostra um mais uma vez a superioridade do ajuste em relação a aplicação, 

em que o modelo de calibração, apresenta valor RMSE de ~1,297. Em relação ao SRMSE, a 

Figura 8 apresenta um valor de 0,933 para o modelo de aplicação e 0,898 para o modelo de 

ajuste, o que significa que a saída do ajuste é ~10% melhor que a média dos dados observados 

de dengue. 

 

Figura 27: Variável de desempenho- RMSE para Aracati. 

 

Fonte: Autor, 2024. 

 

460,5003

319,6761

0

50

100

150

200

250

300

350

400

450

500

550

APLICAÇÃO AJUSTE

V
A

L
O

R
 D

E
 B

IC

1,320 1,297

0,000

0,200

0,400

0,600

0,800

1,000

1,200

1,400

1,600

1,800

2,000

APLICAÇÃO TREINAMENTO

V
A

L
O

R
 D

E
 R

M
S

E



Figura 28: Variável de desempenho- SRMSE para Aracati. 

 

Fonte: Autor, 2024. 

. Durante o período de validação, a avaliação da capacidade do modelo ajustado foi 

realizada graficamente, de maneira visual e descritiva, com foco no início, nos meses de pico e 

no fim da temporada da dengue, na ordem de magnitude e nos valores de pico da incidência da 

dengue. Dessa forma a Figura 29, mostra que a temporada de dengue em Aracati para o ano de 

2016 foi bem capturada pelas regressões baseadas em OLS, porém o mesmo não ocorre para o 

segundo semestre de 2017 e para o ano de 2018. Ainda é possível notar que a previsão 

epidemiológica de dengue tende a superestimar os dados observados ao longo de toda a série, 

exceto para novembro de 2015, janeiro e fevereiro de 2017 e o segundo semestre de 2018, 

quando ocorre subestimação dos valores.    

Figura 29: Série temporal de validação para Aracati. 

 

Fonte: Autor, 2024. 

Dessa forma a Figura 29, mostra que a temporada de dengue em Aracati para o ano de 
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exceto para novembro de 2015, janeiro e fevereiro de 2017 e o segundo semestre de 2018, 

quando ocorre subestimação dos valores. 

4.2.2. Canindé 

 

Com determinação dos valores de AIC e BIC, representados pelas figuras 30 e 31, 

respectivamente, é possível verificar que tais índices de desempenho foram piores para o 

modelo de aplicação (AIC 471,76 ; BIC 483,20), conforme o esperado, visto que o mesmo tende 

a ser mais complexo que o modelo de ajuste. 

 

Figura 30: Valor do Critério de Informação de Akaike (AIC) para Canindé. 

 
Fonte: Autor, 2024. 

 

Figura 31: Valor do Critério de Informação de Bayesiana (BIC)para Canindé. 

 
Fonte: Autor, 2024. 
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As Figuras 32 e 33 trazem informação sobre a capacidade preditiva dos modelos 

considerados. Para o RMSE, Figura 32, observa-se que seu valor para a aplicação é cerca de 

0,04 menor do que para o ajuste, indicando um menor desvio médio das previsões obtidas pelo 

modelo de aplicação. Para o SRMSE, verifica-se que tanto o modelo de aplicação como o de 

treinamento preveem melhor que a média dos dados observados, em que a aplicação é ~21% 

mais precisa que a média, enquanto a modelo de treinamento é ~19% mais assertivo. 

 

Figura 32: Variável de desempenho- RMSE para Canindé 

 
Fonte: Autor, 2024. 

 
Figura 33: Variável de desempenho- SRMSE para Canindé. 

 
Fonte: Autor, 2024. 

A Figura 34, que mostra a previsão do modelo de ajuste aplicada a série de validação, 

indica uma melhor performance para o período de out/2015 até o primeiro semestre de 2017, 

quando se inicia uma fase sem registro de casos de dengue, mas que não é percebida pelo 
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modelo. Entretanto, em geral, os resultados são satisfatórios no que diz respeito à previsão do 

modelo. 

Figura 34: Série temporal para validação para Canindé. 

 
Fonte: Autor, 2024. 

 

 

4.2.3. Crateús 

 

Para os modelos de Crateús, aplicação e ajuste, os valores de AIC e BIC, apresentados 

nas Figuras 35 e 36, indicam um melhor aproveitamento da informação passada pelas variáveis 

preditoras e uma menor complexidade dos modelos de ajuste, refletindo uma melhor qualidade 

do modelo de treinamento. 

 
Figura 35: Valor do Critério de Informação de Akaike (AIC) para Crateús 

 
Fonte: Autor, 2024. 
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Figura 36: Valor do Critério de Informação de Bayesiana (BIC) para Crateús. 

 
Fonte: Autor, 2024. 

 

As variáveis de desempenho, RMSE e SRMSE, apresentadas nas Figuras 37 e 38 para 

o município de Crateús, apresentam valores satisfatórios tanto para o modelo de  aplicação 

como para o de ajuste, de modo que ambos tendem a ser melhores que simplesmente a adoção 

da média dos dados observados como previsão. 

 

Figura 37: Variável de desempenho - RMSE para Cratéus. 

 
Fonte: Autor, 2024. 
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Figura 38: Variável de desempenho- SRMSE para Crateús. 

 
Fonte: Autor, 2024. 

