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RESUMO

O presente trabalho visa abordar, dentro do campo da Álgebra, dois importantes pilares:
a divisão de polinômios e a raiz de uma equação polinomial. Para tal, serão mostradas
técnicas que, em outrora, já foram bastante utilizadas pelos professores de matemática,
até a década de 50 e 60, para a identificação das possíveis raízes racionais de uma
equação polinomial de coeficientes inteiros e a divisão de polinômios por um binômio
da forma a ·X + b. Além disso, assim como o Dispositivo de Briot-Ruffini, um desses
métodos pode ser aplicado na verificação se um determinado número racional é ou não
a raiz de uma tal equação polinomial. Chamadas de Regras de Exclusão de Newton e
o Algoritmo de Peletarius, essas técnicas, por motivos por mim desconhecidos, não
são mais abordadas na atual bibliografia dos inúmeros livros de álgebra dos ensinos
médio e superior. Como produto educacional, será apresentado o Hybritarius®. Um
aplicativo computacional que permite identificar (se existir) as raízes racionais de uma
equação polinomial de coeficientes inteiros, utilizando em seu algoritmo as técnicas
então apresentadas.

Palavras-chave: Álgebra. Raízes de Polinômios. Hybritarius.



ABSTRACT

This paper aims to address two important pillars of Algebra: the division of polynomials
and the root of a polynomial equation. To this end, techniques that were once widely
used by mathematics teachers, up until the 1950s and 1960s, will be presented to
identify possible rational roots of a polynomial equation with integer coefficients and
the division of polynomials by a binomial of the form a · X + b. Furthermore, like the
Briot-Ruffini Device, one of these methods can be applied to verify whether or not
a given rational number is the root of such a polynomial equation. Called Newton’s
Exclusion Rules and the Peletarius Algorithm, these techniques, for reasons unknown to
me, are no longer addressed in the current bibliography of the numerous algebra books
for high school and college education. As an educational product, the Hybritarius® will
be presented. A computer application that allows you to identify (if they exist) the rational
roots of a polynomial equation with integer coefficients, using the techniques presented
in its algorithm.

Keywords: Algebra. Roots of Polynomials. Hybritarius.
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1 INTRODUÇÃO

A busca das raízes ou resolução de uma equação algébrica ou polinomial e/ou a
divisão de um polinômio de grau maior que 2 por um binômio são algumas das tarefas
que todo estudante da Educação Básica (Ensino Médio certamente) é submetido a
realizar na disciplina de Matemática. Nos cursos da Área de Exatas do Ensino Superior,
no campo da Álgebra, a divisão de polinômios, a busca do zero de uma função algébrica
e a raiz de uma equação polinomial ou algébrica são temas recorrentes, como por
exemplo, nos cursos de Cálculo. Para tal fim, quando se trata de equações polinomiais
de grau maior que 4, o trabalho fica cada vez mais oneroso; tendo em vista que não
há “fórmulas” de resolução para equações de tal grau (Andrade, 1989). Encontrar as
raízes de uma equação algébrica ou o zero de uma função polinomial e/ou dividir
um polinômio de grau maior que 2 por um binômio são alguns dos temas que serão
abordados mais adiante.

O presente trabalho se origina sobre um artigo da Revista do Professor de
Matemática (RPM), número 14, publicada em 1989, sob o título “Raízes Racionais
de uma equação algébrica de coeficientes inteiros” de autoria do Professor Lenimar
Nunes de Andrade, onde na época era docente da Universidade Federal da Paraíba -
UFPB. No final desse artigo, há uma nota de rodapé (NR) da própria equipe editorial da
revista com o seguinte texto: “O colega Lenimar N. Andrade, neste artigo, ressuscita um
teorema que se encontrava nos livros do 3° colegial na década de 50 [...]. O teorema
chama-se ‘Regras de Exclusão de Newton’ [...]”. A NR continua: “Ainda no contexto da
procura das raízes inteiras, os livros ensinavam o ‘algoritmo de Peletarius’ - alguém,
nascido após 1950, aprendeu esse algoritmo no 2° grau? Já ouviu falar nele?”. Através
dessas indagações despertou-se o interesse em conhecer esses métodos, assim
como seus princípios, suas aplicações, suas ferramentas e, também, buscar entender
os supostos motivos que os levaram a não ser mais contemplados nos atuais livros
escolares de matemática da Educação Básica.

