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RESUMO

O presente trabalho visa abordar, dentro do campo da Algebra, dois importantes pilares:
a divisdo de polinémios e a raiz de uma equagéo polinomial. Para tal, serdo mostradas
técnicas que, em outrora, ja foram bastante utilizadas pelos professores de matematica,
até a década de 50 e 60, para a identificagdo das possiveis raizes racionais de uma
equagdo polinomial de coeficientes inteiros e a divisdo de polindmios por um bindmio
da forma a - X + b. Além disso, assim como o Dispositivo de Briot-Ruffini, um desses
métodos pode ser aplicado na verificacdo se um determinado numero racional é ou ndo
a raiz de uma tal equagéo polinomial. Chamadas de Regras de Exclusdo de Newton e
o Algoritmo de Peletarius, essas técnicas, por motivos por mim desconhecidos, nao
sé&o mais abordadas na atual bibliografia dos inimeros livros de algebra dos ensinos
médio e superior. Como produto educacional, sera apresentado o Hybritarius®. Um
aplicativo computacional que permite identificar (se existir) as raizes racionais de uma
equacao polinomial de coeficientes inteiros, utilizando em seu algoritmo as técnicas
entao apresentadas.

Palavras-chave: Algebra. Raizes de Polindmios. Hybritarius.



ABSTRACT

This paper aims to address two important pillars of Algebra: the division of polynomials
and the root of a polynomial equation. To this end, techniques that were once widely
used by mathematics teachers, up until the 1950s and 1960s, will be presented to
identify possible rational roots of a polynomial equation with integer coefficients and
the division of polynomials by a binomial of the form a - X + b. Furthermore, like the
Briot-Ruffini Device, one of these methods can be applied to verify whether or not
a given rational number is the root of such a polynomial equation. Called Newton’s
Exclusion Rules and the Peletarius Algorithm, these techniques, for reasons unknown to
me, are no longer addressed in the current bibliography of the numerous algebra books
for high school and college education. As an educational product, the Hybritarius® will
be presented. A computer application that allows you to identify (if they exist) the rational
roots of a polynomial equation with integer coefficients, using the techniques presented
in its algorithm.

Keywords: Algebra. Roots of Polynomials. Hybritarius.
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1 INTRODUGAO

A busca das raizes ou resolucdo de uma equacao algébrica ou polinomial e/ou a
divisdo de um polinémio de grau maior que 2 por um bindmio sdo algumas das tarefas
que todo estudante da Educacéo Basica (Ensino Médio certamente) é submetido a
realizar na disciplina de Matematica. Nos cursos da Area de Exatas do Ensino Superior,
no campo da Algebra, a divisdo de polinémios, a busca do zero de uma fungéo algébrica
e a raiz de uma equagao polinomial ou algébrica s&o temas recorrentes, como por
exemplo, nos cursos de Calculo. Para tal fim, quando se trata de equacdes polinomiais
de grau maior que 4, o trabalho fica cada vez mais oneroso; tendo em vista que nao
ha “férmulas” de resolucéo para equacdes de tal grau (Andrade, 1989). Encontrar as
raizes de uma equacao algébrica ou o zero de uma funcao polinomial e/ou dividir
um polinbmio de grau maior que 2 por um bindmio sao alguns dos temas que serao
abordados mais adiante.

O presente trabalho se origina sobre um artigo da Revista do Professor de
Matematica (RPM), numero 14, publicada em 1989, sob o titulo “Raizes Racionais
de uma equacao algébrica de coeficientes inteiros” de autoria do Professor Lenimar
Nunes de Andrade, onde na época era docente da Universidade Federal da Paraiba -
UFPB. No final desse artigo, ha uma nota de rodapé (NR) da prépria equipe editorial da
revista com o seguinte texto: “O colega Lenimar N. Andrade, neste artigo, ressuscita um
teorema que se encontrava nos livros do 3° colegial na década de 50 [...]. O teorema
chama-se ‘Regras de Exclusédo de Newton'’ [...]". A NR continua: “Ainda no contexto da
procura das raizes inteiras, os livros ensinavam o ‘algoritmo de Peletarius’ - alguém,
nascido apés 1950, aprendeu esse algoritmo no 2° grau? Ja ouviu falar nele?”. Através
dessas indagacdes despertou-se o interesse em conhecer esses métodos, assim
Como seus principios, suas aplicagdes, suas ferramentas e, também, buscar entender
0S supostos motivos que os levaram a nao ser mais contemplados nos atuais livros
escolares de matematica da Educacao Basica.

Pesquisando sobre as Regras de Exclusdo de Newton, o aprofundamento do
tema veio através de dois livros da década de 50 e 70 e um periédico da RPM. As
mesmas nos permitem, através de calculos bastante simples, excluir no primeiro
momento, um determinado nimero racional que né&o pode ser uma raiz de um certo
polinbmio de coeficientes inteiros. Como o proprio nome ja diz, essas regras sao
atribuidas a Isaac Newton (1643-1727). Segundo Roxo et al. (1955), elas também
sdo relacionadas ao francés Etienne Bézout (1730-1783). No primeiro momento essas
regras permitem identificar se um determinado inteiro € ou ndo uma possivel raiz
de uma certa equacao polinomial. Para Andrade (1989), as mesmas também podem
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ser aplicadas a racionais nao inteiros. Ou seja, se uma determinada fracao § com
mdc(p, q) = 1, é ou ndo uma possivel raiz de um certo polindmio de coeficientes inteiros.
Sua sustentacao e demonstracao se da através do polindmio de Taylor, ao qual sera
abordado mais a frente com maiores detalhes.

Pesquisando sobre o Algoritmo de Peletarius, ele pode ser utilizado para dividir
um polinbmio de grau maior que 1 por um bindémio qualquer. Além disso, é possivel
verificar se um certo numero racional € ou n&o raiz de uma equacao polinomial. Pois,
atualmente, por exemplo, para realizar a divisdo de um certo polinémio P(x) por um
polinémio da forma = — b (binbmio unitario) ou, até mesmo, verificar se um determinado
inteiro é raiz de P(z), utiliza-se o famoso Dispositivo de Briot-Ruffini (DBR). A edicao
de numero 65 de 2008 da RPM traz um artigo dos professores e historiadores da
Matematica Flavia Soares e José Lourenco da Rocha, sob o titulo “Que fim levou
o Algoritmo de Peletarius?”. Segundo as pesquisas realizadas por Soares e Rocha
(2008), os livros de histéria da matematica, bastante conhecidos e usados nos cursos
de graduacao, nao faziam também referéncia a essa técnica. O artigo que envolve
a pesquisa sobre esse algoritmo, dos referidos historiadores, é esclarecedor. Pois, 0
mesmo aponta apenas dois livros que contemplam Peletarius, aos quais também foram
identificados na nossa presente pesquisa, com diferenca Unica de numero de edicao e
ano de publicagéo.

O primeiro é o livro “Curso de Matematica para os cursos de segundo grau
(Antigos cursos CLASSICO E CIENTIFICO) - Curso Completo” do autor Manoel Jairo
Bezerra, publicado pela Companhia Editora Nacional em S&o Paulo, bastante usado
no Brasil na década de 50. A versado a qual tivemos acesso foi a 31° Edigdo do ano
1974. Esse livro faz referéncia ao Algoritmo de Peletarius e as Regras de Excluséo de
Newton aplicadas a numeros inteiros e outros importantes conteddos que, por sinal,
n&o sao mais contempladas nos atuais livros didaticos de Matematica. O segundo livro
identificado que aborda tal algoritmo é o “Matemética - 2° Ciclo - 3° Série”. Escrito
pelos professores Euclides Roxo, Haroldo Lisboa da Cunha, Roberto Peixoto e César
Dacorso Netto e publicado pela Livraria Francisco Alves. Esse livro era direcionado a
estudantes da 3° série do colegial, atual Ensino Médio. A versdo a qual tivemos acesso
foi a 4° Edicao do ano de 1955. O mesmo também aborda as Regras de Excluséo de
Newton aplicadas a racionais e outros importantes conteudos que também nao sao
mais contemplados nas publicagdes recentes.

Mas, quem era Peletarius e o que é o algoritmo que leva o seu nome? Apesar
das inumeras consultas realizadas em busca de mais informacdes sobre Peletarius,
foi também no presente artigo de Soares e Rocha (2008) que obteve-se as respostas
mais precisas. Segundo as pesquisas, Peletarius respondia pelo nome de Jacques
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Peletier (1517-1582). Esse foi um dos mais importantes algebristas franceses do
periodo anterior a Frangois Viete (1540-1603). Além dos seus trabalhos no campo da
Matematica, Peletier ficou conhecido por suas lindas poesias. Dentre as obras que
publicou, pode-se destacar a Arithmeticae practicae (1545), a Arithmétique (1549) e
L'algébre departie en deux livres (Lyon, 1554). Em 1557, publicou o In Euclidis elementa
demonstrationum libri sex. No entanto, sobre o seu algoritmo, ndo ha nada publicado
além de outras poucas referéncias bibliogréaficas.

Ha pouquissimos livros que trazem conteddo sobre as Regras de Exclusao de
Newton ou Algoritmo de Peletarius. Mais precisamente, a nossa pesquisa identificou
que os atuais livros didaticos de Matematica usados nas escolas publicas, através do
Programa Nacional do Livro Didatico (PNLD), dentro das atuais diretrizes do Novo
Ensino Médio, criado através da Lei n°13.415/2017, n&o trazem em seus sumarios
essas técnicas.

1.1 A IMPORTANCIA DESSE TRABALHO

A importancia desse trabalho se da por buscar compreender a teoria, a relevan-
cia e a aplicacao pratica das regras de Exclusdo de Newton e o Algoritmo de Peletarius
para o ensino de Algebra na disciplina de Matematica, principalmente no Ensino Médio.
Além disso, considerando a limitada oferta de livros contemporaneos sobre os temas,
busca-se com esse trabalho resgatar essas técnicas que encontram-se omissas nos
atuais acervos bibliograficos do PNLD, e assim, trazé-las a luz para as atuais levas de
estudantes. Em contrapartida, buscar compreender os possiveis motivos que levaram
os coevos autores de livros didaticos de Matematica a excluirem essas técnicas de
suas obras. Por fim, apresentar um aplicativo computacional chamado Hybritarius® que,
implementado em linguagem R e capaz de gerar relatérios automatizados em IATEX,
nos permite determinar as possiveis raizes racionais (se houver) de uma equacao
polinomial de coeficientes inteiros e exibi-lo na sua forma fatorada, conforme o Teorema
Fundamental da Algebra. O seu algoritmo de funcionamento é baseado nas Regras de
Exclusao de Newton, o Algoritmo de Peletarius e outros conceitos e ferramentas aqui
também trabalhados.

1.2 ORGANIZACAO DO TRABALHO

O presente trabalho esta organizado em 6 capitulos, onde o 1° trata-se da
presente Introducédo e os demais sendo distribuidos a saber:

No Capitulo 2, apresenta-se uma abordagem histérica sobre a Algebra e os Po-
linbmios no decorrer do tempo. Sdo mostrados fatos e curiosidades sobre as Funcdes
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e Equacodes Algébricas, assim como 0s seus conceitos e definicdes. Na sequéncia
¢ tratada as operacdes envolvendo as Funcgdes Polinomiais, evidenciando conceitos
e técnicas pertinentes ao desenvolvimento do trabalho. Nas Equacdes Polinomiais,
sao apresentados conceitos e definicdes sobre Raizes, Conjunto-Solucéo e o impor-
tantissimo Teorema Fundamental da Algebra e seus Corolarios. Por fim, aborda-se o
indispensavel Teorema das Raizes Racionais e é resgatada uma técnica de delimitacdo
do intervalo real onde se encontram as raizes de uma equacao polinomial, chamada
de Método de Laguerre, onde séo ilustradas suas definicao e aplicacao.

No Capitulo 3, sao tratadas das Regras de Exclusdo de Newton. No primeiro
momento sdo contextualizados conceitos e definicbes de suma importancia para o
desenvolvimento do trabalho, envolvendo apenas os niumeros inteiros. Em sequéncia,
apresenta-se as suas demonstracoes e aplicacdes através de alguns exemplos praticos.
No segundo momento, sdo mostradas as Regras de Exclusdo de Newton, aplicadas a
Raizes Racionais nao inteiras de Equacdes Algébricas de coeficientes inteiros com seus
conceitos e definicdo. Para sua demonstracéao, € apresentado o Polinémio de Taylor,
ao qual é peca fundamental para o seu desenvolvimento. Em sequéncia, utiliza-se
exemplos praticos para ilustrar a sua aplicacéao.

No Capitulo 4, é apresentado o Algoritmo de Peletarius, juntamente com seus
conceitos e definicdes. Em seguida, apresenta-se a sua demonstracao para numeros
inteiros e o seu dispositivo pratico que torna a sua aplicacdo bastante simples. De-
pois, apresenta-se alguns exemplos praticos de sua aplicacao, usando 0s conceitos e
técnicas ja tratados nos capitulos anteriores. Em seguida, é apresentado o Algoritmo
de Peletarius para raizes racionais ndo inteiras, ao qual o mesmo ndo foi identificado
nas bibliografias entdo pesquisadas. E entdo apresentada a nossa demonstracéo e,
logo em seguida, apresenta-se o seu dispositivo pratico e alguns exemplos que tornam
singela a sua aplicagao.

No Capitulo 5, é apresentado o aplicativo educacional Hybritarius®, implemen-
tado em linguagem R, que propde uma solugdo computacional que integra as Regras
de Exclusao de Newton e o Algoritmo de Peletarius para a obtencao (se houver) das
raizes racionais de expressdes polinomiais de coeficientes inteiros. Identificando tais
raizes, as mesmas serao figuradas e o polinbmio em questéao é exibido conforme o
Teorema Fundamental da Algebra. No mais, é ilustrado um fluxograma que mostra
todo o roteiro do processo executado pelo Hybritarius® e um exemplo pratico do seu
funcionamento.

Por fim, no Capitulo 6, apresentam-se as conclusdes finais e as perspectivas de
trabalhos futuros.
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2 POLINOMIOS

2.1 UMA ABORDAGEM HISTORICA SOBRE A ALGEBRA E OS POLINOMIOS

A Algebra é a parte da matematica em que se empregam outros simbolos
além dos algarismos (Longen, 2003). Esses simbolos, chamados de variaveis, ligam-
se convenientemente por operacdes aritméticas e, juntos, formam as expressdes
algébricas. As funcdes algébricas de grau maior que dois foram um dos objetos de
estudo de muitos matematicos durante varios séculos. Nas palavras de lezzi (2013),
ao final do século XV a algebra tinha avangado a passos curtos em relagdo aos
conhecimentos adquiridos e deixados pelos babildénios e egipcios sobre o tema, a cerca
de 1800 anos antes de Cristo.

Segundo Fernandez e Santos (2010), as equagdes polinomiais do primeiro grau
surgiram de forma bastante timida no papiro de Ahmes (1650 a. C.). De acordo com
Nunes, Situba e Chaquiam (2024), um dos primeiros livros que se tem registro com
conteudo algébrico é o “Hisabal-jabrw’al-muqgabala” do matematico nascido na regiao
da Asia Central chamado Al-Khwarizmi (780-850 a.C.). Seu trabalho teve contribuicdes
bastante significativas para o ensino de Matematica com o primeiro tratado sobre
solucdes de equacgdes lineares e quadraticas. Além disso, suas contribuicdes foram
fundamentais para incentivar o mundo a utilizar os algarismos indu-arabicos que
culminou no nosso atual sistema de numeracao.

Em sequéncia, ja na era Crista, uma grande referéncia € o matematico indiano
Bhaskara Akaria (1140-1185) cujas importantes contribuicdes culminaram nos atuais
métodos de resolucdo de equacgdes quadraticas. Sua importancia é tao significativa
para a matematica que alguns livros se dirigem a esse método como a "férmula de
Bhaskara", que busca as raizes de uma equacao quadratica.

De acordo com lezzi (2013), até antes de 1500, a resolucao de equacgdes
cubicas era algo ainda intangivel de aplicacao pratica. Ja em meados do século XVI,
surgiram avancos significativos na resolucao de equacoes do terceiro grau. Ou seja,
achar as raizes de uma equacgéo da forma 23 + ax? + bz + ¢ = 0 (com a, b € c reais) ja
era uma realidade. Desse ponto em diante, a algebra obteve avangos significativos e,
com ela, a busca das raizes de uma equacao polinomial de grau n.

Nas palavras de Fernandez e Santos (2010), um pioneiro na busca das solugdes
de uma equacao cubica foi 0 matematico italiano Niccolo Fontana (Tartaglia) (1500-
1557). Suas contribuicées foram além do ambito matematico. Pois, através de seus
estudos, ele realizou aplicacdes matematicas em artilharias, contribuindo com o avanco
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do poder bélico italiano. Um outro grande feito seu foi o de traduzir o honoravel Livro
de Euclides “Os elementos” para sua lingua nativa. De acordo com lezzi (2013), por
volta de 1530 surgiu a noticia de que Tartaglia resolvia equagdes da forma z® + pz? = q.
Tartaglia manteve o seu método de resolucao em segredo por um bom tempo, mas
0 acabou revelando, sob promessa de sigilo, para um “amigo” e eximio matematico
chamado Girolano Cardano.

Ainda na ltélia, Girolamo Cardano (1501-1576) foi outro mateméatico que dividiu
o palco com Tartaglia na solucao de equacdes cubicas. Pela surpresa de Tartaglia, em
1545, na primeira edicdo do livro Ars magna la estavam seus métodos sob a autoria de
Cardano, embora com referéncias de agradecimentos. Esse fato gerou uma verdadeira
“guerra” entre os dois matematicos durante bastante tempo. Foi Cardano que identificou
no método de Tartaglia uma falha, pois 0 mesmo nao resolvia equag¢des com raizes
complexas. Nesse momento, ndo havia ainda o conceito de numeros complexos e
Cardano se referia a essas raizes como "sofisticas". Ou seja, "sdo tao sutis quanto
inuteis"(Rosa, 1998). Nessa perspectiva, em relacao aos polinbmios, a contribuicao
matematica de Cardano pode ser equiparada a de Tartaglia, na medida em que ambos
contribuiram para o método de resolucado de equacdes polinomiais de grau 3.

No mesmo ano, o Ars magna trazia uma outra notavel descoberta pelo mate-
matico italiano e discipulo de Cardano chamado de Ludovico Ferrari (1522-1565): um
método para reduzir equagdes do quarto grau a equacdes cubicas, através de uma
expressao radical. Para a solucado de equacdes do quinto grau, muitos matematicos
importantes tentaram buscar solugcdes, mas nao obtiveram éxito. Segundo Knudsen
(1985), o notério suico Leonard Euler (1707-1783) ndo conseguiu resolvé-lo. Porém
encontrou novos métodos para a resolucao da equacdo do 4°grau. Em 1770, o mate-
matico italiano Joseph-Louis Lagrange (1736-1813) conseguiu unificar os argumentos
nos casos das equacgdes de grau 3 e 4 e mostrou porque tal argumento falhava no caso
do grau 5. O matematico italiano Paolo Ruffini (1765-1822), em 1813, também tentou
uma demonstracéo de tal impossibilidade, mas seus argumentos apresentavam bas-
tante falhas. Por fim, em 1824, o matematico noruegués Niels Henrik Abel (1802-1829)
provou que a equacgao geral de grau 5 nao é resoluvel por meio de radicais.

Ja em 1843, o matematico francés Joseph Liouville (1809-1882) escreveu para a
Academia de Ciéncias de Paris anunciando que os trabalhos deixados pelo matematico
francés Evariste Galois (1811-1832) continham uma solugéo que respondia com preci-
sao quando uma equagao de grau 5 é ou ndo “resoluvel por meio de radicais” (Knudsen,
1985). A solucao apresentada por Galois, ao caracterizar as equacgdes polinomiais
resollveis por meio de radicais, através de propriedades do grupo de automorfismos
de um corpo, é considerada uma das principais conquistas da Algebra no século XIX.
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Outro matematico bastante influente em relacéo as equacdes algébricas e os
polindmios foi o italiano Albert Girard (1595-1632). Foi Girard que identificou as relagbes
entre 0 numero de raizes de um polindmio e o seu grau (maior expoente da variavel).
Ou seja, o grau do polindmio determina a sua quantidade de raizes. Nao s6 isso, mas
também as relacdes dessas raizes com os coeficientes do polindmio com as famosas
"Relacdes de Girard".

Ja no século XVII surge o brilhante matematico alemao, Carl Gauss (1777-1855).
Suas contribuicées foram além do campo da matematica como a Fisica e a Astronomia.
O conceito de numeros complexos foi atribuido por Gauss e foi ele quem deu a primeira
demonstracéo satisfatéria do Teorema Fundamental da Algebra - TFA, ao qual sera
mais explorado nos préximos capitulos.

Ainda no século XVII, o italiano Paolo Ruffini e o francés Charles Briot (1817-
1882) trouxeram contribui¢des significativas para a divisao de polindmios. Seus legados
sdo tdo importantes para o campo da Algebra que o “Dispositivo de Briot-Ruffini” é uma
das ferramentas poderosas na divisdo de um polindémio de grau n > 2 por um binémio
da forma x — a. Esse dispositivo serd também mais explorado nos capitulos seguintes.

Outro influente matematico do século de XVII que apresentou importantes
contribuicdes para a Algebra foi o tcheco Bernard Bolzano (1781-1848). O seu teorema,
ao qual leva o seu nome (Teorema de Bolzano) permite perceber se ha ou nao pelo
menos uma raiz de uma determinada fung¢édo continua dentro de um dominio especifico.
A contribuicdo deste teorema foi significativa para o ambito dos estudos das fungdes
algébricas e os polindmios.