 

O gráfico apresentado na Figura 39 é trabalhado em relação a sazonalidade, a 

estacionariedade e correlação entre os dados analisados. Observa-se que o modelo 

ajustado/previsão do modelo segue uma uniformidade na extensão da série temporal, 

acompanha a sazonalidade dos dados observados, havendo um melhor ajuste em períodos em 

que houve picos, especialmente em 2017. No entanto, pode ser visto que nos últimos meses da 

série temporal é demonstrado uma certa estabilidade móvel. 

 

Figura 39: Série temporal para validação para Crateús 

 
Fonte: Autor, 2024. 

 

4.2.4. Fortaleza 

 

Analisando o modelo de calibração dos resultados apresentados nas Figuras 40 e 41, 

respectivamente, podemos comparar os valores para AIC e BIC, que tiveram um resultado 

melhor após o ajuste da função GLS, ou seja, existe uma melhor qualidade do modelo após a 

determinação das variáveis mais significativas. 
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Figura 40: Valor do Critério de Informação de Akaike (AIC) para Fortaleza. 

 
Fonte: Autor, 2024. 

 

Figura 41: Valor do Critério de Informação de Bayesiana (BIC) para Fortaleza 

 
Fonte: Autor, 2024. 

Visualizando as Figuras 42 e 43, as variáveis de desempenho RMSE e SRMSE 

consecutivamente. A Figura 42 considera o valor de RMSE de ~0,951 para aplicação e ~0,947 

para o modelo calibrado, mostrando um baixo valor de erro em ambos. Em relação ao SRMSE, 

a Figura 43, apresenta um valor de ~0,782 para o modelo de aplicação e ~0,800 para o modelo 

de ajuste, apesar do RMSE da aplicação ter sido maior. Isto provavelmente ocorre devido ao 

desvio padrão da série observada ser ligeiramente maior na entrada do modelo de aplicação, do 

que na entrada do modelo de calibração. Para esse município, o modelo de aplicação, teve o 

melhor resultado. 
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Figura 42: Variável de desempenho- RMSE para Fortaleza.

 
Fonte: Autor, 2024. 

 

Figura 43: Variável de desempenho- SRMSE para Fortaleza. 

 
Fonte: Autor, 2024. 

 

Para análise comparativa da série temporal de validação, apresentada na Figura 44, o 

modelo ajustado teve as temporadas de dengue foram bem capturadas pelas regressões, 

conseguindo representar satisfatoriamente os meses de início, meio e fim da epidemia de 

dengue, sendo que entre o final de 2015 e o primeiro semestre de 2017 os dados observados 

foram subestimados e do segundo semestre de 2017 até o final da série de validação 

superestimados. 
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Figura 44: Série temporal para validação para Fortaleza. 

 
Fonte: Autor, 2024. 

 

4.2.5. Iguatu 

 

Fazendo a comparação dos índices de AIC e BIC, observados nas Figuras 45 e 66, 

respectivamente, revelam que os melhores resultados ocorrem após o ajuste da função GLS. Na 

sequência das avaliações com as variáveis de desempenho RMSE e SRMSE (ver Figuras 47 e 

48), o resultado a ser considerado deve ser o menor, havendo melhor avaliação. A Figura 47 

mostra que o valor de aplicação chega a ser aproximadamente ~0,07 menor que o valor do 

ajuste. Para SRMSE, verifica-se que o modelo de aplicação tem melhor acurácia em relação ao 

treinamento, sendo o valor considerado melhor que a média dos dados observados, em que 

aplicação é mais precisa que a média cerca de ~13%. 

 

Figura 45: Valor do Critério de Informação de Akaike (AIC) para Iguatu. 

 
Fonte: Autor, 2024. 
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Figura 46: Valor do Critério de Informação de Bayesiana (BIC) para Iguatu. 

 
Fonte: Autor, 2024. 

 

Figura 47: Variável de desempenho- RMSE para Iguatu. 

 
Fonte: Autor, 2024. 
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Figura 48: Variável de desempenho- SRMSE para Iguatu. 

 
Fonte: Autor, 2024. 

 

A Figura 49 apresenta a previsão gerada pelo modelo ajustado, aplicada ao conjunto de 

validação. De modo geral, observa-se uma subestimação sistemática dos valores observados ao 

longo de diferentes períodos do ano, com exceção dos meses de março e abril de 2017, bem 

como de parte do primeiro semestre de 2018, especificamente maio, junho e julho, além de todo 

o segundo semestre deste mesmo ano. Apesar dessa tendência à subestimação, o modelo 

demonstra capacidade de reproduzir adequadamente a dinâmica temporal do fenômeno, 

acompanhando os padrões de elevação e redução observados nos dados empíricos. 

 

Figura 49: Série temporal para validação para Iguatu. 

 
Fonte: Autor, 2024. 

 

4.2.6. Itapipoca 

Para acompanhamento do modelo de ajuste, apresentou-se nas Figuras 50 e 51 os valores 

encontrados para AIC e BIC, havendo um melhor desempenho para ambos os modelos de 

ajustes, que seguem com os valores: 365,170 e 372,602, respectivamente. 
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Figura 50: Valor do Critério de Informação de Akaike (AIC) para Itapipoca. 

 
Fonte: Autor, 2024. 

 

Figura 51: Valor do Critério de Informação de Bayesiana (BIC) para Itapipoca. 

 
Fonte: Autor, 2024. 