Pesquisando sobre as Regras de Exclusão de Newton, o aprofundamento do
tema veio através de dois livros da década de 50 e 70 e um periódico da RPM. As
mesmas nos permitem, através de cálculos bastante simples, excluir no primeiro
momento, um determinado número racional que não pode ser uma raiz de um certo
polinômio de coeficientes inteiros. Como o próprio nome já diz, essas regras são
atribuídas à Isaac Newton (1643-1727). Segundo Roxo et al. (1955), elas também
são relacionadas ao francês Étienne Bézout (1730-1783). No primeiro momento essas
regras permitem identificar se um determinado inteiro é ou não uma possível raiz
de uma certa equação polinomial. Para Andrade (1989), as mesmas também podem
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ser aplicadas a racionais não inteiros. Ou seja, se uma determinada fração p
q

com
mdc(p, q) = 1, é ou não uma possível raiz de um certo polinômio de coeficientes inteiros.
Sua sustentação e demonstração se dá através do polinômio de Taylor, ao qual será
abordado mais a frente com maiores detalhes.

Pesquisando sobre o Algoritmo de Peletarius, ele pode ser utilizado para dividir
um polinômio de grau maior que 1 por um binômio qualquer. Além disso, é possível
verificar se um certo número racional é ou não raiz de uma equação polinomial. Pois,
atualmente, por exemplo, para realizar a divisão de um certo polinômio P (x) por um
polinômio da forma x− b (binômio unitário) ou, até mesmo, verificar se um determinado
inteiro é raiz de P (x), utiliza-se o famoso Dispositivo de Briot-Ruffini (DBR). A edição
de número 65 de 2008 da RPM traz um artigo dos professores e historiadores da
Matemática Flávia Soares e José Lourenço da Rocha, sob o título “Que fim levou
o Algoritmo de Peletarius?”. Segundo as pesquisas realizadas por Soares e Rocha
(2008), os livros de história da matemática, bastante conhecidos e usados nos cursos
de graduação, não faziam também referência a essa técnica. O artigo que envolve
a pesquisa sobre esse algoritmo, dos referidos historiadores, é esclarecedor. Pois, o
mesmo aponta apenas dois livros que contemplam Peletarius, aos quais também foram
identificados na nossa presente pesquisa, com diferença única de número de edição e
ano de publicação.

O primeiro é o livro “Curso de Matemática para os cursos de segundo grau
(Antigos cursos CLÁSSICO E CIENTÍFICO) - Curso Completo” do autor Manoel Jairo
Bezerra, publicado pela Companhia Editora Nacional em São Paulo, bastante usado
no Brasil na década de 50. A versão à qual tivemos acesso foi a 31° Edição do ano
1974. Esse livro faz referência ao Algoritmo de Peletarius e as Regras de Exclusão de
Newton aplicadas a números inteiros e outros importantes conteúdos que, por sinal,
não são mais contempladas nos atuais livros didáticos de Matemática. O segundo livro
identificado que aborda tal algoritmo é o “Matemática - 2° Ciclo - 3° Série”. Escrito
pelos professores Euclides Roxo, Haroldo Lisboa da Cunha, Roberto Peixoto e César
Dacorso Netto e publicado pela Livraria Francisco Alves. Esse livro era direcionado à
estudantes da 3° série do colegial, atual Ensino Médio. A versão à qual tivemos acesso
foi a 4° Edição do ano de 1955. O mesmo também aborda as Regras de Exclusão de
Newton aplicadas a racionais e outros importantes conteúdos que também não são
mais contemplados nas publicações recentes.

Mas, quem era Peletarius e o que é o algoritmo que leva o seu nome? Apesar
das inúmeras consultas realizadas em busca de mais informações sobre Peletarius,
foi também no presente artigo de Soares e Rocha (2008) que obteve-se as respostas
mais precisas. Segundo as pesquisas, Peletarius respondia pelo nome de Jacques
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Peletier (1517-1582). Esse foi um dos mais importantes algebristas franceses do
período anterior a François Viète (1540-1603). Além dos seus trabalhos no campo da
Matemática, Peletier ficou conhecido por suas lindas poesias. Dentre as obras que
publicou, pode-se destacar a Arithmeticae practicae (1545), a Arithmétique (1549) e
L’algèbre departie en deux livres (Lyon, 1554). Em 1557, publicou o In Euclidis elementa
demonstrationum libri sex. No entanto, sobre o seu algoritmo, não há nada publicado
além de outras poucas referências bibliográficas.