Esses séo alguns dos matematicos que tiveram seus trabalhos mais direcio-
nados ao estudo das solugdes das equacdes algébricas. No entanto, a de considerar
que todos esses trabalhos, e tantos outros que vieram depois, se apoiaram em feitos
de outros grandes nomes da Algebra. Ha um consenso na literatura sobre os maiores
e mais importantes matematicos que contribuiram direta (ou indiretamente) para o
desenvolvimento da Algebra, ao qual dispensa apresentagdes. Entre os tais, pode-se
citar os gregos Arquimedes (287-212 a.C.), Euclides (por volta de 300 a.C.) e Pitagoras
(570-495 a.C.), a egipcia Hypatia de Alexandria (360-415 a.C.), o italiano Leonardo
Fibonacci (1170-1250), os franceses René Descartes (1596-1650) e Henri Poincaré
(1854-1912), os alemaes Bernhard Riemann (1826-1866) e Gottfried Leibniz (1646-
1716) e o0 inglés Isaac Newton (1643-1727). Sem sombra de duvidas, essa lista € bem
mais longa.
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2.2 A FUNCAO POLINOMIAL OU (SIMPLESMENTE) POLINOMIO

Dentro do contexto cientifico, sabe-se que as fun¢des algébricas sdo comuns
nos diversos campos da ciéncia; seja na Fisica, na Quimica, nas diversas Engenha-
rias, na Arquitetura, na Medicina e etc. Na matematica, as equacdes polinomiais sao
comumente usadas para representar ou modelar o comportamento de um determinado
fendmeno pratico. Resolver uma equacgéo polinomial significa “encontrar” determinadas
solucdes ou respostas de certos problemas especificos, através dos valores, até entao
desconhecidos, representados por uma letra que consiste a sua incognita (geralmente
x), onde esse valor encontrado representa a sua raiz (ou suas raizes).

Para Lima (2023), Polinémio define-se da seguinte forma:

Defini¢ao 2.2.1. Um polinémio é uma expressao formal do tipo
P(X) = ap X" 4+ a1 X" '+ 0 o X"+ + 03X+ X+ X 4 ap,  (2.1)

onde (ag,as,- -+ ,a,) € uma lista ordenada de nimeros reais e X € um simbolo (cha-
mado uma indeterminada), sendo X* uma abreviatura para X - X - -- X (i fatores).

Segundo lezzi (2013), os nameros a,,, a,_1,- - - ,as, a;, ag S0 denominados coe-
ficientes e as parcelas a,2", a,_ 12", a,_2™ 2, - - | azx®, ayx?, a1z € ag S&0 chamadas
de termos do polindbmio. O = é a variavel unica ao qual pode assumir qualquer valor
real com expoente n € N.

Em se tratando de Funcao Polinomial, Lima (2023) conceitua da seguinte forma:

Definicao 2.2.2. Diz-se que p : R — R € uma fung¢ao polinomial quando sao dados
nameros reais a,,, a,_1,- - - , a2, a1, ap tais que, para todo = € R, tem-se

p(:c) = anmn + a/nflxni1 + an72$n72 + -+ CL3.’L'3 + a2x2 + a1 + ag. (22)

Para Lima (2023), ha uma correspondéncia biunivoca entre polinémio e funcao
polinomial (P(X) —— p(z)). Logo, ndo ha necessidade de fazer distin¢gdo entre o
polinbmio P e a fungéo polinomial p. Pois, ambos seréo representados pelo mesmo
simbolo p e serdo chamados indiferentemente de polinémio ou de fungao polinomial.

Portanto, pode-se admitir indistintamente os termos “polindmio” ou “funcao
polinomial”.
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2.3 CONCEITOS E DEFINICOES

A seguir, serdo abordados alguns conceitos e definicdes que caracterizam um
Polinbmio que seréo pertinentes a elaboracao do presente trabalho.

2.3.1 Grau, Coeficiente Lider e Coeficiente Independente

Para Hefez e Villela (2022), em todo polinémio f(x) n&o identicamente nulo
(f(xz) # 0), algum coeficiente deve ser diferente de zero, entdo ha um maior natural
n tal que a, # 0. Definimos o grau de f(x) como sendo este numero natural n e 0
denotamos por gr(f(z)). O grau de um polinbmio f é representado por lezzi (2013)
como Jf ou grf.

Como alguns exemplos, temos:

1. f(x) = 32" —52® + 222 — 62 + 8 = Of = 4.
2. g(x) = -2+ 8z —102° = 9g = 3.

Oh=4, se a=5

3. h(z) = (a —5)x® + Ta* — 622 +2 = .
(#) = (a=5) ! ! {8h=5, se a#5

Tem-se ainda que se o grau de f é n, entdo a, é chamado de coeficiente lider
ou dominante do Polinémio. Pois esse é o coeficiente do termo 2" de maior expoente
do Polinbmio. No caso do coeficiente dominante a,, ser igual a 1, f € chamado de
Polinébmio Unitario.

Em sequéncia, tem-se que aq é o coeficiente independente ou termo inde-
pendente do Polindbmio, ja que o0 mesmo nao possui produto com a variavel x.

2.3.2 O valor numérico e a Raiz de um Polin6mio

Dado o ndmero real a e o polinémio f(x), o valor numérico de um polindmio f
em « é a imagem de « pela funcdo f. Ou seja,

fl@) = a,a™ + a0+ -+ apa® + ara + a. (2.3)

Com isso, tem-se que f(«) € a imagem de « pela funcéo f. Portanto, o valor
numérico de . em f é f(«).

Uma observacéo a ser dada aqui € para a = 1 € a = 0. Pois, dado um polinémio

P(z) = ap2™ + ap 2™+ -+ ayx + ag (2.4)
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temos 0s seguintes casos:

» Para z = 1, temos:
Pl)=an 1"+ ap_1- 1" 4+ Fay-1>4+a, -1+ ag
P(l)=a,+an1+ -+ as+a + ap.
Isto é, P(1) corresponde a soma dos coeficientes de P(x).
» Para x = 0, temos que:
PO)=an-0"+ay, 1 0"+ +ay-0*+a;-0+ag
P(0) = ayp.

Isto €, P(0) corresponde ao valor do coeficiente independente de P(z).

Em particular, se « € um numero real e P(x) € um polindmio, tal que P(a) = 0,
ou seja,
P(a) = a,o" + a0+ -+ asd® + a4 ag = 0, (2.5)

diz-se que « € uma raiz (ou um zero da funcéo) de P(X). Em termos de equagées, « €
raiz da Equacéo Polinomial.

2.3.3 Polinomio Nulo e os seus coeficientes

Diz-se que um Polinémio f é considerado nulo ou identicamente nulo quando o
mesmo assume o valor numérico igual a zero para qualquer « real. Ou seja,

f=0«<= f(a) =0,Va € R. (2.6)

Essa afirmacao é reforcada por lezzi (2013) pelo seguinte teorema para Coefici-
entes de Polindbmios Nulos:

Teorema 2.3.1. Um polinémio f é nulo se, e somente se, todos os seus coeficientes
forem nulos. Ou seja, sendo

f(m) = anxn + anflljnil + anf2xni2 + -+ 03.1'3 + &2%2 + aixr + ap, (27)
temos:

Por consequéncia dessa defini¢cdo, o fato do Polinbmio possuir todos os coefici-
entes iguais a zero, ndo se pode definir o seu grau.
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2.3.4 Polindmios Idénticos e os seus coeficientes

A literatura acerca do assunto diz que dois Polinbmios f e g sdo iguais ou
idénticos quando os mesmos assumem valores numericos iguais para qualquer valor
de z real. Ou seja,

f=9g<= f(x) =g(x),Vz € R. (2.8)

Para tal defini¢ao, lezzi (2013) aponta o seguinte teorema para os Coeficientes
de Polinbmios Idénticos:

Teorema 2.3.2. Dois Polinbmios [ e g sdo iguais se, e somente se, 0s coeficientes de
f e g forem ordenadamente iguais. Em simbolos, sendo

f(z) = aa™ + U1 2" F A0+ gz + asr? + a1z + ag (2.9)

g(r) = b + by 13"+ by 9™ 2 oo+ bya® + bya® + byx + by, (2.10)

temos que:
f=g9g+=a;=0b,Vic{NU{0}}.

Ou seja, quando a,, = b,;a,_1 = by_1;- ;a9 = by;ay = by € ag = by.
2.4 OPERACOES COM POLINOMIOS

A soma e o produto de fungdes polinomiais sdo ainda fungdes polinomiais (Lima,
2023). A seguir sera mostrado como realiza-se as operagées com Polinbmios, tendo
em vista que essas operacdes sao de total importancia para a realizagéo do presente
trabalho.

241 Adicao
2.4.1.1 Soma de Polinbmios

Para Hefez e Villela (2022), dados dois Polindmios

n

flx)y=) aja! e g(a)= zn:bjxj,
7=0

J=0

representados respectivamente pelas Equacdes 2.9 e 2.10, definimos a soma de f
com g como sendo o Polinémio h dado por

f(x) + g(x) = h(z) = Z cja’,
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onde ¢; = a; + b, para 0 < j < n. Com isso, temos
h(z) = (an +bp)2" + (ap_1 +bp_1)x™ -4 (ag + bo)x* 4 (ay + b))z + (ag +bo), (2.11)
em que podemos reescrevé-lo como

h(x) = a4 cp1 @™+ Cp0x™ 2 4 o+ e + a1 + . (2.12)

Portanto, a soma dos Polinbmios f e g corresponde ao Polindmio h, obtido
quando soma-se 0s seus coeficientes dos termos semelhantes.

2.4.1.2 Propriedades da Adicdo

De acordo com lezzi (2013), a operagao de adi¢ao define em P, conjunto dos
Polinbmios de coeficientes reais, uma estrutura de grupo comutativo. Ou seja, dados
os Polinémios f, g e h, para a operagcao de soma de Polinbmios, aceita-se as seguintes
propriedades:

Propriedade Associativa: f + (g +h) = (f +g) + h,¥f,g,h € P.

Propriedade Comutativa: f +g=g¢g+ f,Vf,g € P.

« Existéncia de Elemento Neutro: 3e € P | f + ¢ = f,Vf € P. Ou seja, ¢ (elemento
neutro para a adicao de Polindmios) é o Polindmio Nulo.

Existéncia de Inverso Aditivo ou Simétrico: Vf € P,3f' € P| f + f' = . Ou seja,
1’ é o inverso aditivo ou simétrico de f que, somado com f, figura o Polinbmio
Nulo €. Logo, f' = —f(z) = (—a,)z" + (—ap_1)2" + -+ + (—a1)x + (—ap).

24.1.3 Grau da Soma

De acordo com lezzi (2013), se f, g e f + g = h séo Polinbmios ndo nulos, entdo

o grau de h € menor ou igual ao maior dos numeros df e dg. Ou seja, em termos gerais,
tem-se que:

Oh < max{0f,0g}. (2.13)

2.4.1.4 Exemplos da Soma de Polinbmios
Dados os seguintes Polinbmios exemplos, temos:

1. f(x) =22 + 32% — b + 1;

2. g(z) =52 —x +3.
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Sera definido o Polinbmio h(z) = f(z) + g(x). Para equiparar o numero de
termos, podemos reescrevé-los como:
1. f(z) = 22" +02% + 322 — bz + 1;
2. g(z) = 0z* + 523 + 02® — z + 3.
Logo, executando a soma dos coeficientes de termos semelhantes, tem-se como
resultado o Polinémio

h(z) = (2+0)z" + (0+5)2° + (3+ 0)2® + (=5 — D) + (1 + 3).

Portanto, segue que
h(x) = 22* + 5% + 32* — 6z + 4.
2.4.2 Subtracao
2.4.2.1 Diferenca de Polinbmios

As operacdes que envolve a diferenga de Polindmios s&o definidas de modo ana-
logo as realizadas na adicdo. Pois, dados os Polindbmios f e g, dados pelas Equacdes
2.9 e 2.10 respectivamente, definimos a diferenca entre f e ¢ com sendo o polinémio
h=f—-g=f+(—g), emque —g é o simétrico de g. Ou seja:

h(z) = (an — bp)x™ + (an_1 — bp_1)x"F + -+ (az — bo)x* + (ay — b))z + (ag — bo).
Com isso, segue que a diferenca entre os dois Polinbmios f e g corresponde ao
Polinbmio A, obtido quando diminui-se os seus coeficientes dos termos semelhantes.
2.4.2.2 Propriedades da Subtragcao

Dado que o Polinbmio h = f — g = f + (—g), as propriedades da subtracdo sao
as mesmas da soma.

2.4.2.3 Grau da Subtracao

De modo analogo ao grau da soma, se f,ge f—g = f+(—g) = h s&o PolinGmios
nao nulos, entdo 0h segue conforme Equacao 2.13.
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2.4.2.4 Exemplos de Subtragcdo de Polinbmios

Dados os seguintes Polinbmios exemplos, temos:

1. f(z) = 22" + 322 — bz + 1;

2. g(z) =52 —x +3.

Seré calculado o Polinémio h(z) = f(z)—g(z). Equiparando o nimero de termos,
0S reescrevemos como:

1. f(z) = 22" + 02% + 322 — bz + 1;

2. g(z) = 0z* + 52% + 0% — x + 3.

Logo, executando a subtragao dos coeficientes de termos semelhantes, tem-se
o Polinémio:

h(z) = (2—0)z* + (0 —5)2* + (3 — 0)z* + (=5 — (—=1))a + (1 — 3).

Portanto, segue que

h(x) = 22* — 52% + 32° — 4z — 2.
2.4.3 Multiplicacao
2.4.3.1 Produto de Polinbmios

Dados dois Polinébmios f, conforme Equacéo 2.9, e g, tal que
9(2) = bpa™ + b1 2™ - bga? o+ byw + by, (2.14)
denomina-se o produto de f - g 0 Polinbmio h como

]’L(ZL‘) = anbmm”+m + -+ (agbo + a1b1 + aon)xQ + ((llbg + a0b1>$ + CLgb(). (21 5)

Nota-se que o polinbmio i corresponde a
R(z) = Crpma™ " + - + 2% + 12 + ¢, (2.16)

ao qual, nas palavras de lezzi (2013), cada coeficiente ¢, (k € NU {0}) pode ser obtido
da seguinte forma:

k

Cr = aobk + albk—l + -+ Clkbo = Z aibk_i.
1=0
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Portanto, percebe-se que h pode ser encontrado multiplicando cada termo
a;z" de f por cada termo b;z’ de g, seguindo a regra que (a;z") - (b;ja?) = a;bja', e
posteriormente, somando os respectivos resultados obtidos.

2.4.3.2 Propriedades da Multiplicagcao

Nas palavras de lezzi (2013), a operacao de Multiplicacdo em P, ao qual
considera-se como o conjunto dos Polinbmios de coeficientes reais, verifica-se as
seguintes propriedades, dados os Polinémios f, g € h:

* Propriedade Associativa: f - (g-h)=(f-g)-h,Vf,g,h € P.
» Propriedade Comutativa: f-g=g¢- f,Vf,g € P.

« Existéncia de Elemento Neutro: 3c € P| f - = f,Vf € P. Ou seja, o Polindmio ¢
(elemento neutro para a multiplicagao de polindmios) é numericamente igual a 1.

* Propriedade Distributiva: f- (¢ +h)=f-g+ f-h,Vf,g,h € P.
2.4.3.3 Grau do Produto

Segundo lezzi (2013), se f e g sao dois polindbmios néo nulos de coeficientes
reais, entdo o grau de f - g € igual a soma dos graus de f e g. Ou seja, em termos
gerais, tem-se que:

Oh =0f + 0g. (2.17)

2.4.3.4 Técnicas de Multiplicacdo de Polinbmios

A seguir serdo apresentados dois métodos praticos para a multiplicacao de
Polinbmios através de dois dispositivos, a saber:

2.4.3.4.1 Método 1

Consiste em um dispositivo onde organiza-se os Polinbmios, um sobre o outro,
onde cada termo de um dos polinébmios, de preferéncia o de menor grau, multiplica
todos os termos do outro. Feito isso, as parcelas resultantes de termos semelhantes
vao se agrupando e, posteriormente, sendo somadas e formando os coeficientes ¢;
(com i € NU {0}) do Polinbmio produto h. Considerando os Polinémios f e ¢, a Figura
1 ilustra o dispositivo que apresenta o Método 1 para a multiplicacao dos Polinbmios
f - g = h, da seguinte forma:
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Figura 1 — Dispositivo usado no Método 1 para a Multiplicagao de Polinémios.
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byx?

a1 x + ag

by + b
arbpx +  apby
apbyx

flx)= anT
) = b x™

+

+

apbox™  +
.. +

+

|+ +
+ |+ +
+ +|+ +
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s asbox
+  asbya® abya?

anbya™ e
agbaz® 4+ arhyr®  + aghyx®

anbox™t? +

Apbp ™™ 4 : . : : e :
hMz) = apbpa™™™ + +  (aoby + arby + asbo)z®  +  (aghy + arbo)x  + aohy

Fonte: Adaptado de lezzi (2013).

Portanto, tem-se através desse método, a Equacgéo 2.15 resultando na Equacao
2.16.

Para ilustrar a aplicacao desse método, segue um exemplo:

Exemplo 2.1. Exiba o polinbmio produto da multiplicacdo dos polinémios f(z) =
22 + 322 — bz + 1 e g(r) = 42? — v + 3.

Solugdo. Organizando os mesmos no dispositivo e executando as devidas operacoes,
conforme Método 1, busca-se o polindmio f - g = h.

f— 20+ 023 4+ 322 — br +
g— 422 — x +
6zt + 023 + 922 — 15z +
— 2% 4+ 02 — 32 + b5a? — 2
82 + 0z° 4+ 122* — 202 + 422
h— 8% — 22° + 18z* — 2323 + 1822 — 162 + 3

Portanto, o polinémio pedido é h(z) = 82°% — 22° + 18z* — 2323 + 1822 — 162 + 3.
2.4.3.4.2 Método 2

Esse método consiste em organizar em uma tabela os coeficientes a; do polind-
mio f e 0s b; de g. Posteriormente, em cada célula calcula-se todos os produtos a; - b; €
0s somam-se em cada diagonal.

A Figura 2 abaixo ilustra a aplicacdo desse método.
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Figura 2 — Dispositivo usado no Método 2 para a Multiplicagao de Polinémios.

g
b b b b
f 2 1 0
ap an bm aan anbl anbO
a9 azbm CLQbQ CLle CLQbO
aq albm CleQ CL1b1 Cleo
Qo aobn, aobz | agby | agbo

Fonte: Adaptado de lezzi (2013).

Logo, somando-se os produtos de cada diagonal da tabela, temos os coeficientes

¢ do Polinbmio h:

Cntm = anbm
Co = agbg + a1b1 + (lgbo
cT = CLobl + Cllbo
Co — agbo.

Portanto, segue desse método a Equacéao 2.15 culminando na Equacgéao 2.16.

Exemplo 2.2. Usando agora esse método, realize a multiplicagado do polindmio f(z) =
221 + 322 — 5z + 1 pelo polinémio g(z) = 42> — x + 3.

Solugdo. Organizando os coeficientes dos mesmos na tabela e executando as devidas
operagoes, temos:

f 2 101 3| =511

g
4 8 12 1 =20 | 4
-1 | -2 -3 5 | -1
3 6 9 | -15| 3

Logo, como o O(f - g) = 0f + Jg = 4 + 2 = 6, temos o0s seguintes termos como
resultado:
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cg = 8

cs = —240=-2

cg = 6+0+4+12=18

ez = 04 (=3)+(-20)=-23
co = 9+5+4=18

g = —15+(—-1)=-16

Co = 3.
Portanto, temos o Polindmio h(z) = 82% — 22° + 182% — 2323 + 1822 — 16z + 3.
2.4.4 Divisao

2.4.4.1 Definicdo

Nas palavras de lezzi (2013), dados dois Polinbmios f como o dividendo € ¢
(com g # 0) como o divisor, realizar a operacao de dividir f por g é determinar dois
outros Polinbmios ¢ como quociente e » como o resto. Nesses termos, verificam-se as
duas condicdes seguintes:

1. f=q-g+7;

2. Or < dg ou r = 0 (quando a divisao for exata).
2.4.4.2 Casos em que as divisées sdo imediatas

A seguir, serdo ilustrados os dois casos em que a divisao de f por g € imediata.

» 1°caso: O dividendo f € o Polinbmio Nulo (f = 0). Neste caso, temos que:
f=q-g+r<0-g+0=0.

Portanto, os Polinbmios ¢ = 0 e r = 0 satisfazem as condic¢des (1) e (2) acima.
Logo,

f=0=q¢q=0er=0.

» 2°caso: O dividendo f ndo é um Polindmio Nulo (f # 0), mas tem grau menor
que o divisor g (0f < dg). Neste caso, temos que:

f=q-g+ref=0-g+r=r.
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Portanto, claramente os Polinbmios ¢ = 0 e r = f satisfazem as condicdes (1) e
(2) da definicado de divisdo acima, ja que 0r = df < dg. Logo,

of <dg=q=0er=f.
2.4.4.3 Técnicas de divisdo de Polinbmios

Para a proposta do presente trabalho, serd sempre admitido que o grau do
Polinbmio f € maior ou igual ao de g. Ou seja, df > dg. A bibliografia apresenta alguns
métodos bastante utilizados pelos matematicos para a divisdo de Polinbmios. Entre
tais, lezzi (2013) apresenta dois métodos a saber: Método de Descartes e Método da
Chave.