 

Os gráficos das Figuras 52 e 53 representam as variáveis de desempenho, aplicados para 

avaliar a precisão e qualidade do modelo. Para o RMSE, em específico na Figura 52, observa- 

se que seu valor para aplicação é cerca de ~0,15 menor que o ajuste, o mesmo apresenta melhor 

desvio médio. Para o SRMSE, Figura 53, os dados de aplicação e ajuste estão bem próximos, 

com a margem de assertividade para aplicação de ~9,33% e ~9,37% para o ajuste em relação à 

média observada. 
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Figura 52: Variável de desempenho- RMSE para Itapipoca 

 
Fonte: Autor, 2024. 

 

 

Figura 53: Variável de desempenho- SRMSE para Itapipoca 

 
Fonte: Autor, 2024. 

 

Na Figura 54 é possível observar que para validação o modelo não capturou de maneira 

adequada a temporada epidemiológica da dengue em Iguatu, exceto para os meses de abril a 

junho de 2018. Isso pode estar associado a prevalecência de fatores não climáticos, como 

imunidade da população a diferentes sorotipos (DENV-1, DENV-2, DENV-3 e DENV-4) no 

comportamento da dengue no munícipio. 
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Figura 54: Série temporal para validação para Itapipoca. 

 
Fonte: Autor, 2024. 

 

4.2.7. Juazeiro do Norte 

 

Para Juazeiro do Norte, extrapolou-se os resultados para além do critério inicial de 

seleção de variáveis explanatórias, e tentou-se gerar um modelo considerando todas as variáveis 

explicativas (precipitação, temperatura máxima, temperatura mínima e temperatura média com 

ou sem defasagens) e mesmo assim não foi possível encontrar um modelo de regressão 

satisfatório, conforme pode ser obsrvado na Figura 55.. 

 

Figura 55: Série temporal para validação para Juazeiro do Norte. 

 

Fonte: Autor, 2024. 

4.2.8. Morada Nova 

 

Em análise dos resultados de AIC e BIC, podemos ver nas Figuras 56 e 57 que os índices 

para o ajuste, tiveram o melhor desempenho (AIC - 253,5251 ; BIC - 260,9571), 

respectivamente, mostrando mais uma vez que modelos menos complexos podem ser melhores 

que modelos com uma ampla gama de variáveis explicativas. 

 

 

 

 

 

 



Figura 56: Valor do Critério de Informação de Akaike (AIC) para Morada Nova 

 

Fonte: Autor, 2024. 

 

Figura 57: Valor do Critério de Informação de Bayesiana (BIC) para Morada Nova. 

 

 

Fonte: Autor, 2024. 

 

Os gráficos das Figuras 58 e 59, revelam informações sobre as variáveis de desempenho 

para os modelos considerados. Para o RMSE, Figura 58, observa-se que seu valor para o ajuste 

é maior que a aplicação ~0,08, indicando um maior desvio médios das previsões obtidas. Para 

o SRMSE, Figura 59, verifica-se que o modelo de ajuste é ~19% mais preciso que o modelo de 

aplicação, com aproximadamente ~10% melhor que a média dos dados observados. 
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Figura 58: Variável de desempenho- RMSE para Morada Nova. 

 

Fonte: Autor, 2024. 

 

Figura 59: Variável de desempenho- SRMSE para Morada Nova. 

 

Fonte: Autor, 2024. 

 

A Figura 60, mostra a previsão do modelo de ajuste para a série de validação, indicando 

uma performance melhor a partir de fev/2017 até o início do segundo semestre de 2018, quando 

ocorre uma baixa dos casos de dengue. No entanto, os resultados apresentam um resultado 

satisfatório. 
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Figura 60: Série temporal para validação para Morada Nova. 

 
Fonte: Autor, 2024. 

 

4.2.9. Quixadá 

 

Analisando os resultados das Figuras 61 e 62, respectivamente, em que comparamos e 

apresentamos os valores para AIC e BIC, nota-se valores menores após o ajuste da função GLS, 

havendo uma melhor qualidade na apresentação do modelo.  

Observando as variáveis de desempenho RMSE e SRMSE através das Figuras 63 e 64, 

consecutivamente. A Figura 63, apresenta o valor de ~1,417 para RMSE, considerando um 

melhor resultado para o ajuste do modelo. Seguindo para o gráfico seguinte, Figura 64, tems- 

se que o melhor resultado foi novamente para o ajuste, sendo este o modelo que possui a melhor 

acurácia dos resultados. Sendo considerado ~11% melhor que a média dos dados observados. 

 

Figura 61: Valor do Critério de Informação de Akaike (AIC) para Quixadá. 

 

Fonte: Autor, 2024. 
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Figura 62: Valor do Critério de Informação de Bayesiana (BIC) para Quixadá. 

 

Fonte: Autor, 2024. 

 

Figura 63: Variável de desempenho- RMSE para Quixadá. 

 

Fonte: Autor, 2024. 
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Figura 64:Variável de desempenho- SRMSE para Quixadá

 

Fonte: Autor, 2024. 

 

Na Figura 65, pode-se notar que a previsão acompanha a fase dos dados observados, 

com leves flutuações nas regiões de picos e vales, com tendência à subestimação das 

observações, especialmente em períodos de temperaturas mais amenas, que ocorrem no 

período da quadra chuvosa. 

 

Figura 65: Série temporal para validação para Quixadá. 

 

Fonte: Autor, 2024. 

4.2.10. Sobral 

 

Em específico para sobral, o modelo foi realizado sem o resultado de uma variável 

significativa, após a seleção das variáveis com os resultados dentro do intervalo permitido, não 

houve valor que atendesse ao nível de significância. Mesmo assim, o modelo foi gerado 

considerando as mesmas variáveis definidas pelo intervalo inicialmente. Os valores para AIC e 

BIC são apresentados pelas Figuras 66 e 67, respectivamente, onde para os valores de AIC teve 

um resultado menor para o ajuste, sendo ~157 a diferença entre a aplicação e o ajuste. Para o 

valor de BIC há uma semelhança, o valor é considerado com melhor resultado para o ajuste. 