2.4.4.31 Método de Descartes

Criado pelo notavel e renomado matematico francés René Descartes (1596 -
1650), esse método também é conhecido como “método dos coeficientes a determinar”,
ao qual baseia-se nos seguintes fatos:

1. Pela consequéncia da definicado de divisdo de Polinbmios, d¢ = df — dg, ja que
q-g+r=f=0(q-g+r)=0feentdo dq + dg = Of.

2. Por consequéncia, temos que dr < dg ou r = 0.

Esse método obedece o seguinte roteiro:

1. Calculam-se inicialmente os graus de f e de r;

2. Posteriormente constroem-se os Polindbmios ¢ e r, sem figurar os seus coeficien-
tes;

3. Por fim, determinam-se os coeficientes incognitos através da equivaléncia ¢-g+r =

f.

A seguir, mostraremos dois exemplos de aplicacdes praticas utilizando esse
método:

Exemplo 2.3. Dividir o Polinémio f = 325 — 2* + 22° — 42 — 3 por g = 2 — 2z + 1.

Solugdo. Temos que os graus e as formas dos Polindmios quociente ¢ e resto r séo,
respectivamente:
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©«Jg=0f —09g=5—-3=2=q(r) =ar?+br +c
cIr<dg=3=0r<2=r(r)=de*+ex+ f.

c q-gtr=f=(ar?+br+c) (23 =22+1)+ (dz* +ex+ f') = 32° — 2" + 223 —4x — 3.

Desenvolvendo os produtos do lado esquerdo da ultima igualdade e somando
os termos semelhantes, temos pela identidade de Polinbmios e para todo = € R, que:

« ar’+brt—(2a—c)xd+(a—2b+d)x® + (b—2c+e)x+ (e+ f') = 32° —x* + 223 — 42— 3.

Pela igualdade de Polinémios, temos que:

e 2a+c=2=>-2-3+c=2=c=28.
ca—2b+d=0=3-2-(-1)+d=0=d=—5.
e b—2c+e=-4=-1-2.-84e=—-4=¢e=13.

cc+f=-3=8+f=-3=f=-11L

Com isso, temos os Polindmios ¢(z) = 322 — 2 + 8 e r(z) = —bx? + 13z — 11.
Portanto,
g-9+tr=f<

(32 —x+8)- (z° — 22+ 1) — 52> + 132 — 11 = 32° — 2* + 22° — 42 — 3.
Exemplo 2.4. Dividir o Polinémio f = 22%—112*+ 1823 —52% —8x 46 por g = 22% —4x +3.

Solugdo. Temos que os graus e as formas dos Polindmios quociente ¢ e resto r séo,
respectivamente:

©«Jg=0f —09g=6—-2=4= q(z) = ar* + bx® + cx* + dz +e.
cOr<idg=2=0r<l=r(x)=fr+yg.

cq-gtr=f=(ax*+b2®+cx® +drv+e) (202 —4x+3)+ (flz+¢) = 22° — 112" +
1823 — 5z* — 8x + 6.
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Desenvolvendo os produtos do lado esquerdo da ultima igualdade e somando
os termos semelhantes, temos para todo z € R:

2ax°% — (4a — 2b)x° + (3a — 4b + 2¢)x* + (3b — de + 2d)x® + (3¢ — 4d + 2¢)x? + (3d —
de + )z + (3e +g') = 22° + 02° — 11a* + 182% — 52 — 8z + 6.

Pela igualdade de Polinémios, temos que:

c2a=2=a=1.
e —4a+2b=0=—-4-1420=0=0b=2.
*3a—4b+2c=-11=3-1-4-24+2c=—-11=c=—-3.
©3b—4c+2d=18=3-2—4-(=3)+2d=18 = d =0.
©3c—4d+2e=-5=3-(-3)—4-0+2e=-5=>e=2.
*3d—4de+ [ =-8=3-0—4-24+f =-8=f =0.
*3e+¢d=6=3-24+9g=6=¢=0.
Com isso, temos o Polindmio ¢(x) = 2* + 22® — 322 + 2 e 0 Polinémio Nulo » = 0,
0 que se configura como uma divisao exata. Portanto,
g-g+r=f&
(z* 4+ 22° — 32? +2) - (22% — 4o + 3) = 22° — 112* + 182® — 52% — 8z + 6.
2.4.4.3.2 Método da Chave

Esse se assemelha com a forma convencional da divisdo aritmética entre dois
inteiros quaisquer. Utiliza-se uma “chave” onde nela sédo organizados os coeficientes
do dividendo f, os do divisor g, 0s do quociente ¢ e os do resto r, conforme Figura 3
abaixo:

Figura 3 — Método da Chave para a Divisao de Polindbmios.
e
roq

Fonte: lezzi (2013).
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Portanto, segue dessa representacao que f = ¢ - g + r. O método consiste,
inicialmente, em multiplicar os termos de g por um certo numero (coeficiente lider de
q) de modo que esse produto seja o inverso aditivo do primeiro termo de f (termo do
coeficiente lider de f). Esse processo é feito de modo sucessivo e aplicado em todos
os Polindmios r; (restos residuais de f) até que dr; < dg. Os exemplos abaixo ilustram
como é realizado esse método.

Exemplo 2.5. Dividir o Polinémio f = 32% — 2* + 22% — 42 — 3 por g = 2° — 22 + 1.

Solugdo. Temos que:

1. Primeiramente, organiza-se os coeficientes de f e g na Chave e nota-se que
0q=0f—-0g=5—-3=2=qg=ar>+br+cequedr <9dg=0r<2=r=
dx?® + ex + f'. Portanto, temos:

3x5—x4+2z3+0x2—4x—3‘x3+Ox2—2:p+1

r = ax? + br + ¢

2. Agora, buscando “anular’ o termo 3z° de f, multiplica-se 2 de ¢ por az? de
modo que ax? - 2* = 32° = a = 3. Portanto, inicialmente, cada termo de ¢ sera
multiplicado por 3 e, com isso, gerando o Polinémio 3¢g onde esse sera subtraido
de f. Consequentemente nesse processo, o termo do coeficiente lider de f (32°,
no caso) sera anulado e, com isso, surge o primeiro resto residual r; de f. O
seguinte quadro ilustra esse processo de forma pratica:

3 — 2t 4+ 22 4+ 022 — dx — 3‘ 2 4+ 022 — 20 + 1
— 32 — 02* 4+ 622 — 32° 322 + bx + ¢
rn= 02> — 2 + 823 — 322 — 42 — 3

Com isso, temos que o primeiro resto residual de f serd r, = —a* + 823 — 322 —
4xr — 3.

3. O processo se reinicia buscando agora “anular” o termo —z* de r,. Para isso,
multiplica-se esse termo por bz de modo que bx - 23 = —2* = b = —1. Logo, agora
cada termo de g serd multiplicado por (—1), sendo gerado o Polinémio (—g) e, em
seguida, o subtraindo de r,. Desse modo, o termo (—z*) de r, serd anulado e,
com isso, surgindo o segundo resto residual r, de f.

O seguinte quadro ilustra essa situagao:
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325 — 2t o+ 228 022 — 4z — 3|22 + 022 — 20 + 1
- 325 - 02* + 628 32 32 — x + ¢
rn= 02> — 2* + 823 32 — 4 — 3
x4+ 023 212 + 1
ry = 0xz* + 83 5022 — 3z — 3

Com isso, temos entdo o segundo resto residual de f; r, = 82® — 52% — 3z — 3.

4. Por conseguinte, buscando agora “anular’ o termo 8z* de r,, multiplica-se o
mesmo por ¢ de forma que ¢ - 2* = 82° = ¢ = 8. Multiplicando cada termo de g
por (8), tem-se o Polinémio (8¢). Subtraindo esse de r,, 0 termo 8z é anulado
e, com isso, sendo gerado o terceiro resto residual 3 de f. Para isso, temos o

seguinte quadro:

325 — 2t 4+ 228 022 — 4oz — 3 | 22 + 022 — 22 + 1
- 32° — 02 4+ 62° R 322 — x4+ 8
rn= 0 — 2% + 8° 322 — 4 — 3
rt + 0a3 227 + @
ry = 0z* 4+ 823 522 — 3z —
— 8 0z + 16z —
rs = r = 0z2° 522 + 13z — 11

Por fim, temos r; =

—522 + 13z — 11 como o Ultimo resto residual » de f. Como
Or < 0q a operagao é dada por finalizada. Portanto, temos que:

qg-g+r=[f<&

(32 —x+8)- (z* =22+ 1) — 52> + 132 — 11 = 32° — 2* + 22 — 42 — 3.

Exemplo 2.6. Dividir o Polinémio f = 22%—112%+ 1823 — 522 — 8z +6 por g = 222 —4x +3.

Solucdo. Nesse exemplo, sem perca de generalidade, serédo representados somente
os coeficientes dos termos dos Polinémios envolvidos na operagao, afim de facilitar os

céalculos.

1. Inicialmente, temos que 0 9g=90f —0g=6—-2=4 = q = ax* + bx® +ca®> +dv +e
eodr <dg=0r <1=r= f'z+ ¢.Portanto, organizando os coeficientes de f e

g na Chave, temos:

2 0

r =

—11

18

)

-8 62 —4 3
a b ¢ d e
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2. Buscando “zerar” o coeficiente 2 de f, multiplicamos 2 de g por « de modo que
a-2 =2 = a= 1. Portanto, pela propriedade do Elemento Neutro, tem-se que 0
Polindbmio (g) sera subtraido de f e, com isso, obtendo o primeiro resto residual
r; de f. O quadro abaixo ilustra essa passagem:

2 0 —-11 18 -5 -8 6|2 —4 3
-2 4 -3 1 b ¢ d e
rn= 0 4 —-14 18 -5 -8 6

Com isso, temos que r; = 42° — 14x* + 1823 — 522 — 8z + 6.

3. Reiniciando o processo agora para “anular” o coeficiente 4 de r;, multiplicamos 2
de g por b, de modo que b - 2 = 4 = b = 2. Obviamente, 2 multiplicara também os
demais coeficientes de g formando o Polindmio (2g) ao qual sera subtraido de r,
e, com isso, formando o segundo resto residual r, de f, conforme quadro abaixo:

29 0 —11 18 -5 -8 6\2 —4 3

-2 4 =3 1 2 ¢ d e
rr= 0 4 —-14 18 -5 -8 6
-4 8 —6
ry = 0O -6 12 -5 -8 6

Com isso, temos entdo o segundo resto residual de f, r, = —6z* + 1223 — 522 —
8x + 6.

4. Buscando agora “anular” o coeficiente (—6) de r,, multiplica-se 2 de ¢ por ¢, de
modo que ¢- 2 = —6 = ¢ = —3. Assim, como o (—3) multiplicard cada um dos
coeficientes de g, tem-se o Polinbmio (—3g) ao qual sera subtraido de r,. Com
isso, tem-se o seguinte quadro:

9 0 —11 18 -5 -8 6\2 4 3

-2 4 =3 1 2 -3 0 e
r= 0 4 —-14 18 -5 -8 6
-4 8 —6
ry = o -6 12 -5 -8 6
6 —-12 9
Ty = 0 0 4 -8 6

Por fim, tem-se o terceiro resto residual r; = 42> — 8z + 6 de f. Observa-se aqui
que, para c = —3, “zerou” também o coeficiente 12 de r, (termo 12z3). Isso implica
dizer que d = 0.
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5. Por fim, buscando “zerar” o coeficiente 4 de r3, multiplica-se 2 de ¢ por e (assim
como os demais coeficientes de g), de modo que e -2 = 4 = e = 2. Portanto,
tem-se o Polinbmio (2¢g) que, ao ser subtraido de r3, tem-se o seguinte quadro
como resultado:

2 0 —-11 18 -5 -8 6 |2 -4 3

-2 4 =3 1 2 -3 0 2
rn= 0 4 —-14 18 -5 -8 6
-4 8 —6
ry = o -6 12 -5 -8 6
6 —-12 9

r3 = 0 0 4 -8 6

—4 —6
Ty = r= 0 0 0

Como r, = r = 0, a operagao é dada por finalizada. Portanto, com ¢ = 2% + 223 —
322 + 2, temos que:
¢ g+tr=f<

(z* 4+ 20% — 32% +2) - (20% — da + 3) = 22° — 112" + 182% — 52° — 82 + 6.
2.4.5 Divisao por Binémios do 1°Grau

A seguir, serao ilustradas definicoes e conceitos pertinentes a divisdo de Poliné-
mios por Bindbmios do 1°grau da forma Sz — a.

2.4.5.1 Divisdo por binémios do 1 °grau unitario.

Nessa Secédo sao tratadas das divisdes de polinbmios reais em que o dividendo
f possui 0f > 1 e o divisor g possui dg = 1 e coeficiente dominante também igual a 1
(Polinémio Unitario).

Dados os polinémios f e g, dividendo e divisor, respectivamente, em que g =
x — a (com « € R). De acordo com lezzi (2013), na divisdo de f por g o polindmio r é
do tipo constante. Pois, por consequéncia da definicao (0r < dg), como ¢ é unitario e
de grau 1, entdo tem-se que 9r = 0 ou » = 0. Dado o valor para = = «a, percebe-se que
o valor numérico de r ndo depende de «. Ou seja,

fla) =rVa eR.
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2.4.5.2 Teorema do resto

Teorema 2.4.1. O resto da divisdao de um Polinbmio f por x — a (o € R) é igual ao valor
numeérico de f(«). Ou seja,

fla) =r.

Segue sua demonstragao:

Demonstragcdo. De acordo com a definicdo de divisao, temos:
¢ (z—a)+tr=f

em que g é o quociente e r é o resto. Como o grau de x — « é igual a 1, pode-se concluir
que o r ou é nulo ou tem grau nulo. Logo, » € um Polinbmio constante. Com isso, temos
com igualdade acima, para = = «, que:

g(a) - (@ = @) +r(a) = f(a).

Portanto, tem-se com isso que:

r(a) =r= f(a).

2.4.5.3 Teorema de D’Alembert

Teorema 2.4.2. Um Polinémio f é divisivel por um binbmio = — o se, e somente se, «
for raiz de f. Ou seja:

f(a) =0.

Sem percas de generalidades, tomemos « uma raiz da equagao polinomial
f(xz) =0 como um zero da funcgéo f.

Sua demonstracao se da por duas implicacdes a se provar:

Demonstragdo. Dado o bindmio x — o (« € R) e o0 polindbmio f, com f(«) = 0, temos:

1.2 —a | f = « éraiz de f. Pelo Teorema do Resto, r = f(«) = 0. Logo, como a
divisao é exata, podemos concluir que « € raiz de f.
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2. céraizde f =2 —a| f. Como « € raiz de f, tem-se que f(«) = 0 e, pelo Teorema
do Resto, o resto r da diviséo de f por z — « é igual a f(«). Dessa forma, r = f(«) = 0,
mostrando que f é divisivel por = — a. |

2.4.5.4 O Dispositivo Pratico de Briot-Ruffini

Na Secao 2.4.4 é apresentado alguns métodos de divisdo de Polinémios. O
Dispositivo ou Algoritmo de Briot-Ruffini (DBR) é bastante utilizado para a divisdo de
polinémios por bindmios unitarios da forma = — a. Sua aplica¢ao é relativamente prética
e é bastante mencionada na bibliografia e também utilizada nos cursos de Matematica,
seja no Ensino Médio ou no Ensino Superior.

2.4.5.41 Demonstragdo do Dispositivo de Briot-Rulffini

Sua demonstracao se da utilizando algumas das definicdes sobre as operagdes
com polinémios. Vamos a sua demonstracao:

Considere os polinbmios f da Equacao 2.9 e

g=x—c. (2.18)

Buscaremos agora determinar os polinémios quociente ¢ e resto r da divisao de
f por g. Para tal, temos que:

of=n € 0dg=1=0q=n—1.

Portanto, tem-se que:

q = bn_ll’n_l + bn_gxn_2 —|— s + b2$2 —f- blfL' —|— b(). (21 9)

Em seguida, aplicando as técnicas de multiplicacdo de polinémios, tratadas na
Secdo 2.4.3 entre g e g, temos o seguinte:

Figura 4 — Multiplicacao dos Polinbmios quociente g e g = = — c.

bp_1z™ ! +  bpox™? 4+ bpzx™d + . 4 by + bix + b
T - ¢
— ORY —  chy_ox™? — e — by — cbo? — chix —  c¢hy
bp_1z™ + bp_ox™ ! +  bp_gzz™?  + e + by + bya? + box
bnfl.’L'n + (bn72 - Cbnfl)l‘”il + e + (bl - Cbg).’L’z + (bo - Cbl).’L' — Cbo

Fonte: Adaptado de lezzi (2013).

Pela condigdo de que ¢ - (r — ¢) + r = f e pela identidade de polinbmios tratado
na Secao 2.3.4, temos as seguintes igualdades:
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* bp1=ay
¢ bn—Z —C- bn—l = Qp-1 = bn—2 =cC- bn—l + ap-1

* bn—3 —C- bn—? = Qp-2 = bn—S =cC bn—2 + ap—2

*by—c-bp=ay=b=c-by+as
*by—c-by=a;=by=c-by +a;

sr—c-bg=ay=>r=c-by+ ag.

Os passos realizados acima (ou o Algoritmo) tornam-se bastante simples quando
os coeficientes de f e o termo independente ¢ de g estdo organizados conforme o
quadro da Figura 5 abaixo:

Figura 5 — Algoritmo de Briot-Ruffini.

c ‘ Qp, Ap—1 Ap—2 a2 aq ‘ )
an c-bn,l—l—an,l C'bn72—|—an72 C'b2+CL2 c-b1+a1 C'bo"i‘(lo
WV N ~ - ~ 4 NV d N v NV d

br—1 bn—2 by—3 T by bo r

Fonte: Adaptado de lezzi (2013).

O dispositivo do quadro acima torna a divisdo de um polinémio de grau n (com
n > 2) por um bindmio unitario da forma x — o de modo simples e pratico.

2.4.5.4.2 Aplicacgao pratica do Dispositivo de Briot-Ruffini

A seguir, mostra-se algumas aplicacdes praticas do uso desse dispositivo:
Exemplo 2.7. Dividir o polindbmio f = 2 — 422 + 5z — 2 pelo bindbmio g = = — 3.

Solugdo. Usando o DBR, temos os seguintes passos:

1. Definimos a raiz de g (xr — 3 = 0 = = = 3) e a organizamos juntamente com 0s
coeficientes ordenados de f, obedecendo as poténcias decrescentes de x, no
dispositivo, conforme abaixo:

3/1 -4 5] -2
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2. Baixa-se o primeiro coeficiente do dividendo ¢ (no caso, 1) e o multiplica-se pela
raiz do divisor g (1 -3 = 3).

3/1 —4 5|2
1 |

3. Adiciona-se o produto obtido, (3) ao coeficiente seguinte de f, (—4). A soma
(3+ (—4) = —1) é inserida abaixo desse coeficiente, conforme segue:

3/1 —4 5|2
11

4. Com a soma obtida (—1), repete-se as operagdes (multiplica-se pela raiz de g e
adiciona-se ao coeficiente seguinte de f), e assim por diante. Com isso, ficando o
quadro da seguinte forma:

3/1 -4 5] -2
\1 1 2\ 4

O ultimo numero obtido no quadro é o resto r da divisdo de f por g. Logo, r = 4.
J& os demais numeros correspondem aos coeficientes ordenados (segundo
poténcias de expoentes decrescentes de z) do polinbmio quociente ¢. Com isso,
temos que ¢ = 2% — z + 2.

Portanto, segue que:
g qg+r=f=(@-3)- @’ —x+2) +4=2"—42° +5x — 2.
Exemplo 2.8. Dividir o polinémio f = 22% + 727 + 132° — 102* — 352* + 48 por g = x + 4.
Solucdo. Essa divisao pode ser facilmente realizada através do dispositivo de Briot-
Ruffini.
1. Definiraraizde g (x + 4 =0 = = = —4) e juntamente com os coeficientes de f,
organiza-los no dispositivo, conforme abaixo:

~4]2 7 0 13 -10 0 -35 0]48
| |

2. O coeficiente lider de ¢ corresponde ao de f (no caso, 2). Logo, multiplica-se esse
coeficiente pelaraizde g (2- (—4) = —8).
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~4]2 7 0 13 —10 0 -35 0]48
2 |

3. Adiciona-se o produto obtido, (—8) ao coeficiente seguinte de f (7). A soma
(—8 + 7= —1) é inserida abaixo desse coeficiente (7) de f, conforme segue:

~4]2 7 0 13 -10 0 35 0]48
2 -1 |

4. Com a soma obtida (—1), repete-se as mesmas operagdes (multiplica-se o emi-
nente coeficiente de ¢ pela raiz de g e adiciona-se ao coeficiente seguinte de f),
e assim por diante. Com isso, ficando o quadro completo da seguinte forma:

~4]2 7 0 13 -10 0 -35 048
2 -1 4 -3 2 -8 -3 120

O ultimo quadro nos informa que o seu ultimo numero obtido € o resto r da divisao
em questdao. Como r = 0, conclui-se que a divisao é exata e que, consequente-
mente, © = —4 é raiz de f. J& 0s demais numeros correspondem aos coeficientes
ordenados do polindmio quociente q.

Portanto,

q(x) = 227 — 2% 4+ 42° — 32" + 22° — 8% — 3w 4 12.

Ao qual, parag-q+r = f, segue que:

(x+4) (20" — 2% +42° —32* 4+ 22° — 827 — 3w +12) = 22° + 72" +132° — 102* — 3522 + 48.
2.4.5.5 Divisdo por binémios do 1 °grau quaisquer

Sera aqui tratado da divisdo de um polinémio dividendo f = (fz — a)-g+r, com
df > 1, por um polinémio g = Sz — a,emque S # 0 e 1.

Segundo lezzi (2013), para a obtenc¢ao do quociente ¢ e o resto r da divisdo do
polinbmio f por g, nota-se o seguinte:

f:(ﬁx—a)-q+7“:>(m—%)-(ﬁ-q)—l—rzf. (2.20)

q/

Da Equacgao 2.20, verifica-se o0 seguinte processo de resolucéo, utilizando o
Dispositivo de Briot-Ruffini:
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1. Divide-se f por z — % com o auxilio do DBR.

/
2. Divide-se o quociente ¢ encontrado por  para obter q(q’ =0-q=q= %)

A seguir, sera ilustrado alguns exemplos praticos de sua aplicagao.

Exemplo 2.9. Qual o quociente da divisao do polindbmio 8z° — 22* + 523 — 222 — 152 + 9
pelo binbmio 4x — 3?

Solugdo. Temos que 4z —3 = 4-(z— 2). Dividindo o polinémio em questao pelo bindmio
z — 3 com o auxilio do DBR, temos:

s 2 5 -2 -15|9
sls 4 8 4 -—12]0

Como ¢ = 8x* + 423 + 822 + 42 — 12 e 3 = 4, temos que
¢  8xt +4x® 4+ 822+ 4x — 12
q= E = 1
e r = 0. Portanto, segue que o quociente pedido é ¢ = 22* + 23 + 422 + x — 3.

=2t 4t 42— 3

Exemplo 2.10. Qual o quociente da divisao do polinémio 4z* + 62* — 72* + 8z — 7 pelo
bindmio 2z + 37

Solugdo. Temos que 2z+3 = 2- (z+ 2). Dividindo o polinémio em questéo pelo bindmio
(z + 2) e utilizando o DBR, temos a seguinte situagao:

4 6 -7 8| -7

37 39
40 -7 T

_3
2

, 37
Com isso, temos que ¢’ = 42> — Tx + ) e f = 2. Logo, temos que

37
3
g Ww-Trto g T 3T 139
= — = = 20X — — _— r=—-——.
1= 3 2 2 4 4
. . , 5 Tz 37
Portanto, temos que o quociente solicitado é ¢ = 2x° — > + T

Observacao. Observa-se através do Exemplo 2.10 que é possivel obter um certo
polindmio quociente ¢ cujo alguns de seus coeficientes sejam racionais. Como todos os
coeficientes de f sao inteiros, no processo de execucgao do algoritmo de Briot-Ruffini,
o resto r obtido serd sempre um numero racional, ja que a soma de um racional ndo
inteiro com um inteiro serd um numero racional nao inteiro. Logo, nao nulo.
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2.5 EQUACOES POLINOMIAIS

A sequir, serao apresentados alguns conceitos pertinentes as Equagdes Polino-
miais ou Algébricas relevantes ao desenvolvimento do presente trabalho.

2.5.1 Definicao

Segundo Dante (2010), denomina-se Equacao Polinomial ou Algébrica toda
equacao que pode ser redutivel a forma P(x) = 0, em que:

P(z) = apz” + ap12™ " 4 -+ aer® + e + ag = 0, (com  a,, # 0) (2.21)

em que os q; (i € NU {0}) sdo elementos do conjunto dos numeros complexos e n
(comn € NUO) € o grau da equacao. A partir desse ponto, para efeito de abordagem
do trabalho em questéo, serdo considerados que os coeficientes a; das equagdes
polinomiais figuradas pertencerao ao conjunto dos numeros rais. Ou seja, a; € R.

Observacao. Para o desenvolvimento do presente trabalho, o conjunto C podera ser
mencionado na necessidade de maiores esclarecimentos.

2.5.2 Raiz de uma Equacao Polinomial ou Algébrica

Denomina-se raiz da Equagéo 2.21 todo numero que, substituido no lugar de z,
torna uma determinada igualdade verdadeira (Dante, 2010). Dessa forma, o valor de «
é raiz de uma equacao P(z) = 0 se « satisfazer a igualdade. Ou seja:

P(Q) = apa™ 4 ap_10™ -+ aga® +aa+ag =0
2.5.3 Conjunto Solucao de uma Equacao Polinomial

Denomina-se conjunto solucao de uma equacao algébrica como o conjunto
de todas as raizes dessa equacgao, considerando R como o conjunto universo. Para
encontrar as raizes das equagdes polinomiais, pode-se utilizar as seguintes estratégias
para cada grau da equacao. Segundo lezzi et al. (2017), sao elas:

» 1° Grau: Dada a equacgao ax + b = 0 (com a # 0), para encontrar o0 conjunto

~ b b
solugdo S, basta fazer: ax = —b = v = - Logo, S = { -

« 2°Grau: Dada a equagdo ax? + bx + ¢ = 0 (com a # 0), para encontrar o conjunto
solucao S, pode-se utilizar a formula resolutiva da equagao do 2° grau:
b+ VA

T = , onde A=W —-4-a-c
2-a
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Sobre o discriminante A, é importante destacar que:

> 0 = A equacgao possui duas raizes reais e distintas.
A ¢ = 0= A equagao possui duas raizes reais e iguais. (2.22)
< 0 = A equacgao nao possui raiz no conjunto dos reais.

VP T ac _b_m}

L pr—
0go. 5 { 2.a 2.q

» 3°Grau: Segundo lezzi et al. (2017), ha a possibilidade de determinar as raizes
de uma equacao de tal grau por meio de férmulas que envolvem operacoes
aritméticas e a extragao de raizes. No entanto, essas férmulas ndo sao estudadas
nas escolas de Ensino Médio, tendo em vista a complexidade de suas aplicagdes.
Mas, para resolver uma equacao do 3° grau, geralmente busca-se encontrar uma
das suas raizes racionais « e, posteriormente, dividir a equagéo pelo bindbmio
x — a, onde o polinbmio quociente é uma equagédo do 2° grau. Com isso, 0
problema € reduzido a encontrar as outras duas raizes (Knudsen, 1985).

» 4° Grau: Assim como as equagdes do 3° grau, as férmulas usadas para a re-
solucado de uma equacéao do 4° grau sao bastante complexas e ndo aplicaveis
aos cursos de Ensino Médio. Esse processo de resolugdo se da por técnicas
de completamento de quadrados e substituicao de variaveis com o objetivo de
reduzir a uma equacao do terceiro grau. Dai, aplica-se as técnicas de reducao
para equacgdes do segundo grau, onde as resoluc¢des sao bastante conhecidas
(Knudsen, 1985). No entanto, o método mais convencional (sem usar formulas
resolutivas) € o mesmo para as equacoes do 3° grau (e para os demais graus).

« 5° Grau ou maior: Nao existe uma féormula resolutiva que se aplique a qual-
quer situacdo. No entanto, gracas aos trabalhos de Evarise Galois (1811-1832),
que deram inicio a chamada Algebra Moderna, generalizou-se as condicées de
resolubilidade de uma equacao algébrica qualquer lezzi (2013).

2.5.4 Teorema Fundamental da Algebra - TFA

Enunciado e provado por Carl Gauss (1777-1855) em 1799, entdo com 21 anos
de idade, em sua tese de doutorado na Universidade de Helmstadt, esse teorema
constitui um elemento central e essencial para o estudo das equacgdes algébricas.

Teorema 2.5.1. Toda fungdo polinomial p : C — C, com P(z) = a,z" + a,_12" ' +
<+ agr? + ayz + ag, com (n > 1) e (n # 0), possui uma raiz no corpo C dos numeros
complexos.
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Observacao. A correspondéncia biunivoca entre Polindémio e Funcao Polinomial real,
tratada na Secédo 2.2, logo apds a Definicao 2.2.2, é valida também para o contexto
dos Numeros Complexos.

Segundo Fernandez e Santos (2010), a maioria das demonstragdes sobre o
TFA, apresentadas nos cursos de bacharelado em matematica, exigem que os alunos
tenham cursado uma disciplina de analise complexa ou de fun¢des complexas.

Nas palavras de Costa (2016), depois da demonstracdo de Gauss, inUumeras
outras demonstracdes do TFA surgiram, exibindo uma enorme diversidade. Portanto,
considerando a complexidade da demonstracao desse teorema e a sua numerosa quan-
tidade de provas disponiveis na literatura, a sua demonstragcao no presente trabalho
sera omitida.

Uma das inimeras demostragdes do Teorema Fundamental da Algebra é atribu-
ida a Fernandez e Santos (2010) e, segundo Costa (2016), o mesmo apresenta dois
Corolarios bastante significativos:

Corolario. Todo polinbmio P(x) ndo constante de grau n possui exatamente n raizes,
ndo necessariamente distintas.

Corolario. Também conhecido na bibliografia como Teorema da Decomposicdo, esse
item sera tratado no proximo tépico.

2.5.4.1 O Teorema da Decomposicao

Nas palavras de lezzi et al. (2017), esse teorema afirma que:

Teorema 2.5.2. Seja P(x) um polinémio de grau n, com n > 1, dado pela Equagao
2.21. Entdo, P(z) pode ser decomposto em n fatores do 1°grau sob a forma:

Px)=a, (x—a1) (r—ag) ... (x —ay) (2.23)

em que oy, as, - - ,«, S80 as raizes de P(x) e a, € o coeficiente dominante de P(z).

Com excecao da ordem dos fatores, tal decomposicao € unica (lezzi, 2013).
2.5.4.2 Consequéncias do Teorema da Decomposi¢cao

Nos apontamentos de lezzi et al. (2017), ha duas consequéncias bastante
peculiares em relacdo ao Teorema da Decomposicao:
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Corolario. Toda equacao polinomial de graun (n > 1), admite n, e somente n, raizes
complexas.

Corolario. Multiplicidade de uma raiz: Tendo em vista o Teorema da Decomposicao,
nada impede que essa decomposicao de P(z) apresente fatores iguais ou idénticos.
Isso implica dizer que o polinémio P(x) apresente raizes idénticas ou multiplas. Com
isso, diz-se que « € raiz de multiplicidade m (m > 1) da equagédo P(z) = 0 se, e
somente se,

P(a) = (z—a)"-Q(z) e Q(x)+#0.

Isto é, o é raiz de multiplicidade m de P(x) = 0 quando o polinbmio P é divisivel por
(x — )™ e ndo é divisivel por (x — a)™ . Ou seja, a decomposigcdo de P(x) apresenta
exatamente m fatores iguais a (v — «).

2.5.5 Relacoes entre coeficientes e raizes de uma equacao polinomial - Relac6es
de Girard

As famosas “Relacdes de Girard” sdo atribuidas ao matematico francés Albert
Girard (1595 — 1632) que estabeleceu relacdes de soma e produto entre as raizes de
uma equacao polinomial.

Para as equacdes polinomiais de grau n, seguem as seguintes relagoes:

« Equacodes do 2° Grau: Tomemos a equagao ax? + bx + ¢ = 0 com a # 0 e cujas
raizes sao a; € as.

Pelo Teorema da Decomposi¢ao, essa equacao pode ser escrita na forma:
a-(r—aq)- (r—ay) =0.
Com isso, tem-se entdo a identidade polinomial:
ar’ +br+c=a-(z—ai)-(z —a), V.

Isto é: b
C
x2+a'x+a:96’2—(@1+042)+<041'O‘2)’ va.

Portanto, segue pela Identidade de Polinbmios que:
C
ap+ay=—— € Q- Q= —
a a

sdo as relagdes entre coeficientes e raizes de equacao do 2° grau.
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- Equacoes do 3° Grau: Tomemos a equagao az® + bx? +cx +d = 0 com a # 0
e cujas raizes sao oy, ay € az. Pelo Teorema da Decomposicao essa equacao
também pode ser escrita na forma:

a-(r—ay) (r—oa)-(r—a3)=0.
Dessa forma, tem-se a identidade polinomial:
ar® + b’ +cr+d=a- (v — o) (v — ) (v —a3), Vaz

Através de algumas operagdes aritméticas, tem-se que:

d

b c
x3+a-x2+a-x+a = 173—(a1+a2+a3)-x2+(0z1-a2+a1-a3+a2-a3)-:p—(a1-ozg-ozg), V.
Finalmente, acompanhando a Identidade de Polinémios, tem-se:

C
@1+C¥2+OK3:—5, @1'0(2+041'Ck3+(l2'063:a e @1'0&2'0&3:—5
séo as relagdes entre coeficientes e raizes da equacao do 3° grau.

« Equacoes de grau n qualquer: A seguir sera deduzido as relacdes entre coefici-
entes e raizes de uma equacao polinomial de grau n (n > 1). Dado a Equacao
2.21, cujas raizes sao ay, as, as, - - - , a,. Pelo Teorema da Decomposicao, essa
equacao pode ser escrita da seguinte forma:

Pz)=a, - (x—ai)-(r—ag) - (r—az) ... - (x —a,) =0.
Realizando as devidas opera¢des com Polindmios, temos a seguinte identidade:

P(x) = ap-2"+a, (a1 +as+az+-+a,) 2" "+

S1

—2
+ an- (o ast+ar-az+ -t apqay) T —

J

-

Sa
-3
— ap-(g-g-azt+ag-ag -t g g )4
A

S
+ (_1)n_an_Sm.xnfm_i_.“_i_(_l)n_an.(al.a2.&3...an)’ Vx’

-~

Sn

em que S, corresponde a soma de todos 0s (n) produtos de m raizes da equa-
m

cao e S, é o produto das n raizes. Portanto, aplicando a condicao de igualdade,
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temos:
Qp—1
Sl e 041+O./2+(13+'--+01r:—
Qn
Ap—2
SQ = 1 QT+ Q1 A3+ Q Qg+ "+ Op_1 Oy = a
n
Ap—3
Sg = Q1 Q- Q3+ Q] Qg -0Qg+ -+ Qg Qp_1"*Qy = — 4
n
Ap—m
Sm = (—1)"-
Qp,
ao
n
Sn = Oél‘CYQ'Oég'...'Oén:(—l) ©—
G,

sao as relagdes entre coeficientes e raizes da equacado P(x) = 0, amplamente
conhecida na literatura como Relacoes de Girard. Com isso, o numero n de
relagbes coincide com o grau n de P(z).

Segundo lezzi (2013), as n relacbes de Girard para uma determinada equacgao
polinomial P(x) = 0 de grau n, ndo séo suficientes para obter ay, as, as, . . ., ay,. Pois,
na tentativa de obter qualquer uma das raizes, apds varias substituicdes, obtém-se a
equacao inicial P(z) = 0.

Portanto, € necessario que seja dada uma condicao ou relacao entre as raizes
de P(z) para que seja possivel a determinacdo do conjunto solucao.

2.5.6 Teorema das Raizes Racionais de uma Equacao Algébrica de Coeficientes
Inteiros

Sabe-se que as equacdes polinomiais de grau maior que 4 nao possuem um
processo determinado de resolucao por meio de formulas (Knudsen, 1985). Até mesmo
as equacgdes de grau 3 ou 4, apesar de haver desde o século XVI féormulas para
encontrar as suas raizes, tais férmulas nao sdo comumente empregadas na Matematica
do Ensino Médio, dadas as suas complexidades de execucao (lezzi et al., 2017). Diante
de tal constatacao, para encontrar, por exemplo, as raizes de uma equagéao de grau 6,
deve-se encontrar uma ou mais raizes para, entao, com elas buscar todas as outras. O
presente capitulo trard uma propriedade que auxiliara na pesquisa das raizes racionais
(e inteiras) de uma equagéao algébrica de coeficientes inteiros.

2.5.6.1 Definicdo

A propriedade em questao é o Teorema das Raizes Racionais ao qual, segundo
lezzi (2013), afirma que:
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Teorema 2.5.3. Seja a equacdo polinomial de coeficientes inteiros a,x™ + a,_jx" ! +
...+ ar® + ayx + ag = 0, com a,, # 0. Se o numero racional E, compeZ,q€e L e
q

(p,q) =1, é raiz dessa equacgdo, entdop | ap € q | a.
2.5.6.2 Demonstragédo do Teorema das Raizes Racionais

Segue sua demonstragao:

Demonstracdo. Tomando P como raiz da equacao polinomial, temos:
q

n n—1
an.(g) +a1-(2) +...+a1.(]_9)+a020,
q q q

Multiplicando ambos os membros por ¢", temos:

P+ Ay P g+t arpog" T ag- ¢ = 0. (2.24)

Isolando «,, - p™ € colocando ¢ em evidéncia na Equacéao 2.24, segue que:

" = —q (@ ap" T+ apg" T+ agg" ). (2.25)

"

-~

A

Agora, isolando a, - ¢" e colocando p em evidéncia, a partir da Equacéo 2.24,

temos:
ao - q" = —p(ap" " Fanp" T+ ag"). (2.26)

~
B

Como todos os coeficientes a; (i € NU0) sado inteiros, segue que A e B também
séo inteiros.

Das Equagdes 2.25 e 2.26, temos:

ap Pt =—q-A= =—A€eZ (%)
q

e

a-¢"=—p B=>2L _ _Bez  (xx)
p

As igualdades acima obtidas mostram que:

e De (x), temos que q | a,p". Como (p, q) = 1, a,, é divisivel por q. Isto é, ¢ é divisor de

(U,
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e De (xx), temos que p | apq™. Como (q,p) = 1, ag € divisivel por p. Ou seja, p € divisor
de ag. [ |

Esse Teorema nao garante a existéncia de raizes racionais em uma equacao
com coeficientes inteiros. Mas, caso existam tais raizes, o teorema fornece todas as
possibilidades.

2.5.6.3 Aplicacdo pratica do Teorema das Raizes Racionais

A seguir, alguns exemplos praticos de aplicacdo desse Teorema.

Exemplo 2.11. Dado a equagdo 3z3 + 822 + 3x — 2 = 0, quais as suas possiveis raizes
racionais?

Solugcdo. Como nao ha qualquer outra informacéo sobre as raizes dessa equacao,
além do fato de que sao 3 (equacao polinomial de grau 3) e, como ela possui todos
os coeficientes inteiros, o Teorema das Raizes Racionais vem a calhar. Por meio do

teorema, sabe-se que, se a equacao tiver alguma raiz racional, ela sera da forma E,

q
em que p é divisor de (—2) e ¢ é divisor de 3. Ou seja, p € {£1,£+2} e ¢ € {£1,£3}.

. , . . 1 2
Portanto, os “candidatos” a raizes racionais sao: { +1, ig, +2, ig}.

Exemplo 2.12. Dada a equacio 2z* + 923 — 1222 — 29z + 30, quais as suas possiveis
raizes inteiras?

Solugdo. A equacao em questao possui 4 raizes e todos o0s seus coeficientes sédo
inteiros. Logo, o teorema das raizes racionais sera bastante util para determinar as
suas possiveis raizes inteiras. Pelo teorema, as suas raizes racionais, se houver, serao
da forma B, emquep|30eq |2 Istoé, pe {+1,£2 £3,+5 4+6,+10,+£15,+30} e
q € {*1, ti}.

Com isso, os candidatos a raizes racionais sao: {il, i%, +2, 43, ig, +5, ig, +6,

15 L. Lo . _
+10, £15, o iBO}. Como o problema esté interessado nas possiveis raizes inteiras,

temos que os candidatos sdo: {£1, +2, +3, £5, 46, £10, +15, £15}.

Para Bezerra (1974), ha observacdes bastante significativas a respeito desse
teorema:

Observacao 1. Toda equacgao algébrica de coeficientes inteiros, cujo coeficiente do
termo de maior grau (coeficiente dominante) é a unidade, se possuir raizes racionais
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elas serédo inteiras. Entdo, uma equagéao da forma
T4 apg 2"+ day- 2t +acx+a=0
nao pode ter raizes racionais.

Observacao 2. Uma equacao algébrica de coeficientes inteiros que possuir o coefici-
ente do termo de maior grau (coeficiente dominante) diferente da unidade (a,, # 1), se
houver raizes, ndo pode ter apenas inteiras.

Observacao 3. Toda raiz inteira (o) de uma equacao algébrica de coeficientes inteiros
€ um divisor do termo independente da equacao (suposta desprovida de raizes nulas).
Ou seja,

+a | ag.

Observacao 4. Toda raiz racional tem para 0 numerador um divisor do termo indepen-
dente da equacgéao e para o denominador um divisor do coeficiente dominante.

2.5.7 Delimitacao das Raizes de uma Equacao Polinomial

A busca pelas raizes de uma equacéo polinomial pode ser bastante onerosa,
dependendo das caracteristicas da equacao em questao. Além do grau da equacao,
ha a observéancia do coeficiente lider e o termo independente que, como visto na
Secao 2.5.6, estao diretamente conectados as suas raizes. Para Bezerra (1974), a
delimitacdo das raizes consiste em determinar dois nUmeros [ e L, entre 0os quais
estejam compreendidas as raizes racionais de uma equacao algébrica. Para tal, tem-se
que o numero [ trata-se da cota inferior (ou limite inferior das raizes negativas) e L da
cota superior (ou limite superior das raizes positivas).

A pesquisa das raizes exige intervalos pequenos de investigacao, pois quanto
mais proximos de [ e L elas forem, mais facil tornam-se as suas buscas. De acordo
com Bezerra (1974), a determinagdo dessas cotas baseiam-se no seguinte principio:

E condicdo necessaria e suficiente para que um nimero L seja cota superior
das raizes de

P(z) = apa” + ap12" "+ apr® + gz + ag =0 (2.27)
que tenhamos: P(x) > 0 paraz > L.