As variáveis de desempenho RMSE E SRMSE, podem ser visualizadas pelas Figuras 68 
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e 69, respectivamente. O gráfico da Figura 68 apresenta o valor de RMSE com diferença de 0,116 

de redução para o ajuste, sendo considerado melhor resultado para o modelo. Para o SRMSE, 

Figura 69, os resultados apontam que o ajuste é ~7,4% melhor que a média observada, sendo 

este o modelo selecionado. 

 

Figura 66: Valor do Critério de Informação de Akaike (AIC) para Sobral.

 
Fonte: Autor, 2024. 

 

Figura 67: Valor do Critério de Informação de Bayesiana (BIC) para Sobral. 

 
Fonte: Autor, 2024. 
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Figura 68: Variável de desempenho- RMSE para Sobral. 

 
Fonte: Autor, 2024. 

 

Figura 69: Variável de desempenho- SRMSE para Sobral. 

 
Fonte: Autor, 2024. 

 

A Figura 70 mostra uma boa modelagem, de forma que o modelo de previsão segue 

inicialmente com valores menores em relação aos dados reais, desde de out/2015 até o final do 

segundo semestre de 2016, quando a previsão passa a superestimar os dados reais. 

 

Figura 70: Série temporal para validação para Sobral. 

 
Fonte: Autor, 2024. 
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4.2.11. Tauá 

Acompanhando o modelo de ajuste, temos os valores de AIC e BIC, representados pelos 

gráficos das Figuras 71 e 72. Em ambos os modelos, aplicam-se os melhores resultados para o 

ajuste da função GLS. Os valores de AIC tiveram uma redução de aproximadamente ~167,465 

em relação ao modelo de aplicação, sendo este o mais favorecido. O mesmo ocorreu para análise 

de BIC, com uma redução de ~168,566, confirmando que o melhor resultado ocorreu para o 

ajuste. 

Os índices de desempenho, RMSE e SRMSE (Figuras 73 e 74), buscando avaliar a 

precisão e qualidade do modelo, apresentam um melhor resultado para o modelo de ajuste, com 

a valor de SRMSE ~0,9, o que indica que o modelo é ~10% melhor que a média dos dados 

observado. 

 

Figura 71: Valor do Critério de Informação de Akaike (AIC) para Tauá. 

 
Fonte: Autor, 2024. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 72: Valor do Critério de Informação de Bayesiana (BIC) para Tauá. 
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Fonte: Autor, 2024. 

 

Figura 73: Variável de desempenho- RMSE para Tauá. 

 
Fonte: Autor, 2024. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 74: Variável de desempenho- SRMSE para Tauá. 
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Fonte: Autor, 2024. 

 

 

A Figura 75 apresenta uma superestimação de dados logo no início da séries, out/2015, 

seguindo com uma modesta linearidade referente ao primeiro semestre de 2016. Todo o restante 

da série é modelado por essa superestimação dos dados. 

 

Figura 75: Série temporal para validação para Tauá. 

 
Fonte: Autor, 2024. 

 

5. DISCUSSÃO 

 

O presente estudo investigou a influência de variáveis climáticas, como precipitação e 

temperaturas (máxima, média e mínima), na variabilidade interanual das incidências de casos 

de dengue em 12 áreas urbanas, de clima tropical semi-árido. A maioria dos municípios 

estudadas apresentou relações estatisticamente significativas entre a incidência da doença e 

variáveis climáticas. Essas relações podem ser explicadas pela influência da variabilidade 

climática através de regressões lineares, conforme discutido em Costa et al. (2022) e Borges et 

al. (2024), que analisaram a inter-relação entre precipitação, temperatura e casos confirmados 

de dengue em municípios do Nordeste Brasileiro. 

A análise dos municípios investigados revela importantes variações na relação entre as 
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variáveis hidroclimáticas ( precipitação e temperaturas) e a incidência de dengue em regiões de 

clima tropical semiárido. As diferenças observadas refletem tanto os contexto climáticos locais 

quanto fatores urbanos, ambientais  e  socioeconômico que modulam a dinâmica da doença. 

Dos resultados, pode-se extrair que a temperatura mínima com defasagem de 3 meses 

foi a variável que mais influenciou o número de casos de dengue, ela foi tida como a variável 

preditora mais significativa ou entre as mais significativas, em Aracati, Fortaleza, Itapipoca, 

Quixadá e Tauá. Ainda foi possível verificar que a variável temperatura, seja ela máxima, média 

ou mínima esteve contemplada em todos os modelos de calibração que foram viáveis. Isso 

mostra que a temperatura é variável que mais impacta no número de casos de dengue, conforme 

evidenciado por diversos estudos em várias partes do mundo (Jesus et al., 2024; Feng et al., 

2024; Costa et al., 2022; Ouattara et al., 2022; Lowe et al., 2022), especialmente nos casos 

temperatura mais amenas, conforme discutido em ABDULLAH et al. (2022), Gómez et al. 

(2022) e NURAINI et al. (2021). 

Em relação à precipitação, os resultados mostraram que ela só teve representatividade 

em 3 dos 12 municípios em estudo, Fortaleza, Iguatu e Morada Nova. Estudos como o de Sophia 

et al. (2025) e Benitez et al. (2021), mostram que a relação entre chuvas e dengue é complexa, 

chuvas intensas podem diminuir a incidência de dengue e períodos de estiagem podem propiciar 

grandes surtos da doença, especialmente em áreas onde há armazenamento temporário de água, 

conforme pode ser visto em Borges et al. (2024) e Costa et al. (2022). 

Outro achado importante do estudo é que o modelo calibrado, por meio de regressão 

linear por mínimos quadrados ordinários, para Fortaleza foi o que apresentou melhor qualidade 

entre os demais municípios estudados, com um SRMSE de ~0,799, indicando que o modelo é 

~20% melhor que se a adotar a média das observações de dengue no período analisado. Este 

resultado contraria, em parte, o do estudo realizado por Costa et al. (2022), que avaliou a 

influência da variabilidade hidroclimática na incidência de dengue em uma grande área tropical 

seca, utilizando uma metodologia de regressão similar a adotada nesta dissertação, em que não 

foi possível encontrar a reta de ajuste as variáveis preditoras para Fortaleza. 

A robustez estatística dos modelos varia entre os municípios, mas a aplicação dos 

modelos GLS mostrou-se adequada para lidar com autocorrelação e heterocedasticidade, 

frequentes em séries temporais epidemiológicas. A viabilidade preditiva é maior onde há forte 

associação entre variáveis hidroclimáticas e o padrão endêmico de dengue, sendo limitada em 

áreas onde outros fatores (socioeconômicos, de gestão urbana ou ambientais) parecem ter papel 

predominante. 

Ressalta-se que no presente estudo também houve localidades em que as variáveis 



explicativas não possuíam correlação com significância estatística, Juazeiro do Norte, Tianguá 

e Sobral, não sendo possível o desenvolvimento de um modelo de regressão linear de qualidade 

minimamente satisfatória. 

Os resultados obtidos reforçam a relevância das variáveis hidroclimáticas como fatores 

explicativos da incidência de dengue em regiões de clima tropical semiárido, embora com 

variações significativas entre os municípios. A precipitação acumulada e a temperatura mínima 

média foram, em geral, os principais preditores nos modelos aplicados. 

A análise comparativa evidencia que a eficácia dos modelos GLS depende do contexto 

local, ressaltando a importância de abordagens que integrem múltiplas dimensões – ambientais, 

sociais, econômicas e de infraestrutura – para a compreensão e enfrentamento da dengue. 

Municípios com padrões distintos de urbanização e disponibilidade de serviços públicos podem 

demandar estratégias de monitoramento e controle específicas, adaptadas às suas realidades 

climáticas e socioambientais. 

Em síntese, os achados deste estudo contribuem para o aprimoramento de políticas 

públicas voltadas à vigilância e prevenção da dengue, ao indicar como o comportamento da 

doença está intrinsecamente relacionado às condições climáticas locais e como modelos 

estatísticos podem oferecer suporte à antecipação de surtos, especialmente em contextos 

vulneráveis. 

6. CONCLUSÃO 

Em geral, as regressões de séries temporais baseadas nas funções dos mínimos 

quadrados ordinários foram capazes de reproduzir o desenvolvimento das séries temporais, com 

a previsão sazonal de casos de dengue. A proposta do estudo foi investigar a influência do clima 

na variabilidade interanual dos casos de dengue, com o objetivo de prever situações 

epidemiológicas em áreas urbanas 

Nota-se através do presente estudo que as variações climáticas, de precipitação e 

temperatura, e a incidência de casos de dengue podem variar de um município para o outro, ou 

seja, não há um padrão bem definido de influência, de modo que apenas uma variável consegue 

explicar essa variação. Contudo, o desenvolvimento da simulação tem sido bem estruturado, 

no entanto, em todos os municípios, com exceção de Juazeiro do Norte e Tianguá, houve 

subestimação dos dados reais. Havendo uma maior discrepância em determinados períodos 

entre os valores reais. 

A presente dissertação teve como objetivo principal analisar a influência de variáveis 

hidroclimáticas — notadamente a precipitação acumulada e as temperaturas média, mínima e 

máxima — sobre a incidência de casos de dengue em treze municípios cearenses inseridos em 



contexto de clima tropical semiárido, no período compreendido entre 2008 e 2018. A partir da 

aplicação de modelos de regressão linear generalizada (GLS), buscou-se investigar em que 

medida os elementos climáticos contribuíram para a variabilidade temporal da doença, 

destacando os diferentes padrões observados entre os municípios selecionados. 

Os resultados obtidos evidenciaram que a relação entre as variáveis hidroclimáticas e a 

ocorrência da dengue é espacialmente heterogênea. Em municípios como Fortaleza, Sobral e 

Juazeiro do Norte, observou-se um ajuste mais expressivo dos modelos, com destaque para a 

precipitação acumulada e a temperatura mínima como variáveis significativamente associadas 

à incidência de casos. Por outro lado, localidades como Tauá, Crateús e Canindé apresentaram 

desempenhos mais discretos, sugerindo que, nesses contextos, fatores não-climáticos — como 

condições socioambientais, infraestrutura urbana, acesso a serviços de saúde, mobilidade 

populacional e efetividade das ações de vigilância — podem ter maior peso explicativo. 