A condicéo é necessaria. Pois, de fato, como a,, > 0, P(x) > 0 quando x crescer
indefinidamente. Logo, se L é limite superior das raizes, entdo P(z) > 0 Vx > L. Pois,
caso contrario, se P(x) < 0 teriamos que, primeiramente, obter P(x) = 0 antes de
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P(z) > 0. Portanto, ndo ha raizes superiores a L. Como consequéncia, se P(z) ndo se
anular para x > L, L é maior que qualquer raiz de P(z) = 0. Portanto, sendo L uma
cota superior.

Para a determinacdo da cota inferior [, o raciocinio € de modo analogo para
P(—z) = 0, onde essa é a transformada de P(z) = 0. Pois, calculando a transformada
P(—z) = 0 e a sua cota superior sendo [ > 0, teriamos —/ como a cota inferior de
P(z) = 0.

2.5.7.1 Meétodo de Laguerre

Atribuido ao matematico francés Edmond Laguerre (1834-1886), esse método é
0 mais indicado entre os métodos existentes, pois é de facil aplicacédo, além de permitir
achar uma cota superior bastante reduzida (Bezerra, 1974).

O método de Laguerre permite a determinacao da cota superior L. Além disso,
através da transformada P(—xz) = 0, é possivel pelo mesmo método determinar,
também, a cota inferir .

Para tal verificacao desse método, dada a Equacao 2.27 e supondo a divisdo de
P(x) por x — L, com o auxilio do Dispositivo de Briot-Rufinni, temos o seguinte arranjo,
conforme exposto na Figura 6:

Figura 6 — Divisao de P(x) por (x — L) (cota superior L) no Dispositivo Pratico de Briot-Ruffini.

| an an1 - a1 |ag

L by bos - b | R

Fonte: Adaptado de Bezerra (1974).

Dessa forma, podemos escrever a Equagao 2.27 como:
P(x) = (2 — L) (bp_1a" "+ bpox™ 2+ 4+ byx® + iz + b)) + R (2.28)

em que, conforme Figura 6, aplicando o Dispositivo de Briot-Ruffini e pela identidade
de polinémios, temos as seguintes relagdes:
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bn—l = an
bp—o=bp1-L+a,1=ay, - L+a,1
bp_3=0bp_2-L+a, o= (an - L+ @n71) -L+a,2=a,- 2 +an_1-L+a,-

bozbl-L—Fal:an-L"_1+an_1-L"_2+---+a2-L+a1
| R=P(L)=a, - L"+a,1-L" ' +---4ay-L*+ a1 - L+ag

(2.29)

Supondo que a, > 0 e, consequentemente, b, ; > 0, um real L que tornar
positivos os numeros b,,_1,b,_2,--- ,b1,bp € R em 2.29, serd um numero que tornara
na Equacédo 2.28, P(x) > 0. Portanto, segue que Vx > L, nas relagdes apontadas em
2.29, P(x) > 0. Com isso, seguindo o principio tratado na Se¢éo 2.5.7, L € uma cota
superior das raizes positivas de P(zx).

Para Roxo et al. (1955), a simples observacao da identidade
P(z)=(x—L)-Q(z)+ P(L) (2.30)

que define a divisdo de P(x) por z — L, permite a determinagdo dos intervalos onde se
encontram as raizes racionais de uma equacao algébrica. Com efeito, escolhendo um
L de tal forma que, para = > L, tem-se um P(z) > 0. Como por hipétese P(z) néo se
anulara para valores maiores que L, nenhuma raiz ultrapassara L.

Portanto, a determinag@o de um certo numero L satisfazendo essa condi¢éo, o
resultado € imediato. Pois, para tal, bastara por tentativas, procurar o divisor L para o
qual sejam positivos os coeficientes b; de Q(z) e o resto P(L).

2.5.7.2 Aplicacao pratica do Método de Laguerre

Para o uso do método de Laguerre, o Dispositivo de Briot-Ruffini torna o processo
bastante simples para o calculo da cota L. Para tal, deve-se observar que se L for
cota superior de P(x) = 0, ao dividir P(x) por x — L, os coeficientes b; do quociente
Q(z) e o resto R, necessariamente, devem ser positivos. Portanto, usando o dispositivo
de Briot-Ruffini, divide-se sucessivamente P(x) pelos naturais {1,2,3,-- -}, até que se
encontrem todos os b; e R positivos.

Caso algum b; ou R for negativo, o processo de divisdo pode ser imediatamente
encerrado. Além disso, é importante destacar que € possivel que um ou mais coefici-
entes do quociente sejam nulos. Por fim, para determinar a cota inferior [ das raizes
negativas de P(z) = 0, basta que seja determinado a cota superior da transformada
simétrica P(—z) = 0.
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A sequir, vejamos alguns exemplos de sua aplicacao:
Exemplo 2.13. Determine as cotas superiores e inferiores da equagao:
P(z) = 2% 4 32° — 362" — 452° + 9327 + 1322 + 140.

Solugdo. Determinando L com o auxilio do Dispositivo de Briot-Ruffini, temos o seguinte
resultado a partirde L > 1:

1 3 =36 —45 93 132 | 140
111 4 -
211 5 —
311 6 —
411 7 -
511 8 4 —
61 9 18 63 + + +

Portanto, segue que L = 6 € cota superior de P(x) = 0.

Buscando agora determinar [, temos que a transformada de P(z) = 0 é:

P(—2) = 25 — 32° — 362 + 452° + 932% — 1327 + 140.

Organizando os seus coeficientes no dispositivo de Briot-Ruffini, temos o se-
guinte resultado a partirde [ > 1:

-3 =36 45 93 —132 | 140

1
1
1
1
1
1
1
1
1

||| | W[ N
Q| =W | =D
|

=~

77709 + +

Portanto, segue que a cota inferior de P(xz) = 0 é [ = —8. Com isso, temos que
se P(z) = 0 possuir alguma raiz real, elas pertenceréo ao intervalo —8 < = < 6.

Observacao. Para o calculo de L, nota-se que nao foi necessario calcular os ultimos
coeficientes para 1 < L < 5, pois 0s mesmos seriam negativos. Assim como para L > 6,
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pois 0s mesmos seriam positivos. De modo analogo, o mesmo pbde ser aplicado para
o calculo de 1.

Exemplo 2.14. Dado a equagéo polinomial P(z) = 325 — 502* + 22 — 40 = 0, determine
o intervalo que se encontram as suas possiveis raizes racionais, se existir.

Solugdo. Devemos determinar as cotas superiores e inferiores das raizes de P(z).

Para L, temos com o auxilio do algoritmo de Briot-Ruffini o seguinte quadro:

3 =50 0 0 2| —40
1 13 -

16 |3 -
1713 1 17 + +| +

Logo, segue que L = 17.
Para o célculo de [, temos que a transformada de P(z) = 0 é:

P(—z) = 32° + 502* 4 22 + 40 = 0.

Dessa forma, organizando os dados no dispositivo pratico de Briot-Ruffini, temos
0 seguinte quadro:

350 0 0 2|40
113 + + + +]+

Logo, temos com isso que [ = —1.

Portanto, temos que o intervalo pedido é: —1 < = < 17.
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3 REGRAS DE EXCLUSAO DE NEWTON

Como ja visto na Secédo 2.5.6, as raizes inteiras de uma equacéao algébrica
P(z) = 0 sdo os divisores do seu termo independente. Além disso, através do Método
de Laguerre, tratado na Sec¢ao 2.5.7.1, 0 mesmo permite limitar, ainda mais, o campo
de busca das possiveis raizes da equacao. No entanto, as cotas podem ser de tal forma
que o numero de divisores ainda seja relativamente grande. Diante desse fato, serao
apresentadas as Regras de Exclusdo de Newton que permitem excluir os ndo divisores
de ay, portanto improvaveis raizes de P(x) = 0, compreendidos no intervalo entre [ e L.

3.1 CONTEXTUALIZAGCAO E DEFINICAO

Para Roxo et al. (1955), as Regras de Exclusdao de Newton sdo condi¢cbes
necessarias, mas nao suficientes para que um determinado niamero, compreendido no
intervalo entre [ e L, seja raiz de P(x) = 0. Segundo Bezerra (1974), essas regras de
exclusdo sdo também atribuidas ao matematico francés Etienne Bézout (1730 — 1783),
ao qual diz que:

Definicao 3.1.1. Se um determinado ndmero inteiro « é raiz de uma equacao algébrica
de coeficientes inteiros P(z) = 0, ent3o:
1. a — 1 divide P(1).
2. a+ 1divide P(—1).
Para tanto, é importante destacar que é possivel que um nimero « seja de tal

formaquea—1| P(1),a+1| P(—1) e o, mesmo assim, nao ser raiz de P(x) = 0. Pois,
como dito, essas regras sao condi¢cdes necessarias, mas nao suficientes.

3.2 DEMONSTRAGAO DAS REGRAS DE EXCLUSAO DE NEWTON

A seguir, sua demonstragao:

Demonstragdo. Dado um « € Z, raiz de P(z) = 0, tem-se que:
P(r) = (r—a)-Q(z) (3.1)

em que Q(x) é o quociente da divisdo de P(x) por x — «. Com isso, temos 0s seguintes
casos:
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1. Paraz = 1,em 3.1, temos: P(1) = (1 —a)-Q(1) = P(1) = —(a — 1) - Q(1).
Portanto,

Logo, o — 1| P(1).

2. Paraxz =-1,em3.1,temos: P(-1)=(-1—a) - Q(-1) = P(-1) = —(a+ 1) -

Q(-1).
Portanto, P(-1)
—1
a+l —Q(=1)
Logo, a+ 1| P(—1). [

Com isso, dado um certo « inteiro que, diminuido de uma unidade, néo divide
P(1) ou que, aumentado de uma unidade, néo divide P(—1), ndo podera ser raiz do
polindbmio P(x) = 0.

3.3 APLICACAO DAS REGRAS DE EXCLUSAO DE NEWTON

A seguir, alguns exemplos de sua aplicagao:

Exemplo 3.1. Dada uma equagéo polinomial P(z) = 0, cujo valor numeérico para z = 1
€ 70 e para z = —1 € 126, verifique se os inteiros {2, 3,4, 5,6, 7,8} podem ser candidatos
araizes de P(x).

Solugéo. Temos que P(1) =70 e P(—1) = 126. Logo,

cx=2=2-1=1|P(l)e2+1=3]| P(—1) (2 pode ser raiz).
cx=3=3-1=2]|P(l),mas3+1=41P(—1) (3 ndo pode ser raiz).
cx=4=4—-1=31P(1) (4 ndo pode ser raiz).

s x=5=5—1=4¢tP(1) (5 ndo pode ser raiz).
cx=6=>6-1=5|P(1)e6+1=7|P(—1) (6 pode ser raiz).

s x=7=T7—-1=6¢1P(1) (7 ndo pode ser raiz).

cx=8=8-1=7|P(1)e8+1=9]| P(—1) (8 pode ser raiz).

Portanto, as possiveis raizes inteiras de P(z) = 0 sdo: {2,6,8}.
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Exemplo 3.2. Determine as possiveis raizes racionais de P(z) = 2% + Tz — 4z — 28.

Solugdo. Como visto na Segéo 2.5.6, s6 poderdo ser raizes racionais de P(x) aqueles
que pertencem ao conjunto dos divisores de ay = —28. Logo, séo eles: {+1, +2, +4, £7,
+14, +28}.

Buscando delimitar ainda mais 0 campo de procura das possiveis raizes, através
do Método de Laguerre, tratado na Secao 2.5.7.1, buscaremos as cotas inferiores [ e
superiores L do intervalo onde elas possivelmente se encontram. Logo, temos:

« Com o auxilio do DBF, segue que L:

1 7 —4|-28
1 8 4 —
1 9 14 0
1 10 26 | 50

Logo, L = 3 é cota superior do intervalo que se encontram as supostas raizes de
P(z).

« Buscando agora encontrar [/, alocando os coeficientes da transformada de P(x)
no DBR, temos:

1 =7 —4] =28

1 1 4 4

Logo, I = —8 é cota inferior do intervalo em questao. Com isso, —8 < x < 3.

Como P(1) = —24 e P(—1) = —18, x = +1 nao sao raizes. Logo, com o auxilio
das Regras de Exclusdo de Newton, verificaremos se os numeros {—7, —4, —2,2} s&o
candidatos a raiz de P(z). Com isso, segue;

cx=-T7T=-T—1=-8|P(l)e-7+1=—6| P(—1) (—7 pode ser raiz).
s x=—-4= —4—1=-5¢P(1) (—4 ndo pode ser raiz).
cx=-2=-2-1=-3|P(l)e—-2+1=—1| P(—1) (—2 pode ser raiz).

cx=2=2-1=1|P(l)e2+1=3]| P(—1) (2 pode ser raiz).

Portanto, as possiveis raizes racionais de P(x) = 0 sdo {—7, -2, 2}.
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3.4 AS REGRAS DE EXCLUSAO DE NEWTON APLICADAS A RAIZES RACIONAIS
DE UMA EQUACAO ALGEBRICA DE COEFICIENTES INTEIROS

A sequir, sera apresentado uma aplicagdo das Regras de Exclusdo de Newton
para as candidatas a raizes racionais de P(x) = 0, tratado na Sec¢éo 2.5.6. Ou seja,
dentro do conjunto das possiveis raizes racionais, da forma b (compeZeqeZ),de

uma equacao algébrica, é possivel apontar se uma das fragées pode (ou ndo) ser uma
raiz racional de P(z) = 0.

3.4.1 Contextualizacao e Definicao

Segundo Andrade (1989), o seguinte teorema nos permite eliminar muitas das
possiveis raizes, sem a necessidade de realizar quase nenhum calculo, ja conhecidos
os valores numéricos de P(+1). O teorema diz o seguinte:

Teorema 3.4.1. Sgja P uma raiz de P(z) = apa™ + ap_12™ '+ -+ asa® + a1z + ap onde
q
p,an, - ,02,01,00 € Z! q € 7 e (p7Q) = 1. Entéo} (p_a Q) | P(()./)7\V/()( € 7.

Em particular, (p — q) | P(1) e (p+q) | P(—1).
3.4.2 Demonstracao

Para a sua demonstracéo, serd necessario a apresentacdo do Polindbmio de
Taylor que decorre da formula de Taylor.

Segundo Leithold (1994), temos o seguinte teorema que estabelece a férmula
de Taylor:

Teorema 3.4.2. Seja f uma fungéo tal que f e suasn primeiras derivadas sdo continuas
no intervalo fechado [a, b]. Além disso, f"+1)(x) existe para todo x no intervalo aberto
(a,b). Entdo, existe um numero € no intervalo aberto (a,b) tal que

f’( ) f”( ) AR

n!

f(n+1)<€>

(n+1) (b=a)™.

(3.2)

f(b) = f(a)+ (b—a)+ (b—a)’+ (b—a)"+

Se na Equacéo 3.2, b for substituido por x e a por «, obtém-se a férmula de
Taylor que é

£@) = F@)+ 7 ooy 1 T oy

onde ¢ encontra-se no intervalo (o, x).
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A validade pela qual a Equacao 3.3 ocorre é pelo fato de que f e suas n
primeiras derivadas dever ser continuas no intervalo [«, z] e a (n + 1)-ésima derivada de
f deve existir em todos os pontos do intervalo aberto correspondente. Diante dessas
constatacdes, a Equacao 3.3 pode ser escrita como

f(z) = Py(x) + R,(x) (3.4)
onde
"o ey (n) o
Pn(a:):f(oz)—l—#~(x—a)+%~(a:—a)2+'--+f n'( ) (z—a)® (3.5)
’ £ (g

onde € € (o, ).

O P,(z) é chamado de polindmio de Taylor de enésimo grau da fungéo f no
namero a e 0 R, (x) € chamado de resto na forma de Lagrange, em homenagem ao
matematico francés Joseph L. Lagrange (1736-1813) (Leithold, 1994).

Consequentemente, com 0P, (z) = n < OR,(z) = n+ 1 (ordem da derivada do
Resto), tem-se que que
R,.(z) = 0.

Logo, a Equacéo 3.4 corresponde a

f(z) = P,(2). (3.7)

As palavras de Andrade (1989) traz contribuicées bastante elucidativas sobre a
demonstracdo desse teorema, ao qual sera entdo mostrado.

Demonstracédo. Seja a € Z. Pelo Teorema 3.4.2 e a Equacgéo 3.5, existem inteiros f;
(. € NU{0}), tais que
P)=pp (x—a)" + By (2 —a)" P4+ By (. —a)? + 51 (. — a) + Bo.

Cada f; é o resto da divisdo de P(z) por um polinémio P;(x) de coeficientes
inteiros. Tomando § como raiz de P(z), temos:

P(E):ﬁn-(]—?—Oz)n—i—---—l—ﬂl-(1—9—04)—1—@):0,
q q q
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Multiplicando a igualdade acima por (¢") e isolando — g, - ¢", temos:

Bo - (p—aq)"+q-Boa-(p—aq)" "+ +¢""Bi-(p—ag)=—F-q".  (3.8)

Observa-se que o primeiro membro desta ultima equagéao é um inteiro maltiplo
de (p — aq). Logo, (—f - ¢") € também multiplo de (p — aq).

Toma-se d € Z,talque d | g e d | (p — aq). Com isso, tem-se que d | ag,
implicando que d | (aqg + (p — aq)). Ou seja, d | p.

Dessa forma, tem-se que d € um divisor de p € ¢q. Logo, d = 1 ou d = —1, ja que
(p,q) = 1. Portanto, (p — aq,q) = 1.

De acordo com Hefez (2022), dados a,b,c € Z,se a | b-c e (a,b) = 1, entdo
a | c. Aplicando esse fato as n parcelas do primeiro termo da Equagao 3.8, tem-se que
(p —aq) | Bo-q", 0 que implica que (p — aq) | Bo; ja que 0s inteiros (p — aq) € g s@o
primos entre si. Ou seja, (p — aq) € um divisor de P(«), Vo € Z. |

3.4.3 Aplicacao das Regras de Exclusao de Newton em Raizes Racionais

A seguir, serd mostrado alguns exemplos de sua aplicagao.

Exemplo 3.3. Dada a equagéo 65 — 725 — 76x* 4+ 9123 + 19022 — 2522 + 72 = 0, verifique

. ., 42111 . . . ,
quais dos numeros —, -, =, —, =, — podem Ser suas possivels raizes racionails.

Solugdo. Usando as Regras de Exclusado de Newton, temos que para x = 1, P(1) = 24
e parax = —1, P(—1) = 360. Com isso, tem-se:
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4 4 .
-:c:§:>4—3:1\P(l),mas4+3:7+P(—1). gnaopodeserralz :

2 2 ,

§:>2—3:—1\P(1)92+3:5|P(—1). §podeserra|z .

1 1 ,
-x:§:>1—2:—1|P(1)e1+2:3|P(—1). (§podeserralz).

1 1 :
-x:§:>1—3:—2|P(1)e1+3:4|P(—1). (gpodeserralz)

1 1 . ,
rT=g =1-6=-51P(1). (6 ndo pode ser ralz).
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Lo . . 3211
Portanto, as possiveis raizes da equagao sao 253335
Exemplo 3.4. Considere a equagéo 6z — 723 — 3722 + 8z + 12. Apresente os nimeros
racionais com potencial de ser suas possiveis raizes.

Solugédo. Inicialmente, vamos determinar as possiveis raizes racionais da equacao
usando o Teorema das Raizes Racionais, tratado na Secéo 2.5.6. Para isso, temos
que os divisores de ay = 12 sdo d(12) = {£1,£2,+3,4+4, £6,+12} e os divisores de
a, = 6 sdo0 d(6) = {£1,+2,+3,+6}. Logo, as possiveis raizes racionais da equagao

sdo: { + 1,i%,i%,i%,i?,i%,i3,i%,i4,i§,i6,i12}.

Para reduzir o campo de procura das possiveis raizes, utilizaremos o Método
de Laguerre, tratado na Secao 2.5.7.1, para definir as cotas inferiores [ e superiores L
do intervalo onde as raizes candidatas se encontram. Para L, com a ajuda do DBR,
temos:

6 -7 =37 8 |12
116 -1
216 5 =27
316 11 -4
416 17 31 4+ | +

Logo, L = 4.

Buscando [, temos no DBF os coeficientes da transformada da equagdo em
questao:

6 7 =37 —-8/|12
6 13 —24

6 19 1 -5
6 25 38 + |+

Logo, | = —3. Portanto, —3 < = < 4.

Usando agora as Regras de Exclusdo de Newton para limitar ainda mais o
conjunto das possiveis raizes, temos que P(1) = —18 e P(—1) = —20. Portanto, {+1}
néo é raiz. Logo, para os demais candidatos, temos:

1 1 ~ .
. x:§:>1—2:—1|P(1),masl+2:3J(P(—1)(5 naopodeserralz).
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1
. x———:>—1—2——3]P(1)e—1+2—1|P(—1)<—

5 pode ser raiz) .

N| —

1 1 .
. :c:§:>1—3:—2\P(l)e1+3:4|P(—1)<§ podeserralz>.

1 | .
. w:_gj_1_3:—4{P(1)<—§ naopodeserralz).

1 1 ~ .
g 1-6=-51P(1) (8 néo pode ser ra|z>.

e T =

1 1 ~ .
. x:—6:>—1—6:—7J(P(1)(—6 naopodeserralz).
cx=2=2-1=1|P(1),mas2+1=3¢tP(—1)(2 n&o pode ser raiz).

cx=-2=-2-1=-3|P(l)e—-2+1=—-1|P(-1)(—2 pode ser raiz).

2 2 .
. :c:§:>2—3:—1|P(1)e2+3:5|P(—1)<§ podeserralz>.

2
. a::——:>—2—3:—5fP(1)(—2 néopodeserraiz).