O município de Fortaleza destaca-se com a presença de resultados considerados bons 

para as variáveis de desempenho. Cada município conseguiu apresentar sua capacidade 

preditiva, analisando a melhor performance dos períodos de validação, alguns com 

superestimação dos dados. Nos municípios em que foram obtidas variáveis significativas, houve 

um melhor ajuste dos erros à reta de distribuição normal. Outro resultado importante é análise 

foram os valores de AIC e BIC, que tiveram seu desenvolvimento melhor nos modelos de ajuste 

em ambos os modelos. 

No entanto, deve-se notar que o modelo possui algumas limitações, fatores ecológicos 

como a abundância de mosquitos, cobertura de solos e proximidades em corpos d’águas não 

foram considerados para o desenvolvimento da pesquisa. Construir um modelo amplamente 

transferível, considerando também fatores socioeconômicos e ecológicos do ambiente, é 

necessário maiores pesquisas. Contudo, o modelo apresentou resultados bem dimensionados 

para aplicação em futuras pesquisas e desenvolvimentos em novas variáveis. 

A heterogeneidade dos achados reafirma a complexidade dos processos envolvidos na 

determinação da dengue, especialmente em áreas semiáridas, onde os eventos pluviométricos 

são irregulares e as condições socioambientais tendem a acentuar a vulnerabilidade da 

população. Apesar disso, os modelos desenvolvidos demonstraram ser ferramentas úteis para a 

compreensão dos efeitos climáticos sobre a dinâmica da doença, com potencial para subsidiar 

estratégias de vigilância epidemiológica e planejamento de ações preventivas em saúde pública. 

A utilização dos modelos GLS representou um diferencial metodológico relevante, uma 

vez que permitiu tratar adequadamente a autocorrelação temporal intrínseca às séries analisadas. 

Essa abordagem se mostrou eficaz na modelagem da variabilidade interanual dos casos de 



dengue, contribuindo para a construção de um arcabouço analítico mais robusto e alinhado às 

necessidades da pesquisa epidemiológica aplicada. 

Em termos práticos, os achados deste estudo indicam que o monitoramento de variáveis 

hidroclimáticas pode auxiliar na antecipação de períodos críticos de transmissão da dengue, 

sobretudo em municípios onde essas variáveis demonstraram maior capacidade preditiva. 

Assim, reforça-se a importância da integração entre dados climáticos e sistemas de informação 

em saúde como parte de políticas públicas que visem à mitigação de riscos associados a 

arboviroses em contextos semiáridos. 

Por fim, destaca-se que, diante do atual cenário de mudanças climáticas globais e de 

expansão das áreas de risco para doenças transmitidas por vetores, torna-se imperativo o 

aprofundamento de investigações que articulem as dimensões ambientais, climáticas e sociais 

na explicação da dinâmica das arboviroses. A construção de respostas eficazes e territorialmente 

adaptadas passa, necessariamente, pela produção de conhecimento científico que reconheça a 

complexidade dos territórios e promova o fortalecimento de ações integradas em saúde e meio 

ambiente. 

Os resultados desta pesquisa podem ajudar a criar políticas de saúde para evitar surtos 

de dengue nos municípios estudados. Isso pode ajudar a criar sistemas de alerta baseados em 

modelos de predição de dengue, estimativas de risco para doenças transmitidas por mosquitos 

e mapas de risco baseados na população e na variação da doença. 
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APÊNDICE 

 

rm(list=ls()) #Limpar memoria 

library(readxl) 

 

#Entrada de Dados 

dados <- 
read_excel("C:/Users/Luiz/Documents/Unilab/PGEA_mestrado_unilab/O
rientandos/Thamara/dados_fortaleza.xlsx") 

View(dados) 

tsd<-ts(dados$Dengue,start=c(2008,1),freq=12) 

#tsE<-ts(dados$`EMI`,start=c(2008,1),freq=12) 

#tsnino12<-ts(dados$nino12,start=c(2008,1),freq=12) 

#tsnino3<-ts(dados$nino3,start=c(2008,1),freq=12) 

#tsnino34<-ts(dados$nino34,start=c(2008,1),freq=12) 

#tsnino4<-ts(dados$nino4,start=c(2008,1),freq=12) 

#tsatn<-ts(dados$atn,start=c(2008,1),freq=12) 

#tsats<-ts(dados$ats,start=c(2008,1),freq=12) 

#tsatlgrad<-ts(dados$atlgrad,start=c(2008,1),freq=12) 

#tsatl3<-ts(dados$atl3,start=c(2008,1),freq=12) 

tsp<-ts(dados$`Chuva (mm)`,start=c(2008,1),freq=12) 

tsTmed<-ts(dados$Tmed,start=c(2008,1),freq=12) 

tsTmin<-ts(dados$Tmin,start=c(2008,1),freq=12) 

tsTmax<-ts(dados$Tmax,start=c(2008,1),freq=12) 

 

#Visualizando as series temporais 

 

#plot(ts.union(tsd,tsp,tsTmed,tsTmin,tsTmax)) # SEM LOG 

plot(ts.union(log(tsd),tsp,tsTmed,tsTmin,tsTmax)) #COM LOG 

 

#REALIZAR A CORRELAÇÃO CRUZADA 

#COM LOG 

 

acf(ts.union(log(tsd),tsp),na.action=na.pass,ylim=c(-1,1)) 

acf(ts.union(log(tsd),tsTmed),na.action=na.pass,ylim=c(-1,1)) 

acf(ts.union(log(tsd),tsTmin),na.action=na.pass,ylim=c(-1,1)) 

acf(ts.union(log(tsd),tsTmax),na.action=na.pass,ylim=c(-1,1)) 

 

# Criando variáveis defasadas 

 

#PRECIPITAÇÃO 

length(tsp)  

tsp1<-ts() 

tsp2<-ts() 



tsp3<-ts() 

for (i in 1:length(tsp)) { 

  if(i<length(tsp)& i==1){tsp1[[1]]<-NA}     

  if(i<=length(tsp) & i>1){tsp1[[i]]<-tsp[[i-1]]} 

  else{tsp1[[i]]<-NA} 

} 

 

for (i in 1:length(tsp)) { 

  for(j in 1:2){ 

    tsp2[[j]]<-NA 

  } 

  if(i<=length(tsp) & i>2){tsp2[[i]]<-tsp[[i-2]]} 

  else{tsp2[[i]]<-NA} 

} 

 

for (i in 1:length(tsp)) { 

  for(j in 1:3){ 

    tsp3[[j]]<-NA 

  } 

  if(i<=length(tsp) & i>3 ){tsp3[[i]]<-tsp[[i-3]]} 

  else{tsp3[[i]]<-NA} 

} 

 

tsp1<-ts(tsp1,start=c(2008,1),freq=12) 

tsp2<-ts(tsp2,start=c(2008,1),freq=12) 

tsp3<-ts(tsp3,start=c(2008,1),freq=12) 

 

#TEMPERATURA MÉDIA 

 

length(tsTmed) 

tsTmed1<-ts() 

tsTmed2<-ts() 

tsTmed3<-ts() 

 

for (i in 1:length(tsTmed)) { 

  for(j in 1:1){ 

    tsTmed1[[j]]<-NA 

  } 

  if(i<=length(tsTmed) & i>1 ){tsTmed1[[i]]<-tsTmed[[i-1]]} 

  else{tsTmed1[[i]]<-NA} 

} 

 

for (i in 1:length(tsTmed)) { 



  for(j in 1:2){ 

    tsTmed2[[j]]<-NA 

  } 

  if(i<=length(tsTmed) & i>2 ){tsTmed2[[i]]<-tsTmed[[i-2]]} 

  else{tsTmed2[[i]]<-NA} 

} 

 

for (i in 1:length(tsTmed)) { 

  for(j in 1:3){ 

    tsTmed3[[j]]<-NA 

  } 

  if(i<=length(tsTmed) & i>3 ){tsTmed3[[i]]<-tsTmed[[i-3]]} 

  else{tsTmed3[[i]]<-NA} 

} 

 

tsTmed1<-ts(tsTmed1,start=c(2008,1),freq=12) 

tsTmed2<-ts(tsTmed2,start=c(2008,1),freq=12) 

tsTmed3<-ts(tsTmed3,start=c(2008,1),freq=12) 

 

#TEMPERATURA MÍNIMA 

 

length(tsTmin) 

tsTmin1<-ts() 

tsTmin2<-ts() 

tsTmin3<-ts() 

 

for (i in 1:length(tsTmin)) { 

  for(j in 1:1){ 

    tsTmin1[[j]]<-NA 

  } 

  if(i<=length(tsTmin) & i>1 ){tsTmin1[[i]]<-tsTmin[[i-1]]} 

  else{tsTmin1[[i]]<-NA} 

} 

 

for (i in 1:length(tsTmin)) { 

  for(j in 1:2){ 

    tsTmin2[[j]]<-NA 

  } 

  if(i<=length(tsTmin) & i>2 ){tsTmin2[[i]]<-tsTmin[[i-2]]} 

  else{tsTmin2[[i]]<-NA} 

} 

 

for (i in 1:length(tsTmin)) { 



  for(j in 1:3){ 

    tsTmin3[[j]]<-NA 

  } 

  if(i<=length(tsTmin) & i>3 ){tsTmin3[[i]]<-tsTmin[[i-3]]} 

  else{tsTmin3[[i]]<-NA} 

} 

 

tsTmin1<-ts(tsTmin1,start=c(2008,1),freq=12) 

tsTmin2<-ts(tsTmin2,start=c(2008,1),freq=12) 

tsTmin3<-ts(tsTmin3,start=c(2008,1),freq=12) 

 

#TEMPERATURA MÁXIMA 

 

length(tsTmax) 

tsTmax1<-ts() 

tsTmax2<-ts() 

tsTmax3<-ts() 

 

for (i in 1:length(tsTmax)) { 

  if(i<length(tsTmax)& i==1){tsTmax1[[1]]<-NA}     

  if(i<=length(tsTmax) & i>1){tsTmax1[[i]]<-tsTmax[[i-1]]} 

  else{tsTmax1[[i]]<-NA} 

} 

 

for (i in 1:length(tsTmax)) { 

  for(j in 1:2){ 

    tsTmax2[[j]]<-NA 

  } 

  if(i<=length(tsTmax) & i>2 ){tsTmax2[[i]]<-tsTmax[[i-2]]} 

  else{tsTmax2[[i]]<-NA} 

} 

 

for (i in 1:length(tsTmax)) { 

  for(j in 1:3){ 

    tsTmax3[[j]]<-NA 

  } 

  if(i<=length(tsTmax) & i>3 ){tsTmax3[[i]]<-tsTmax[[i-3]]} 

  else{tsTmax3[[i]]<-NA} 

} 

 

tsTmax1<-ts(tsTmax1,start=c(2008,1),freq=12) 

tsTmax2<-ts(tsTmax2,start=c(2008,1),freq=12)  

tsTmax3<-ts(tsTmax3,start=c(2008,1),freq=12)  



 

#Análise dos mais significativos 

 