3 3
cx=3=3-1=2|P(l)e3+1=4]| P(—1)(3 pode serraiz).

3 3 .
-:c:§:>3—2:1|P(1)e3+2:5]P(—l) 5 pode ser raiz |.

. x:_gé—B—Q:—MP(l)(—g néopodeserraiz).

4 4 ,
. x:§:>4—3:1|P(1),mas4+3:7J(P(—1)(§ naopodeserralz).

4 4 - ,
. :_g:—4—3:—7TP(1)(—§ nao podeserralz).

Portanto, temos que as possiveis raizes racionais do polindmio em questdo sao

11 2 3
__a_a_27_737_ .
{ 2373 2}



67

4 O ALGORITMO DE PELETARIUS

De acordo com Roxo et al. (1955), ndo ha regra geral para investigar as raizes
inteiras de uma equacao algébrica de coeficientes inteiros, como a Equacao 4.1. Para
tal fim, sera sempre possivel, mediante certo nimero de tentativas sistematicas, calcular
tais raizes. Para Bezerra (1974), dada uma tal equacao, podemos usar o Algoritmo de
Peletarius para verificar se um dos divisores d do termo independente é realmente raiz
de P(xz) = 0.

4.1 CONTEXTUALIZAGCAO E DEFINICAO

Como ja discutido, de acordo com a pesquisa realizada, a bibliografia que
aborda essa técnica é bastante limitada. As referéncias as quais se teve acesso sobre
o algoritmo de Peletarius, ndo trazem uma definicao precisa sobre 0 mesmo. Apenas
relatam a sua aplicagao, através da demonstracédo do algoritmo, seguido de alguns
exemplos praticos.

Visando suprir essa lacuna, buscou-se entdao elaborar uma proposicao que
caracterizasse o algoritmo de Peletarius, ao qual se segue:

Proposicao 4.1.1. Dado o polinémio de coeficientes inteiros
P(z) = ap2™ + @p 12" "+ Gy o™ 4 - b azx® + a0x® + a1 + ag (4.1)
e um certo polinémio Q(z) de coeficientes reais, com 0Q(x) =n — 1, e um dado d € Z.

Se todos os casos a seguir ocorrerem:

1. 0 numero d for divisor do coeficiente ay de P(x) (d | ap);
2. os coeficientes b; de Q(x) (comi=0,1,2,3,--- ,n — 1.) forem inteiros (b, € Z) e

3. o0s coeficientes dominantes de P(z) e Q(x) forem iguais (a,, = b,_1),

entdo P(x) pode ser representado de modo fatorado da forma

P(z) = (z - d) - Q(a). (4.2)

Ou segja, o inteiro d serd uma raiz de P(zx).

A seguir sera dada uma demonstragao do algoritmo desenvolvido por Jaques
Peletier (Peletarius) e alguns exemplos praticos de sua aplicacao.
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4.2 DEMONSTRACAO DO ALGORITMO DE PELETARIUS

Demonstragdo. Considere um certo polinémio P(z) de coeficientes inteiros e um nu-
mero inteiro d sendo uma de suas raizes. Pelo Teorema de D’Alembert tratado na
Sec¢do 2.4.5.3, d sera raiz de P(x), conforme Equacdo 4.1, se, e somente se, existir um
certo polindmio de coeficientes reais

Q<$> = bnflxnil + banxniz + -+ b3l’3 + 62552 + blx + bO; (43)
tal que
P(z) = (z —d) - Q(x). (4.4)
Substituindo a Equagéo 4.3 na Equacgéo 4.4, temos

P(l’) - (:E - d) : (bn—ll‘n_1 + bn—2xn_2 + -+ b3l'3 + bQZUQ + bll' + b()) (45)

Desenvolvendo o produto da Equacéao 4.5 e agrupando os termos semelhantes,
temos

P(I) = bn,1$n+(bn,Q—dbn,1)In71+<bn,3—dbn72>l’ni2+‘ . +(b1—db2)$2+<b0—db1)x—db0
(4.6)

Pela identidade de polindmios, tratado na Secéo 2.3.4, e comparando os coefici-
entes de P(x) nas Equagbes 4.1 e 4.6, temos as seguinte igualdades:

(
Qp = bnfl

(4.7)
as =by —d- by
a1 =by—d- by
ap = —d - by
Isolando os coeficientes de Q(z), temos agora que:
( bn—1 = an
bp—o=an_1+d- b1
bp_3=an_9+d-b, o
: (4.8)
bi=ay+d-by
bp =a1+d- b
ag

| ="7
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Observa-se de 4.7 que toda raiz inteira d de P(z) € necessariamente um divisor
de ay. Esse fato se comprova ao ler 4.8 de cima para baixo onde b,,_1,b,_2,b,_3,- -+, ba, by, bg
sao numeros inteiros, ja que sdo resultados de operagdes com inteiros. Logo, d | ao.

Diante do exposto, o Algoritmo de Peletarius trata exatamente da questéo
inversa. Ou seja, se um dado d inteiro e divisor de ay € ou ndo uma raiz de P(x).

Por fim, isolando os coeficientes de Q(z) em func¢édo de d, temos que:

r
bn—l = dn

bn—2 — Up-1

d

bn—3 — Gp—2

bnfl =

bl—ag
d

by — ay

\ d

Como todos os coeficientes de P(x) sdo inteiros e observando as ultimas
igualdades de 4.9, de cima para baixo, € fato que b,,_1, b,,_o, - -+ , b2, by, by SA0 inteiros e
que, consequentemente, d | ay.

Essa primeira observagcdo mostra que, em particular, se P(z) tiver uma raiz
inteira, entdo todos os coeficientes de )(x) sdo também numeros inteiros. Consequen-
temente, se em algum momento da execucao do algoritmo deparar-se com um certo by,
(com k € NU{0}) que ndo seja inteiro, pode-se concluir que d nédo é raiz de P(x).

Uma segunda observacao € que se mesmo todos os coeficientes de Q(z) forem
inteiros, mas se o seu coeficiente lider for diferente do de P(x), ou seja, a,, # b,_1,
ainda pode-se concluir que d ndo é raiz de P(x).

Por fim, pode-se afirmar que se b,,_1, b,,_2, - - - , by, b1, by forem todos inteiros e
a, = b,_1, entdo d é uma raiz de P(z). |

4.3 DISPOSITIVO PRATICO DO ALGORITMO DE PELETARIUS

A seguir, sera apresentado um dispositivo pratico, bastante similar ao de Briot-
Ruffini, ao qual facilita por demais a aplicag@o do algoritmo de Peletarius.

Seja d um divisor do termo independente de um Polinémio P(z). Ou seja, d | ay.
Inicialmente, para tal verificagé@o pratica, dispde-se os coeficientes inteiros de P(z) e d
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num quadro de formato semelhante ao utilizado no dispositivo de Briot-Rufini, em que

by = _TGO, conforme quadro da Figura 7.

Figura 7 — Alocagao do termo by de Q(z) no dispositivo do Algoritmo de Peletarius

U Gnoy o o Gy a1 G | ¥
by | d
~—
~
Td

Fonte: Adaptado de Bezerra (1974) .

Em seguida, inicia-se o processo de completamento do quadro calculando,
. . . by — ay by — ag b —_3 — Qp—9
de modo sequencial, os inteiros b; = — , by = — sy byg = %

d d
bp_o — ap_ - . ~
b1 = 2Ta1 Se no processo em questéo surgir algum b, (k € N U 0) que néo

seja inteiro, entdo d ndo é raiz de P(z). Além disso, mesmo que todos os b, sejam
inteiros e os coeficientes lideres de P(x) e Q(z) sejam diferentes, d continua nao sendo
raiz de P(z). Caso isso ndo ocorra, encontra-se, entdo, os inteiros acima mencionados,
dispostos no quadro conforme Figura 8.

Figura 8 — Alocagéao dos by, termos de Q(x) no dispositivo do Algoritmo de Peletarius.

an, A1 Gn2 =+ Gy ay a4y | @
bn—1 bpg o+ b by bo | d

~N N~ =~

_bp_2—an_1 bp_3—an_2 b1—ag bg—aj —a2Q

an= d d d d d

Fonte: Adaptado de Bezerra (1974) .

Para Bezerra (1974), o Algoritmo de Peletarius apresenta a grande vantagem
de abandonar o processo do divisor d, caso encontre uma divisdo inexata. Além disso,
assim como o dispositivo de Briot-Ruffini, encontrada uma raiz, o processo pode ser
continuado para os outros divisores com os coeficientes do quociente obtido.

4.4 APLICACAO DO ALGORITMO DE PELETARIUS

Para tais aplicacoes praticas do uso do Algoritmo de Peletarius, serdo usadas
expressoes polinomiais de coeficientes inteiros, definigdes, conceitos e técnicas de
operagdes com polinémios vistos nos capitulos anteriores.

Exemplo 4.1. Dado o polindbmio P(z) = z® — 62? 4+ 11z — 6, determine as suas raizes
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inteiras, se existir.

Solugdo. Temos que 0 OP(x) = 3 (possui trés raizes) e os seus coeficientes séo az = 1,
ay = —6, a; = 11 e ag = —6. Observa-se que P(1) = 0. Logo, a primeira raiz de P(x)
é z; = 1. Como P(x) = Q(z) - (x — 1); onde Q(x) = byx? + bz + by, podemos usar
o algoritmo de Peletarius para encontrar as outras duas raizes =, € z3 de P(z) que
também sao as raizes de Q(x).

Organizando os coeficientes de (x) no quadro de divisao, temos:

1 -6 11 —6\:(;
\1

Buscando os demais coeficientes de Q(z), temos:

—(— —11 -5 — (-6
bo (16)—GEZ,b1_—61 _—562952_%_1_%'

Logo, completando o quadro, temos que:

1 -6 11 6|
1 -5 6|1

Portanto, segue que o quociente é Q(z) = x? — 5x + 6. Para encontrar as demais
raizes, podemos utilizar os metodos tratados na Se¢éo 2.5.2 para encontrar as raizes
de uma equacao do segundo grau. No caso especifico de Q(z) = 0, podemos usar a
formula resolutiva para uma equagéo do segundo grau, onde

 —bEVA

T = , onde A=W —-4-a-c
2-a

Tem-se que os coeficientes de Q(z) s@o a = 1, b = —5 e ¢ = 6. Substituindo os
devidos valores na expressao, temos:

—(=5) £/ (-5)2—4-1-6 5+1 | z1=2
xr = = .

Portanto as raizes de P(x) sdo {1,2,3} e pelo TFA, tratado na Se¢éo 2.5.4, sua
forma fatorada é
Pz)=(x—1) - (x—2)-(x—3).
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Exemplo 4.2. Considere o polindmio P(z) = z* — 202* + 64. Quais as suas possiveis
raizes inteiras, se houver?

Solugéo. Temos que os coeficientes de P(z) sdo ay = 1, a3 = 0, a3 = —20,a; =0 €
ap = 64 e OP(x) = 4. Portanto, P(z) possui quatro raizes. Pelo Teorema das Raizes
Racionais, tratado na Seg¢ao 2.5.6, se P(z) possuir raizes racionais, elas pertencerao
ao conjunto dos divisores de 64, ja que a, = 1. Portanto, as possiveis raizes sao:
{+1, 42, 44, £8, 416, £32, £64}.

Observa-se que P(+1) # 0. Logo, utilizando o algoritmo de Peletarius, tes-
taremos os demais candidatos a raiz. Comecando o teste com = = 2, faremos a
divisédo de P(z) por = — 2 e, caso seja, encontraremos que P(z) = Q(z) - (x — 2), onde
Q(x) = b3x® + box® + by + by.

Montando o quadro com os coeficientes de P(x), temos:

1 0 -2 0 64]a
\2

Executando o algoritmo e completando o quadro, tem-se que:

—64 —-32—-0 —16 — (—20
boz—:—32€Z,b1=—=—16€Z,bgz#=2€ze
2 2 2
2—-0
Logo,

1 0 —20 0 64\:5
1 2 —16 —32\2

Portanto, segue que x; = 2 € raiz de P(z) e que o0 quociente corresponde a
Q(x) = 2 + 22% — 16x — 32.

O algoritmo permite também que o processo seja continuado em busca das
demais raizes de P(zx) através do polinémio quociente Q(x). Vejamos que, tomando
o polinbmio Q(z) = z® + 22? — 16x — 32, vamos analisar agora se x = —2, também é
uma das raizes de P(x). Logo, caso seja, temos que Q(z) = S(x) - (x + 2), em que
S(z) = cex?® 4+ 1 + ¢o. Com isso, continuando com o quadro, temos:
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1 0 =20 O 64 T
1 2 -16 —-32| 2
-2

Executando o algoritmo e completando o quadro, temos:

—(—32 —16 — (—16 -2
Co = (_2):—16€Z,01:+:OEZGCQZO_—2:1263.

Com isso, completando o quadro, encontramos:

1 0 =20 O 64 T
1 2 =16 =32 2
1 0 —-16| -2

Portanto, segue z, = 2 é raiz de Q(z) e, consequentemente, é também raiz de
P(z) e que o quociente corresponde a S(x) = 2> — 16 = 0. Nesse caso, as outras duas
raizes de P(x) podem ser encontradas usando métodos algébricos praticos para a
busca das raizes de uma equacgdo quadratica quando a mesma é da forma ax? + ¢ = 0.
Especificamente para S(x) = 0, temos:

Sx)=2>—-16=0+<=2>=16 <= v = £V16 <= 1 = +4.

Logo, 3 = 4 € x4, = —4. Por fim, temos que o conjunto solugéo de P(x) é:
{+2,+4}. E, pelo TFA, sua forma decomposta ou fatorada é

Plx)=(z—-2)-(x+2) - (x—4)-(z+4).

Exemplo 4.3. Considere o polindbmio P(z) = 27 — 32° — 292° + 752* + 2802 — 61222 —
86422 + 1728. Se existir, quais as suas raizes inteiras?

Solugdo. Temos que 0P(z) = 7. Portanto, o polinémio possui sete raizes em C. Sabe-se
que nenhuma dessas raizes € racional nao inteira, dado que P(z) € unitario (a; = 1). Por-
tanto, de acordo com o Teorema das Raizes Racionais, suas possiveis raizes racionais
sdo os divisores de ag = 1728, que sdo: {+1, £2, +3, +£4, +6, £8, 49, £12, +16, £18, £24,
+27, 432, 436, +48, +54, 464, 72, 496, 108, £144, +192, 4216, £288, +432, £576, £864,
+1728}.

Como a quantidade de possiveis raizes € relativamente grande, iremos usar o
Método de Laguerre, tratado na Sec¢ao 2.5.7.1, para diminuir o intervalo de busca. Para
isso, montando o quadro com o DBR para encontrar L, temos:
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-3 =29 75 280 —612 —864 1728

1
1
1
1 0 —

1 5 11 163 1584 + + +

Portanto, temos que L = 8 é cota superior do intervalo ao qual se encontram as
possiveis raizes de P(x).

De modo analogo, buscando encontrar a cota inferior [, temos que a transfor-

mada de P(z) = 0 é P(—x) = 27 + 325 — 2925 — 752 + 2802 + 61222 — 864 — 1728 = 0.
Alocando os seus coeficientes no DBR, temos:

1 3 =29 75 280 612 —864 —1728

1 7 -
1 8 11 —
1 9 25 1) 730 + + +

Logo, | = —6 € cota inferior do referido intervalo. Portanto, as possiveis raizes
de P(x) encontra-se em (—6, 8).

Com isso, o conjunto solugéo, contendo as possiveis raizes racionais de P(z),
reduz-se a {£1,+2, 43, +4,6}.

Buscando agora as verdadeiras raizes de P(x), observa-se que P(+1) # 0. Logo,
x = +1 ndo sao raizes. Testando agora para as demais possiveis raizes, utilizaremos
0 quadro com o algoritmo de Peletarius para, inicialmente, testar se + = +2 é raiz de
P(z). Portanto, temos:

1 -3 =29 75 280 —-612 —-864 1728 | x
-14 -1 77 126 —864 864 | -2
-1 =31 13 306 0 —864 | 2

—_
—_

(o

Como P(—2) # 0, entdo {—2} nao é raiz de P(z). Como todos os requisitos para
x = 2 foram atendidos, temos P(2) = 0. Vamos realizar o processo novamente para
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x = 2 com o intuito de buscar supostas raizes idénticas ou multiplas (multiplicidade),
conforme tratado na Secéo 2.5.4.2. Observa-se que o processo pode ser realizado
sobre o polindmio quociente Q(x) = 2° — 2° — 312* + 132° + 30622 — 864. Portanto,
continuando o processo, temos:

1 -3 —29 75 280 —612 —864 1728 | x
5 -4 -1 77 126 —864 864 | —2
1 -1 =31 13 306 0 —864| 2

11 =29 —45 216 432 | 2

Conforme quadro acima, para = = 2, temos que ((2) = 0. Logo, podemos até o
momento dizer que = = 2 é raiz de multiplicidade 2 de P(x). Realizando o processo mais
uma vez para x = 2 sobre o Ultimo polinémio S(z) = 2 + 2* — 2923 — 4522 + 2162 + 432,
testaremos se {2} é raiz de multiplicidade 3 de P(z). Para isso, temos:

1 -3 —29 75 280 —612 —864 1728 | x
U 14 -1 77 126 -864 864 | —2
1 -1 -31 13 306 0 —864| 2

11 —29 —45 216 432 | 2
I 916 216 | 2

Como o quociente —2 ¢ Z, temos que 5(2) # 0. Portanto, segue que {2} néo

ZL’1:.172:2.

é raiz de multiplicidade 3 de P(x). Logo, temos entédo as duas primeiras raizes de P(z),

Vamos agora testar para z = +3. Continuando o quadro, temos:

1 -3 —29 75 280 —612 —864 1728 | x
5 -4 -1 77 126 —864 864 | —2
1 -1 =31 13 306 0 —864 | 2

11 =29 —45 216 432 | 2
— —216 —216 | 2

3 —25 —120 —144| 3

1 -2 -23 24 144 | -3

Como para z = 3 o Ultimo quociente corresponde a 5 ¢ Z, temos que S(3) # 0 e,

com isso, ndo é raiz de P(z). Em sequéncia, observa-se que para z = —3, S(—3) = 0.
Portanto, {—3} também é raiz de P(x). Buscando agora averiguar se xr = —3 é raiz
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multipla de P(z), vamos realizar o processo mais uma vez sobre o ultimo polinémio
quociente T'(z) = x* — 22 — 2322 + 24z + 144. Logo, usando o quadro, temos:

1 =3 —29 75 280 —612 —864 1728 | =z
5 -4 -1 77 126 —864 864 | —2
1 -1 =31 13 306 0 —864| 2

1 1 =29 —45 216 432 | 2

—1 9216 —216| 2

3

2

: —25 —120 —144
1 -2 =23 24 144 | =3
1 ) -8 48 | =3
Observa-se também que para x = —3, T(—3) = 0. Portanto, {—3} é raiz de

multiplicidade 2 de P(z). Aplicando mais uma vez o algoritmo de Peletarius no polinémio
quociente V (z) = 2® — 522 — 8z + 48 para x = —3, temos o seguinte:

1 -3 =29 75 280 —612 —-864 1728 | =
14 -1 77 126 —864 864 | -2
=31 13 306 0 —864 | 2
1 1 =29 —-45 216 432 2
216 —216 | 2
3

— o
|
—_

2

3 —25 —120 —144
1 -2 -23 24 144 | -3
1 -5 -8 48 |-3
1 -8 16 | -3

Logo, V(—3) = 0. Portanto, como verificado, {—3} é raiz de multiplicidade 3 de
P(x) e com isso, temos z3 = x4 = x5 = —3.

Por fim, tem-se o polinémio de 2 grau Z(x) = z* — 8x + 16, onde podemos aplicar
umas das formas de encontrar as suas raizes, tratadas no Capitulo 2.5. Usando, por
exemplo, as Relagdes de Girard, tratadas na Sec¢ao 2.5.5, temos que:

$6+CIJ7:—T:8

16
Tg X7 = T = 16
Observa-se que 0s unicos pares que atendem aos requisitos séo x4 = 4 € x7 = 4.
Com isso, temos Z(4) = 0 e, com isso, {4} € raiz de multiplicidade 2 de P(x). Logo,
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temos que x4 = z7 = 4. Portanto, em fungéo do 0P (x), temos todas as suas raizes e
podemos reescrever o polindmio na seguinte forma fatorada:

P(z) = (x=2)" (x+3)° (z — 4).
4.5 O ALGORITMO DE PELETARIUS PARA RAIZES RACIONAIS
4.5.1 Contextualizacao

No decorrer da elaboragdao do presente trabalho, ap6s determinar um certo
conjunto € Q, onde esse contém as possiveis raizes racionais «; (i € N) de um dado
polindmio de coeficientes inteiros, através do Teorema das Raizes Racionais, surgiu a
necessidade de averiguar se algum dos «; € {2 — Z} eram, efetivamente, raizes de
P(z) = 0. Ap6s terem atendidos os critérios estabelecidos pelas Regras de Exclusdo
de Newton, o uso do Dispositivo de Briot-Rufini € um dos métodos utilizados para tal
verificacao, como visto na Secao 2.4.5.5. No entanto, como a proposta do trabalho em
questao versa sobre o algoritmo de Peletarius, surgiu a necessidade de investigar se o
método desenvolvido por Peletier poderia ser aplicado a racionais néo inteiros.

Como ja tratado, a literatura acerca do assunto ja é bastante escassa no que se
refere ao método aplicado apenas aos inteiros. Na pesquisa realizada, nao foi encon-
trado nenhum registro sobre o uso do Algoritmo de Peletarius para raizes racionais nao
inteiras. No entanto, buscando a possibilidade de sua aplicacdo a esse subconjunto
de racionais, sera aqui apresentada uma definicdo desse algoritmo, seguida de sua
proposicao e demonstracao, de autoria prépria, para raizes racionais nao inteiras. Além
disso, sera apresentado também um dispositivo pratico que torna o método bastante
simples, analogo ao empregado aos inteiros e, em seguida, alguns exemplos praticos
de sua aplicacgao.

4.5.2 Extensao do Algoritmo de Peletarius

O Algoritmo de Peletarius permite também verificar se um certo nimero racional
o , oA . d .
nao inteiro é uma raiz de um polinémio P(z) = 0. Ou seja, se um certo x = — for raiz

C

de P(z), entdo P(Sl) = 0.

C
Proposicao 4.5.1. Dado o polinémio de coeficientes inteiros

P(z) = a,2" 4 ap12™ " + @02 P 4+ a32® + ag2® + a1 + ag (4.10)

A - . d
e um certo polinébmio Q(z) de coeficientes reais, com 0Q(x) = n — 1, e um dado — € Q,
C
comd e Z ec e Z* emdc(c,d) = 1. Se todos 0s casos a seguir ocorrerem:



Capitulo 4. O Algoritmo de Peletarius 78

1. os inteiros d e c forem divisores dos coeficientes a, € a,, de P(x), respectivamente
(d]agec|ay);

2. os coeficientes b; de Q(x) (comi=0,1,2,3,--- ,n — 1.) forem inteiros (b, € Z) e

3. os coeficientes dominantes de P(z) e Q)(z) obedecerem a relagdo: b, 1 = %”

entdo P(x) pode ser representado de modo fatorado da forma
P(z)=(c-z—d) Q(x). (4.11)
. , d [ .
Ou segja, o racional ~ serauma raiz de P(x).
A seguir, sera apresentada a sua demonstragéo e alguns exemplos praticos de
sua aplicacéo.

4.5.3 Demonstracao do Algoritmo de Peletarius para Raizes Racionais

Demonstragcdo. Considere o polindmio P(x) de coeficientes inteiros, conforme Equagéo
4.10 e o polinbmio

Q) = bp_12" L b0z 2 4 - 4 bgx® 4 bya® + by + by, (4.12)
de coeficientes reais.
Considere também um certo binémio ndo unitario
Gz)=c-z—d (4.13)

com coeficiente lider e termo independente c e d, respectivamente, inteiros. Tome que
P(z) pode ser reescrito em fungao de G(z) e Q(z), conforme

P(z) =G(z)-Q(z) = 0. (4.14)

Com isso, substituindo as Equacdes 4.13 e 4.12 na Equacao 4.14, temos que

P(z) = (c-x—d) (bp_12" "+ byoz” > + -+ + boz” + biz + by) = 0. (4.15)

Desenvolvendo o produto da Equacéao 4.15, temos que

P(z) = cby_12"—db,_12" by _ox"t —- - - —dbyz® +cby2® —dbyw+chyr—dby = 0. (4.16)
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Agrupando os termos semelhantes da ultima igualdade, temos

P(x) = by 12"+ (cby_g—db, 1) 2" ' ++ - -+ (cby —dby)x* + (cby — dby )z — dby = 0. (4.17)

Pela identidade de Polinémios, comparando as Equactes 4.10 e 4.17, temos as
seguintes relagdes:
( ap =c-by,_1
ap_1=C-by_o—d-b,_1

Qp—g = C- bn—3 —d- bn—2

(4.18)
(ZQIC'bl—d'bQ
a1:C'bQ—d'bl
L ag = —d - b()
Isolando os coeficientes de Q(x), temos o seguinte:
( bn—l = a_n
bn—l _ c- bn72 — Qp—1
c-by_3— ay_
bn72 _ 3d 2
(4.19)
b2 _ C- b1 — Q9
bl _ C- bo — ap
\ bo = T d

De 4.18 observa-se que o termo independente d de G(x) € necessariamente
um divisor de aq, assim como o coeficiente lider ¢ é de a,.. Portanto, como ja tratado
na Secao 4.2, temos que, por definicdo, necessariamente b, € Z. Com isso, se em
qualquer uma das operagdes em 4.19 surgir algum b, ¢ Z (com i = 0,1,2,3,--+),

pode-se concluir que P(g) # 0. Ou seja, z = CEZ nao € raiz de P(xz).

Se mesmo que todos os coeficientes b; de Q(x) forem inteiros, mas se o seu

- , . a . . . d

coeficiente lider for diferente de -, ou seja, ¢ - b,_; # a,, ainda pode-se concluir que —
C

C
nao é raiz de P(x). |

Portanto, ficando entdo demonstrado o Algoritmo de Peletarius, aplicado a
Raizes Racionais.
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4.5.4 Dispositivo pratico do Algoritmo de Peletarius para Raizes Racionais

A sequir, serd ilustrado um dispositivo pratico de execucao desse método para
raizes racionais, similar ao utilizado para raizes inteiras.

Para tal, seja —, (¢,d) = 1, uma suposta raiz de um polinémio P(x) de coeficien-
C
tes inteiros a; com termo independente a, e coeficiente lider a,,. Considere que d | aq €
¢ | a,. Dispondo os coeficientes de P(x) no dispositivo pratico, temos:

~ - _d , "y .
Figura 9 — Alocacao dos coeficientes de P(x) e da suposta raiz p no dispositivo do Algoritmo
de Peletarius

Uy Gnoy Gpp o Gy ar Gp | @
d
C
Fonte: Elaborado pelo autor .
N . L . —a .
Em sequéncia, inicia-se o processo determinando b, = 70 de Q(z). Com isso,

0 quadro da Figura 9 se apresenta da seguinte forma:
Figura 10 — Determinagéo de b, de Q(x).

Ap  QAp—1 Ap—2 e az Qo ‘

S
S
ol 8

Fonte: Elaborado pelo autor .

Para completar o quadro, utiliza-se as relagcées determinadas em 4.19. Com
isso, tem-se o seguinte quadro conforme Figura 11.

Figura 11 — Alocagéo dos coeficientes b; de Q(z) e da suposta raiz % no dispositivo do
Algoritmo de Peletarius

an, - N a; ap | =
d
bn—l bn—2 b2 bl bO e
~— N ~— =~ =~
L:Cbn72 an—1 cbp_3—ap_2 C‘b1d7a2 cbg—ay _;‘O
c

Fonte: Elaborado pelo autor .
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. . . a .
Finalmente, se ao final do processo surgir que b,_, # —, pode-se afirmar que
C

d néo é raiz de P(z). Assim como para raizes inteiras, esse dispositivo é bastante
\?antajoso para um rapido processo de verificagcdo de raizes racionais de uma equagao
algébrica de coeficientes inteiros. Pois, constatando que algum b; ¢ Z, o processo pode
ser imediatamente abandonado. Além disso, ao encontrar uma raiz, o processo pode
ser prosseguido para outras possiveis candidatas a raiz, aplicado ao polinémio Q(x)
obtido.

4.5.5 Aplicacao do Algoritmo de Peletarius para Raizes Racionais

Visando exemplificar o uso pratico desse dispositivo, serdo usadas expressoes
polinomiais de coeficientes inteiros, definicdes, conceitos e técnicas relacionadas as
expressodes polinomiais até entdo abordadas.

Exemplo 4.4. Dado o polinémio P(z) = 8z° — 54z* — 6923 — 78z* — 77z — 24, determine
as suas possiveis raizes inteiras e racionais, se houver.

Solugdo. Apresenta-se um polindmio de grau 5 (possui cinco raizes) € nao unitario
(a5 = 8). Portanto, como ja discutido na Seg¢éo 2.5.6, como o coeficiente lider é diferente
de 1, podemos afirmar que P(z) ndo possui apenas raizes inteiras. Para encontrar as
possiveis raizes candidatas de P(x), utilizaremos o Teorema das Raizes Racionais.
Para tal, devemos observar que se P(x) possuir alguma raiz racional, ela é da forma
x = ]3, onde p pertence ao conjunto dos divisores de aqg = —24 € ¢ pertence ao conjunto
dos givisores de a; = 8. Os divisores de 24 sdo: {+1,+2, £3,+4, 46, £8 +12 +24} e
os divisores de 8 sdo: {+1,42, +4, +8}. Logo, as possiveis raizes racionais de P(x)

s80:{ + 1, il, ﬁ, il, ié, +1,42, 43, +4, 46, +8, +12, +24 §.
8 4 8 2 4

Visando diminuir o intervalo onde se encontram tais raizes, utilizaremos o Mé-

todo de Laguerre, tratado na Secédo 2.5.7.1. Para tal, com o auxilio do DBF, buscaremos
encontrar a cota superior L.

8§ =54 —69 78 =TT 24
118 -

2 —
0 11 10 3 0
+ o+ o+ o+ o+

De acordo com o quadro acima, segue que L = 9 e {8} é uma das raizes de
P(z), ja que o resto da diviséo é zero.
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Para a determinagéo da cota inferior [, temos que a transformada de P(z) = 0 é:

P(—z) = 82° + 5da®* — 692° + 782 — T7x + 24.

Organizando os seus coeficientes no DBR, temos:

\8 54 —69 T8 —77 24
18 62 —
218 70 71 220 + 4+

Portanto, temos que [ = —2 é cota inferior do procurado intervalo. Logo, —2 <
x < 9. Diante disso, temos que as possiveis solugdes de P(z) = 0 se reduz ao conjunto:
{+4 +1, 45,43, £2,+1,2,3,4,6,8}.

Buscando reduzir ainda mais o conjunto das candidatas a raizes, utilizaremos
as Regras de Exclus&o de Newton, abordada na Secao 3.1, para tal fim. Para isso,
temos que P(1) = —294 e P(—1) = —18, onde os seus conjuntos de divisores naturais
sao {1,2,3,6,7,14,21,42,49,147,98,294} e {1, 2,3,6,9, 18}, respectivamente.

Para x = —é i%, ig, Z, +3, +4, +6, os resultados dessas operacgoes, realiza-
das com esses numeros, aplicadas as Regras de Exclusao de Newton, ndo dividem
P(1) ou P(—1) ouambos. Logo, o conjunto das provaveis candidatas a raizes é reduzido

aos elementos: {%, i%, —% +2, 8}.

Buscando agora comprovar se esses numeros sao realmente raizes de P(x),
usaremos o Algoritmo de Peletarius. A verificacdo seréa realizada inicialmente com
as candidatas a raizes inteiras, pois, caso se comprovando ser raiz, o procedimento
pode ser continuado com o polinbmio quociente, ao qual os célculos irdo diminuindo,
tendo em vista a reducéo do grau do polinémio dividendo. Montando o quadro com os
coeficientes de P(z) e comegando para x = —2, temos:

8 —54 —69 78 77 -24| 2
\—2

Executando o algoritmo, temos o seguinte quadro:

—(—24) 12— (=77) 65
by = =-12eZb=—"""L=_"¢7
T2 &5 —2 7 ¢
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8§ —54 —69 78 77

24|

65

2

—65 .
Como 5 ¢ 7, podemos concluir que P(—

—12 \ 2

2) # 0. Logo, {—2} n&o é raiz de

Testando para = = 2, temos o seguinte quadro:

8§ =54 —69 -—-78 =77

65
2

89

2

24| =z
—12 | =2
12 2

89 . . .
Como b, = 5 ¢ Z, pose-se afirmar que {2} também néo é raiz de P(z).

Montando o quadro para x = 8 e executando o algoritmo, temos:

8 —54 —69 —78 —T77 —24| x
-8 12| -2

812
§ 10 11 10 3 |8

Com isso, temos que para as supostas raizes inteiras apontadas, a Unica verda-
deira corresponde a x = 8, como ja comprovado anteriormente. Observa-se também
que o coeficiente lider do polinémio quociente Q(z) = 8z* + 102 + 112% + 10z +3 =0
€ o mesmo de P(x). Ou seja, a; = by = 8. Como P(x) é de grau 5, 0 mesmo possui 5

raizes, onde apenas uma delas ¢ inteira.

Agora, buscando comprovar a veracidade das raizes racionais néo inteiras,
usaremos também o Algoritmo de Peletarius para raizes dessa natureza. Portanto,
continuando com o quadro, testaremos as supostas raizes com o polinémio quociente

encontrado com z = 8. Iniciaremos o teste para = = —5 Para isso, temos:

2:4—-11

2:3-10

8§ —5H4 —69 -7 =17 =24 =z
8 10 11 10 3 8
—1
4 3 4 ?3 >
=y

—1 —1
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~ 1] . , ,
Portanto, segue entdo que { — 5} é uma raiz racional de P(z) = 0.

1 .
Testando agora para =z = 3 temos o seguinte:

8 —54 —69 —78 =77 =24 | =z
8 10 11 10 3 8
4 3 4 3 | -1
T
—23 —10 -3 —
—~— ~ =~~~ 2
%¢2<(7110)73 24(713)74 %3

4 , <
Como —23 # 5= 2, pode-se concluir que P (1) # 0. Logo, ndo sendo uma das
raizes de P(z).

Verificando para x = é nao ha a necessidade de testarmos no dispositivo pratico
do algoritmo de Peletarius, tendo em vista que a condic¢ao c | a,, ndo é atendido. Pois,

4 1 1 , .
como a, = a3 = 4 € ¢ = 8, tem-se que $=3 ¢ 7. Portanto, {é} também n&o é raiz de
P(z).

: 3 :
Por fim, testando agora para = = L temos o seguinte quadro:

8 —54 —69 —78 —T7T —24| x
8 10 11 10 3 | 8
4 3 4 3 | -3
-23  -10 -3 | 3
3
1 0o, 1 |-=
~— O~ =~ 4
4_4.0-3 4-1-4 -3
4 -3 -3 -3

3] . , A .
Portanto, temos que { - 1_1} € uma das raizes de P(z) e o polinémio quociente

resultante Q(z) = 2% + 1.

Por fim, temos que P(z) = 0 possui como conjunto-solugéo, em Q, S =

1 3 , A
{8, —g3 _Z}' Com isso, podemos reescrevé-lo de modo fatorado como:

P(x):S-(x—E%)-<x+%>-(x+§>-(m2+1).
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Como visto em 2.22, observa-se no polindmio Q(z) que A = 0?—4-1-1 = —4 < (.
Com isso, temos que as suas outras duas raizes restantes ndo pertencem ao conjunto
dos numeros reais.

Exemplo 4.5. Dado polinémio P(z) = 9002° + 180x° — 3972* — 652 + 512 + bz — 2,
quais as suas raizes racionais, se existir?

Solugédo. O polinbmio em questao apresenta, no primeiro momento, um certo grau de
dificuldades; tendo em vista que o0 seu grau € 6 (possui seis raizes) e 0 seu coeficiente
lider é 900. Logo, suas supostas raizes, se existir, ndo sao apenas inteiras. Para exibir
tais raizes, buscaremos primeiramente definir as suas possiveis raizes racionais da
forma = = £ utilizando o Teorema das Raizes Racionais, tratado na Secéo 2.5.6. Como

ag = 900 € geu coeficiente lider e ag = —2 0 seu termo independente, temos que p corres-
ponde aos divisores de g € ¢ aos de ag. Os divisores de —2 sdo: {+1, +2}. Os divisores
de 900 sdo: {+1,+2,+3,+4, £5,+6,+9, +£10, £12, £15, +18, 420, +-25, £30, £36, £45,
450, 460, £75, £90, =100, £150, 4180, 225, £300, 4450, =900}.

Com isso, as possiveis raizes racionais de P(xz) sdo: { 1,43, +4,+1, £4, +4,
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+5 5 F130 15 F1w Fao Fas0 Fao Fae T35 Faer oo £ Feo Fioo o0 Te

1 1 1 2 12 12 2 2 2 2 2
iﬁﬂiﬁvi%dﬁ’iE’i57i9’i157i257i457i757j:225 :

Visando diminuir o intervalo onde se encontram as possiveis raizes de P(z),
nao ha a necessidade de usar o Método de Laguerre, pois observa-se que as mesmas
encontram-se no intervalo —2 < z < 2. Portanto, suas possiveis raizes inteiras é
parar = +t1 e x = +2. Para x = 1 temos que P(1) = 672 # 0 e para =z = —1,
P(—1) = 432 # 0. Por conseguinte, ambos ndo sao raizes. Utilizando o Algoritmo de
Peletarius para testar se = +-2 sdo raizes, temos o seguinte:

900 180 —397 —-65 51 5 —2| =x
-8 94 3 —-1|-=2

2
53
B9 1|2

Observa-se que =z = —2 ndo é raiz de P(z), ja que by = —% ¢ Z. Da mesma
forma para © = 2, pois by = —% ¢ 7. Portanto, podemos concluir que o presente
polinbmio ndo possui raiz inteira e as demais raizes sdo possivelmente racionais e
encontra-se no intervalo —1 < x < 1. Buscando agora reduzir o campo de busca dessas
raizes, serdo utilizadas as Regras de Exclusdo de Newton para raizes racionais, tratado
na Secao 3.1.

Para facilitar os célculos, para P(1) = 672, os seus divisores naturais sao
{1,2,3,4,6,7,8,12,14,16,21,24,28, 32, 42, 48, 56, 84, 96, 112, 168, 224, 336, 672}.
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E para P(—1) = 432, seus divisores naturais sdo {1, 2, 3,4,6,8,9,12, 16, 18, 24, 27,
36,48, 54, 72,108, 144, 216, 432}.

— 41l 41 41 41 411 41 41 41 41 41 41 41 41
LOgO’parax_iz’i67i§7i1_o7iﬁ7 15,118,j:20,j:25,j:30,i36,i45,i50,j:60,

1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
:‘:%, i%,im, :l:m, iﬁ7 :l:m, :i:m, :l:g, 59 :i:g, :‘:E, :i:%, :EE, Z|Z7—5, iﬁl oS reSU|tadOS

obtidos pela aplicacdo das Regras de Exclusdo de Newton a esses numeros, nao divi-
dem P(1) ou de P(—1) ou ambos.

Com isso, restam apenas como possiveis raizes de P(z) os nimeros { =+ 1,
+1,+1, .=, —2}. Para isso, utilizaremos o Algoritmo de Peletarius para Raizes Racio-

nais, para testar se esses numeros sdo realmente raizes de P(z).

1
Comegando para =z = 5 temos:

900 180 —397 —65 51 5 -9 \ x

T

4 _ _ _ —

50 315 41 53 L2
w:zswflso 2'(—41)1—(—397) 2:2-5 —(=2)

2

2.(—=53)—(—65)  2-(—1)—51
1 1

-
-

De acordo com o quadro acima, {1} é raiz de P(z) = 0.

1
Testando agora para { — 5}, temos:

900 180 —397 —65 o1 D -2

T
450 315 —41 —33 -1 2 %
I
225 45 —43 ) 2 ——
N~~~ N~~~ N~~~ ~—~ N~ 2
%:72'45:1315 2-(—43:(—41) 2»(—5)_—1(—53) 2,2__(1_1) }?

Com isso, temos que { - —} também é uma das raizes do presente polindGmio.

2
- 2 ,
Verificando para = = 5 temos o seguinte quadro:
900 180 —397 —65 51 5) —2 x
450 315 —41 —53 -1 2 | 3
225 45 —43 -5 2 | -3
45 -9 -5 1 —g
~~ ~~ ~~ =~~~ 5
%:5-(—79;—45 5-(—5)_—2(—43) 5-1—_(2—5) :;
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Com isso, comprova-se que { - 3} é também raiz do polindmio.

Averiguando agora para x =

1 , , ~
—5, temos a seguinte situagao:

900 180 —397 —65 51 ) —2 x
450 315 —41 —53 -1 2 | 3
225 45 —43 -5 2 | -1
45 -9 -5 1 | -2
41 —10 1 —1
~~ ~~| 5
4{)?5#5'(—10_)1—(—9) 5»1—_(—5) :7}
45 1 .
Como 41 # 5= 9, segue que ¢ — - ( Nao € raiz de P(x).
1
Buscando comprovar para = temos:
900 180 —397 —65 o1 5 —2 T
450 315 —41 —53 —1 2 %
225 45 —43 -5 2 —%
45 —9 -5 1 | -2
41 ~10 1 | -1
1
—141 —10 -1 | —
~—~— ~~ ~~ | 15
%7&15(—101)—(—9) 15~(—1£—(—5) _Tl
45 1 o
Como —141 # 15 = 3, segue que T nao é raiz de P(x).
1
Testando para = = B temos:
900 180 —397 —65 o1 ) —2 T
450 315 —41 —53 —1 2 %
225 45 —43 -5 2 | —3
45 -9 -5 1 | -2
41 ~10 1| -1
—141 -0 -1 | &
1
9 0 —1 =
15_30-(9)  BD=(H) =2
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1] . , . A ~
Logo, {5} € também raiz do polindmio em questao.

1 ,
Buscando testar se { — §} é também raiz, temos:

900 180 —397 —65 51 5 -2 |
450 315 —41 —53 -1 2 | 3
225 45  —43 -5 2 | -3
45 -9 -5 1| -2
41 —10 1 | —3
—-141 =10 -1 | £
9 0 -1 | 3
1
3 -1 | —=
~~ ~~ | 3
9_3(=1)=0 —(-1)
3 —1 1
Verifica-se que z = —3 é também uma das raizes racionais do polinébmio.
. 1
Por fim, testando agora para = = 3 temos:
900 180 —397 —65 51 ) -2 x
450 315 —41 —53 -1 2 :
225 45 —43 =5 2 -3
45 -9 =5 1| -2
41 -10 1 -3
—-141 -10 -1 | &
9 0 -1 :
3 -1 | —3
1
1 —
~—~ 3
§==F"

. ~ - 1y, .. .
Com isso, temos ent&o a constatagdo de que {5} é a Gltima raiz procurada.