#fit.lm<-lm(log(tsd) ~ 
tsTmax+tsTmax1+tsTmax2+tsTmax3+tsTmin+tsTmin1+tsTmin2+tsTmin3+tsT
med+tsTmed1+tsTmed2+tsTmed3+tsp+tsp1+tsp2+tsp3) 

fit.lm<-lm(log(tsd) ~ 
tsTmax+tsTmax1+tsTmin3+tsTmed+tsp+tsp1+tsp2+tsp3) #modelo teste 
com variaveis de correlaça acima de 0.2 

summary(fit.lm) 

fit.lm<-lm(log(tsd) ~ tsTmin3+tsp1+tsp2)#Ajuste das mais 
significativas 

summary(fit.lm) 

 

par(mfrow=c(2,2)) 

plot(resid(fit.lm)) 

qqnorm(resid(fit.lm)) 

qqline(resid(fit.lm)) 

acf(resid(fit.lm)) 

pacf(resid(fit.lm)) 

 

 

fit.arma<-arima(resid(fit.lm),order=c(1,0,1) 

) 

plot(resid(fit.arma)) 

qqnorm(resid(fit.arma)) 

qqline(resid(fit.arma)) 

acf(resid(fit.arma)) 

pacf(resid(fit.arma)) 

 

#Aplicação da a função GLS 

 

library(nlme)  

model<-formula(log(tsd) ~ tsTmin3 + tsp1 + tsp2 ) 

df_dados<-data.frame(tsTmin3,tsp1,tsp2) 

fit.gls<-gls(model,data=df_dados,na.action=na.omit) #AJUSTE DOS 
COEFICIENTES DA OLS 

summary(fit.gls)  

 

#Vriáveis de desempenho do teste 

rmse<-sqrt(mean(residuals(fit.gls)^2))  

rmse 

sdo<-sd(log(tsd),na.rm=TRUE) 

srmse<-rmse/sdo 

srmse 



#Teste da previsão 

prev<-predict(fit.gls,newdata=df_dados,na.action=na.omit) 
#TENTATIVA 3, SEM CORRELAÇÃO# 

prev 

prev.ts<-ts(prev,start=c(2008,4),freq=12) 

prev.ts 

plot(log(tsd)) 

lines(prev.ts,col="red") 

#Calibração e Validação do Modelo 

library(nlme)  

 

#Figura de demonstração dos períodos 

par(mfrow=c(1,1)) 

logtsd<-log(tsd) 

plot(logtsd) 

treinamento<-ts(logtsd[1:93],start=c(2008,1),freq=12) # Até 
setembro 2015 

lines(treinamento,col="red") 

validacao<-ts(logtsd[93:132],start=c(2015,9),freq=12) 

lines(validacao,col="green") 

#Treinamento do modelo 

 

tsTmin3_treino<-ts(tsTmin3[1:93],start=c(2008,1),freq=12) 

tsp1_treino<-ts(tsp1[1:93],start=c(2008,1),freq=12) 

tsp2_treino<-ts(tsp2[1:93],start=c(2008,1),freq=12) 

 

model_treinamento<-formula(treinamento ~ tsTmin3_treino + 
tsp1_treino + tsp2_treino ) 

df_treino<-data.frame(tsTmin3_treino,tsp1_treino,tsp2_treino) 

fit.gls_treino<-
gls(model_treinamento,data=df_treino,na.action=na.omit) #AJUSTE 
DOS COEFICIENTES DA OLS 

summary(fit.gls_treino)  

 

#Variáveis de desempenho do treinamento 

rmse_treino<-sqrt(mean(residuals(fit.gls_treino)^2))  

rmse_treino 

sdo_treino<-sd(treinamento,na.rm=TRUE) 

#sdo_treino 

srmse_treino<-rmse_treino/sdo_treino 

srmse_treino 

#Previsão com dados do treinamento. 

prev_treino<-
predict(fit.gls_treino,newdata=df_treino,na.action=na.omit) 
#TENTATIVA 3, SEM CORRELAÇÃO# 



prev_treino 

prev_treino.ts<-ts(prev_treino,start=c(2008,4),freq=12) # 
start=c(2008,6) se treinamento ~ tsTmin_treino + tsE_treino + 
tsTmax5_treino + tsatlgrad5_treino 

prev_treino.ts                                          # 
start=c(2008,7) se treinamento ~ tsTmin_treino + tsTmax5_treino + 
tsp6_treino  

 

plot(treinamento) 

lines(prev_treino.ts,col="blue") 

 

#Validação do modelo 

validacao<-ts(logtsd[94:132],start=c(2015,10),freq=12) 

 

tsTmin3_validacao<-ts(tsTmin3[94:132],start=c(2015,10),freq=12) 

tsp1_validacao<-ts(tsp1[94:132],start=c(2015,10),freq=12) 

tsp2_validacao<-ts(tsp2[94:132],start=c(2015,10),freq=12) 

df_validacao<-
data.frame(tsTmin3_validacao,tsp1_validacao,tsp2_validacao) 

colnames(df_validacao) <- 
c("tsTmin3_treino","tsp1_treino","tsp2_treino")  

 

prev_validacao<-
predict(fit.gls_treino,newdata=df_validacao,na.action=na.omit) 
#TENTATIVA 3, SEM CORRELAÇÃO# 

prev_validacao 

prev_validacao.ts<-ts(prev_validacao,start=c(2015,10),freq=12) 

prev_validacao.ts 

 

plot(validacao) 

lines(prev_validacao.ts,col="blue") 