Portanto, as raizes do polindmio P(x) = 9002°+1802° —3972* — 652>+ 5122 +5x—2

sao {£1.+1.1,-2).
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Com isso, segue que sua forma fatorada ou decomposta é:

P(z) = 900 - (x— 5

)

Ll
I‘ —
2

)

1
w__

3

)-(

Logo, todas as suas raizes séo racionais.

1
‘I‘ —
3

)

1
x__

b}

)

L2
CE f—
5

)
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5 HYBRITARIUS®: MODELO HIiBRIDO PARA A DETERMINACAO DE RAIZES
RACIONAIS EM POLINOMIOS DE COEFICIENTES INTEIROS

A sequir, sera apresentado o aplicativo educacional Hybritarius® que implementa
uma solugéo computacional, integrando os métodos do Algoritmo de Peletarius e as
Regras de Exclusao de Newton, para a identificacdo de raizes racionais em polinémios
de coeficientes inteiros. Desenvolvido sob a proposta de auxiliar no ensino de algebra
no Ensino Médio e em cursos de Analise Numérica. Com uma interface intuitiva, o
aplicativo é implementado em linguagem R e gera relatérios automatizados em IATEX.

O aplicativo consiste em exibir, através de um relatério automatizado, as raizes
racionais (inteiras e racionais nao inteiras), dados os coeficientes de um determinado
polindmio. Além disso, identificando a existéncia de tais raizes, o Hybritarius® exibe o
polinbmio em questdo em sua forma fatorada. Caso o polinbmio possua ndo somente
raizes racionais, o aplicativo exibe o polinbmio quociente ao qual encontram-se as
demais raizes (irracionais ou complexas). Por fim, caso o polindmio ndo possua raizes
racionais, o Hybritarius® aponta tal caracteristica.

Para isso, apresentando os coeficientes do polinbmio P(z) proposto, o aplicativo
segue o seguinte roteiro para identificar as suas possiveis raizes racionais:

1. Determinagao do conjunto 2 que contém as suas candidatas a raizes racionais,
através do Teorema das Raizes Racionais, tratado na Secéo 2.5.6.

2. Delimitagao de 2 através da reducao do intervalo onde se encontram as ver-
dadeiras raizes de P(z), utilizando o Método de Laguerre, tratado na Secao
2.5.7.1.

3. Excluséo das improvaveis raizes de P(x), através das Regras de Excluséo de
Newton (tratadas no Capitulo 3), aplicadas as candidatas inteiras e racionais nao
inteiras, e reduzindo os elementos de ().

4. Aplicacéo do Algoritmo de Peletarius, inicialmente nas candidatas a raizes inteiras,
através do método tratado no Capitulo 4, reduzindo assim o conjunto 2 e também
o grau do polinémio quociente; tornando os célculos mais simples.

5. Reaplicacdo do algoritmo de Peletarius nas raizes inteiras identificadas a fim de
encontrar possiveis multiplicidade de raizes, conforme tratado na Secao 2.5.4.2.

6. Execucao do Algoritmo de Peletarius para as raizes racionais nao inteiras, tratado
na Secao 4.5.
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7. Reaplicacdo do algoritmo nas raizes racionais nao inteiras, buscando encontrar
possiveis raizes multiplas.

8. Exibigcdo de um relatério automatizado em IATgX, elencando as raizes racionais de
P(z) (se houver), assim como a sua representac¢édo na forma fatorada, conforme
tratado na Secéo 2.5.4.

A Figura 12 abaixo ilustra o fluxograma dos processos realizados pelo Hybritarius®.

Figura 12 — Fluxograma dos processos executados pelo aplicativo Hybritarius® para
determinar as raizes racionais x de uma equagao polinomial P(z).

Comego Reaplicar o algoritmo
de Peletarius a x.
i

1
Inserir os
coeficientes de )
P(x). Testa o préximo x€EQ Reaplica o algoritmo
de Q de Peletarius a x.
Definir Q usando o J
Teorema das Testand
Raizes Raciondis. estando com o
algoritmo de
Peletarius se x€Q
* € raiz de P(x).
Delimitar Q com o
Meétodo de
Laguerre.
* . (e Exibigdo de relatério
? Nao L
redunto o O 9 possui x€Q? { <obre P(x). )
com as Regras de
Excluséo de
Newton.
Testando com o
algoritmo de
Peletarius se x€Z
€ raiz de P(x).

Testa o proximo
X€Z de Q.

Reaplica o algoritmo
Reaplica o algoritmo de Peletarius a x.

de Peletarius a x.

Fonte: Elaborado pelo autor.

Para iniciar o Hybritarius®, é necessario apenas inserir os coeficientes inteiros
do polinbmio P(z) ao qual deseja-se investigar. Feito isso, o aplicativo automaticamente
emite através de um relatorio, as suas raizes inteiras e racionais nao inteiras (caso as
possua) e a forma fatorada do polindmio investigado, conforme o TFA.
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Para ilustrar o funcionamento do aplicativo, vamos usar o polinbmio P(z) =

62* — Tz — 372% + 8z + 12 como exemplo.

Apés inserir os coeficientes de P(x) (6, —7,—37,8,12) no prompt de comando, o
Hybritarius® emite o seguinte relatério, conforme explicado através das figuras abaixo:

Figura 13 — Capa do Relatério Automatizado em IATEX, emitido pelo Hybritarius® com as
informacdes especificas de apresentacao.

Universidade da Integragao Internacional da Lusofonia Afro-Brasileira (UNILARB)

Mestrado Profissional em Matematica em Rede Nacional (PROFMAT)

Hybritarins®:
modelo hibrido para determinacio de raizes racionais em
polindmios de coeficientes inteiros

Autores

Prof. Me. Francisco Fabio Sales de Almeida - SEDUC/CE
Prof. Dir. Antonio Alisson Pessoa Cuimaraes - TTNILABR (desenvolvedor)

Aplicative cducactonal que smplemenda wna solupdo comprdactonal
triteyrando os métodos de Peletarius ¢ os principios de ecclusdo de Newdon,
parn tdendificagdo de moizes ractonats em polindmios de cocficientes inbeiros.

Desenvolvide pora aurilisr no ensine de dlgebm no Ensine Médio ¢ em
cursos de Andlise Numdrion, com uma inberface intuitioa. Implemeniode em

Iinguagem 1Y, o aplicative gera welatorios automabizados em BTRX

Este aplicativo possai registro o INPTD (NY BIRS12025002351-0), sarantindo sua propriedade

intelectual.

Fonte: Hybritarius®.

A Figura 13 acima ilustra a capa do Relat6rio Automatizado em IETEX, emitido
pelo Hybritarius® trazendo informagdes prévias de apresentagio do Aplicativo como
autores e N°de registro no INPI, por exemplo.
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A seguir, tem-se a Figura 14 ilustrando o Certificado de Registro de Programa
de Computador do Hybritarius® junto ao Instituto Nacional da Propriedade Industrial -
INPI, sob 0 N°BR512025002351-0.

NDURTD RO

REPUBLICA FEDERATIVA DO BRASIL
MINISTERIO DO DESENVOLVIMENTO, INDUSTRIA, COMERCIO E SERVICOS
INSTITUTO NACIONAL DA PROPRIEDADE INDUSTRIAL
DIRETORIA DE PATENTES, PROGRAMAS DE COMPUTADOR E TOPOGRAFIAS DE CIRCUITOS

Certificado de Registro de Programa de Computador

Processo N°: BR512025002351-0

O Instituto Nacional da Propriedade Industrial expede o presente certificado de registro de programa de
computador, valido por 50 anos a partir de 1° de janeiro subsequente & data de 21/05/2025, em conformidade com o
§2°, art. 2° da Lei 9.609, de 19 de Fevereiro de 1998.

Titulo: Hybritarius - Sistema computacional para determinacéo de raizes racionais em polindmios de coeficientes
inteiros com base nos métodos: Laguerre, Algoritmo de Peletarius e Regras de Exclusdo de Newton

Data de publicagao: 21/05/2025

Data de criagdo: 02/01/2025

Titular(es): ANTONIO ALISSON PESSOA GUIMARAES

Autor(es): ANTONIO ALISSON PESSOA GUIMARAES; FRANCISCO FABIO SALES DE ALMEIDA
Linguagem: R; OUTROS

Campo de aplicacao: ED-04; MT-02

Tipo de programa: AP-01; DS-05; FA-01; TC-01

Algoritmo hash: SHA-512

Resumo digital hash:
5c724¢98a6638d5b30bbfd028c255197775e9141dc9fchf983d40be9c75499e7bb214ef87318e780e5ac388d2d1835496
80aa0bff35bc96f0438c95d283bf2f

Expedido em: 10/06/2025

Aprovado por:
Carlos Alexandre Fernandes Silva
Chefe da DIPTO

Figura 14 — Certificado de Registro do Hybritarius® junto ao INPI.
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A Figura 15 ilustra as informacdes preliminares do polinbmio P(z) proposto,
como a sua representagao, conforme Equagéo 2.21, e a delimitacao do intervalo das
suas possiveis raizes racionais pelo Método de Laguerre. Sao ilustradas as Tabelas
1 e 2 que contemplam os seus limites superiores e inferiores, respectivamente, que
contém tais supostas raizes. Ou seja, o intervalo na reta real onde essas raizes se
encontram (caso existam).

Figura 15 — Informacdes preliminares do polinémio proposto, emitido pelo Hybritarius® com as
informagdes especificas de P(x).

1 Etapa preliminar

1.1 Polindmio proposto
P(z) = 6z — 7x® — 3722 + 8z 4 12

1.2 Delimitacao do intervalo das raizes racionais

Table 1: Tabela de Laguerre para o limite superior

L | ay as 9 g an
6 7 37 8 12
2 [§} ]
3 6 11
| [§} 17 a1 132 540

Table 2: Tabela de Laguerre para o limite inferior
L|ay az as iy g

[ 7 37 i) 12

1 6 13

216 19 1

316 25 38 106 330

Intervalo de delimitacio das raizes de P(r)

(—3,4)

Fonte: Hybritarius®.

A Figura 16 abaixo ilustra os conjuntos das possiveis raizes inteiras €2; e racio-
nais nao-inteiras 2, do polinémio proposto.
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Figura 16 — Q; e Q, de P(x), emitido pelo Hybritarius®.

Conjunto das possiveis raizes inteiras

() conjunto €2; das possivels raizes inteiras é formado por 5 elementos, os quais estio listados
A Hegir:

;= {+1,+2,3}
Conjunto das possiveis raizes racionais nao-inteiras

O conjunto €2, das possivels ralzes racionais nao inteiras ¢ formado por 12 elementos, os
quais estao listados a seguir:

1,1 ,1 2 4 3
Q. = T e e e iy b
" { 6327373 2}

Fonte: Hybritarius®.

A seguir tem-se a Figura 17 esbogando o Algoritmo de Peletarius aplicado as
possiveis raizes inteiras de P(x) que pertencem ao conjunto €2;.

Figura 17 — Algoritmo de Peletarius aplicado aos elementos do conjunto €2;, a distribuicdo das
raizes inteiras de P(z) e a sua decomposi¢cao em relagao a essas raizes.

2  Algoritmo de Peletarius para raizes inteiras

2.1 Execucgiao do algoritmo

Table 3: Algoritmo de Peletarius
k | aq e iy g | Teste | Raix? | Exclusao

o6 -7 =37 <) 12 - - -
1 24 17 20 -12 1 Nio 1
2 11 15 -7 -6 2 Nio 2
3 fi 11 —4 —4 3 Sim 3
1 11 0 —4 —1 Niao —1
0 (i} -1 —2 —2 Sim

6 {0 -1 -2 Nio -2

Distribuigao das raizes inteiras

Table 4: Disiribuicio das raizes inteiras
Zeros | Multiplicidade
-2 1
3 1

Decomposigao polinomial

P(x) = (z + 2)(z — 3)(62* —z — 2)
Ohservagao

() polindmio possui 2 mizes inleiras de 4 posstveis.

Fonte: Hybritarius®.
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Além disso, a figura traz também a distribuicdo dessas raizes quanto a sua
multiplicidade e a decomposigao prévia de P(x) em relacdo a essas raizes.

A Figura 18 ilustra a execugéao do algoritmo das Regras de Exclusao de Newton
aplicadas ao conjunto €2,, onde excluem-se as improvaveis candidatas a raizes de
P(z) e, com isso, determinando o conjunto das possiveis raizes racionais ndo inteiras

(rem)

remanescentes (2, .

Figura 18 — As Regras de Exclusao de Newton aplicadas aos elementos do conjunto 2, e a
determinagéo do conjunto Q™.

3 Regras de exclusao de Newton
3.1 Valores de referéncia

P(1)=—18, P(—1)=-20, plgc Q.

3.2  Execuc¢ao do algoritmo

Table 5: Andilise de ralzes raclonais pelas regras de exclusio de Newlon
pla | p—aq | (p—q)|P(1) | P+ g | (p+q)|P(-1) | Fxclusio

-3/2| -5 Nao —3/2
—4/3 | -7 | Nio | —4/3
-2/3| -5 | Nia —2/3
—-1/2 | -3 Sim 1 Sim
—1/3 | —4 Nio —1/3
—1/6 | -7 Nio —-1/6
1/6 -5 Nao 1/6
1/3 -2 Sim 1 Sim
/2 | -1 | Sim 3 Nio 1/2
2/3 -1 | Sim 5 Sim
1/3 1| Sim 7 Nio 4/3
3/2 1 Sim 5 Sim

3.3 Conjunto das possiveis raizes racionais nao-inteiras (remanescentes)

(ylrem) _ {_l l f '_!}
o 2’332

Fonte: Hybritarius®.

Por fim, tem-se a Figura 19 que ilustra a execuc¢ao do Algoritmo de Peletarius
para as raizes racionais ndo inteiras, aplicado aos elementos do conjunto Q™. Além
dessas informacoes, o relatério também traz a distribuicdo dessas raizes quanto a
sua multiplicidade e a decomposigéo final do polinémio P(z), conforme o Teorema
Fundamental da Algebra.
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Figura 19 — O Algoritmo de Peletarius para raizes racionais ndo inteiras, distribuicdo dessas
raizes quanto as suas multiplicidades e a decomposicéo final de P(x).

4  Algoritmo de Peletarius para raizes racionais nio inteiras

4.1 Polindmio resultante
Qz)—6r* —x—2

4.2 Execugio do algoritmo

Table fi: Algoritmo de Peletaring (final)
k | y @y | Teste | Raiz? | Exclusao

n| & -1 -2 - - -

1 21 6 l}f:ﬁ MNao |.J."3
2 i 3| 2/3a | Sim 2/3
3 —2 3/2 Nio | 3/2

| 6| —1/2| Sim | —1/2

4.3 Distribuicio das raizes racionais

Table 7: Distribnigio das raizes racionais
Zeros | Multiplicidade
—1/2 1
2/3 1

Decomposigao polinomial final

P(z) — 6(x + 2)(z — 3)(z + 1/2)(x — 2/3)

| Provcesso ﬂur}it’mdn.’."_’l

Fonte: Hybritarius®.
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6 CONCLUSOES E PERSPECTIVAS FUTURAS

Este capitulo resume os principais apontamentos obtidos neste trabalho, des-
tacando as contribui¢des resultantes da pesquisa e também apresentam-se algumas
perspectivas de novas diregbes de pequisas na area de ensino de matematica.

6.1 CONCLUSOES

A presente pesquisa nos remete a uma pergunta em relacdo as Regras de
Exclusdo de Newton (REN) e ao Algoritmo de Peletarius (AP): “Por que esses métodos
nao mais figuram nos atuais livros didaticos de Mateméatica?”.

Para buscar responder a essa indagacao em relacédo ao AP, vem em mente
dois possiveis motivos de cunho pratico. O primeiro seria pelo fato do Dispositivo
de Briot-Ruffini (DBR) apresentar operacdes aritméticas mais simples de serem exe-
cutadas pelos estudantes em seu algoritmo. Pois, como visto, no AP as operacdes
envolvidas sdo a subtracéo e a divisdo. Enquanto que no DBR, envolvem operacdes de
multiplicacéo e adigéo. Pois, segundo dados do Programme for International Student
Assessment - PISA, realizado em 2022 e divulgados em 2023, cerca de 70% das cri-
ancas e adolescentes brasileiros possuem dificuldades basicas em Matematica. Esse
dado corrobora com um fato que é de conhecimento comum entre os professores de
matematica do Ensino Fundamental Il (6°ao 9°ano) e Ensino Médio que é também
sustentado por Lautert (2005) e Mello (2008), ao qual a maioria dos estudantes da
Educagao Basica apresentam dificuldades com a subtragdo e/ou a divisao.

Outro ponto que torna o DBR mais “popular” que o AP é a divisdo de Polinbmios.
Pois, na divisdo de um certo polinémio f por um binémio g = ax + b, 0 DBR, além de
apontar o polindmio quociente ¢, esse método aponta também o polinémio do resto r,
conforme equagao f = ¢ - g+ r. Ja com o AP, o polindmio ¢ s6 é figurado se a divisao
em questao for exata. Ou seja, » = 0.

No entanto, o AP apresenta uma grande vantagem em relacdo ao DBR na
verificacdo se um determinado racional d é ou ndo raiz de um certo polinémio P(x).
Pois, se no decorrer do processo de execug¢ao do algoritmo nos depararmos com
qualquer resultado néo inteiro, o ensaio pode ser abandonado. Ou seja, d ndo é raiz de
P(z). Ha de se observar que se mesmo os resultados encontrados sejam inteiros, 0s
coeficientes dominantes dos polinémios P(z) e quociente necessariamente precisam
coincidirem. Assim como o DBR, encontrada uma raiz, o processo pode ser continuado
com outras possiveis raizes d de P(x) com os coeficientes do polinémio quociente
obtido.
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Em relacdo as REN, observa-se que as mesmas nao apresentam maiores
complexidades de sua aplicagdo ou execucao, tendo em vista que seu mecanismo
consiste praticamente em comparar se a soma e a subtracao de dois inteiros € dividivel
por P(—1) e P(1) de P(z), respectivamente.

Em relagéo ao Hybritarius®, o mesmo se apresenta como uma promissora opgao
de instrumento educacional de auxilio nas aulas de Algebra. Sua interface é bastante
simples de ser utilizada e os seus resultados sao precisos e esclarecedores, gracas
aos seus relatérios automatizados emitidos em IKTEX. Sua aplicagdo em linguagem R
pode ser executada em qualquer ambiente computacional e sem a necessidade de
rede de internet, desde que as maquinas possuam o aplicativo previamente instalado.

Por fim, as Regras de Exclusdo de Newton e o Algoritmo de Peletarius séo
técnicas que, outrora, foram bastante usadas nas aulas de Matematica em décadas
passadas, mas que se apresentam com um grande potencial de reuso nas atuais
atividades docentes que envolvem a Algebra. Combinados as técnicas do Teorema
das Raizes Racionais para determinar o conjunto-solucado ao qual encontram-se as
possiveis raizes racionais de um certo polinbmio de coeficientes inteiros e ao Método
de Laguerre para restringir esse conjunto; essas técnicas se apresentam como uma
grande proposta no campo do ensino da Algebra nas turmas de Ensino Médio e, porque
nao dizer, no Ensino Superior.

6.2 PERSPECTIVAS FUTURAS

Como proposta de estudos futuros, podemos buscar aprofundar essa mesma
linha de pesquisa a aplicagao do Algoritmo de Peletarius na sala de aula, nas turmas de
3°ano do Ensino Médio, etapa onde o estudo do Conjuntos dos Numeros Complexos e
Polinbmios sdo mais evidentes.

Para tal, pode ser realizado uma pesquisa investigativa comparando os métodos
do Dispositivo de Briot-Ruffini e do Algoritmo de Peletarius e buscar perceber, de modo
mais pratico, os possiveis reais motivos da desutilidade do método desenvolvido por
Peletier no decorrer do tempo. O mesmo se aplica as Regras de Exclusdo de Newton e
também ao Método de Laguerre. Pois esse método se mostrou bastante eficiente para
a limitacao do intervalo real onde se encontram, ndo sé as possiveis raizes racionais
de uma equacao polinomial, mas também as suas possiveis raizes irracionais. Conse-
quentemente, de posse de tais dados, espera-se compreender também as possiveis
causas que culminaram para a nao publicacao desses métodos pelos contemporaneos
autores de livros didaticos de Matematica contemplados pelo PNLD.
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Em relagdo ao Hybritarius®, o programa computacional pode ser expandido
e, com isso, ser desenvolvido para outras plataformas digitais, como por exemplo,
aplicativos executaveis no sistema operacional Android para dispositivos portateis. Pois,
pelo menos no Estado do Ceard, através da Lei N® 17.347 de 11 de dezembro de
2020 que autoriza o poder executivo estadual a adquirir e distribuir Tablets a alunos do
Ensino Publico Superior e da Rede Estadual de Ensino, a maioria dos estudantes do
Ensino Médio possuem tal equipamento com possibilidades de uso em sala de aula.

Além dessas perspectivas, ha caréncia de se pesquisar outros promissores con-
ceitos e métodos, também esquecidos e ndo mais trabalhados nas aulas de Mateméatica
da Educacao Basica e Superior. Ao identifica-los, buscar compreender os possiveis
motivos que os levaram a nao mais participarem dos conteudos programaticos das
aulas de Matematica, principalmente nos cursos de licenciatura.
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