Há pouquíssimos livros que trazem conteúdo sobre as Regras de Exclusão de
Newton ou Algoritmo de Peletarius. Mais precisamente, a nossa pesquisa identificou
que os atuais livros didáticos de Matemática usados nas escolas públicas, através do
Programa Nacional do Livro Didático (PNLD), dentro das atuais diretrizes do Novo
Ensino Médio, criado através da Lei n° 13.415/2017, não trazem em seus sumários
essas técnicas.

1.1 A IMPORTÂNCIA DESSE TRABALHO

A importância desse trabalho se dá por buscar compreender a teoria, a relevân-
cia e a aplicação prática das regras de Exclusão de Newton e o Algoritmo de Peletarius
para o ensino de Álgebra na disciplina de Matemática, principalmente no Ensino Médio.
Além disso, considerando a limitada oferta de livros contemporâneos sobre os temas,
busca-se com esse trabalho resgatar essas técnicas que encontram-se omissas nos
atuais acervos bibliográficos do PNLD, e assim, trazê-las a luz para as atuais levas de
estudantes. Em contrapartida, buscar compreender os possíveis motivos que levaram
os coevos autores de livros didáticos de Matemática a excluírem essas técnicas de
suas obras. Por fim, apresentar um aplicativo computacional chamado Hybritarius® que,
implementado em linguagem R e capaz de gerar relatórios automatizados em LATEX,
nos permite determinar as possíveis raízes racionais (se houver) de uma equação
polinomial de coeficientes inteiros e exibí-lo na sua forma fatorada, conforme o Teorema
Fundamental da Álgebra. O seu algoritmo de funcionamento é baseado nas Regras de
Exclusão de Newton, o Algoritmo de Peletarius e outros conceitos e ferramentas aqui
também trabalhados.

1.2 ORGANIZAÇÃO DO TRABALHO

O presente trabalho está organizado em 6 capítulos, onde o 1° trata-se da
presente Introdução e os demais sendo distribuídos a saber:

No Capítulo 2, apresenta-se uma abordagem histórica sobre a Álgebra e os Po-
linômios no decorrer do tempo. São mostrados fatos e curiosidades sobre as Funções
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e Equações Algébricas, assim como os seus conceitos e definições. Na sequência
é tratada as operações envolvendo as Funções Polinomiais, evidenciando conceitos
e técnicas pertinentes ao desenvolvimento do trabalho. Nas Equações Polinomiais,
são apresentados conceitos e definições sobre Raízes, Conjunto-Solução e o impor-
tantíssimo Teorema Fundamental da Álgebra e seus Corolários. Por fim, aborda-se o
indispensável Teorema das Raízes Racionais e é resgatada uma técnica de delimitação
do intervalo real onde se encontram as raízes de uma equação polinomial, chamada
de Método de Laguerre, onde são ilustradas suas definição e aplicação.

No Capítulo 3, são tratadas das Regras de Exclusão de Newton. No primeiro
momento são contextualizados conceitos e definições de suma importância para o
desenvolvimento do trabalho, envolvendo apenas os números inteiros. Em sequência,
apresenta-se as suas demonstrações e aplicações através de alguns exemplos práticos.
No segundo momento, são mostradas as Regras de Exclusão de Newton, aplicadas a
Raízes Racionais não inteiras de Equações Algébricas de coeficientes inteiros com seus
conceitos e definição. Para sua demonstração, é apresentado o Polinômio de Taylor,
ao qual é peça fundamental para o seu desenvolvimento. Em sequência, utiliza-se
exemplos práticos para ilustrar a sua aplicação.

No Capítulo 4, é apresentado o Algoritmo de Peletarius, juntamente com seus
conceitos e definições. Em seguida, apresenta-se a sua demonstração para números
inteiros e o seu dispositivo prático que torna a sua aplicação bastante simples. De-
pois, apresenta-se alguns exemplos práticos de sua aplicação, usando os conceitos e
técnicas já tratados nos capítulos anteriores. Em seguida, é apresentado o Algoritmo
de Peletarius para raízes racionais não inteiras, ao qual o mesmo não foi identificado
nas bibliografias então pesquisadas. É então apresentada a nossa demonstração e,
logo em seguida, apresenta-se o seu dispositivo prático e alguns exemplos que tornam
singela a sua aplicação.

No Capítulo 5, é apresentado o aplicativo educacional Hybritarius®, implemen-
tado em linguagem R, que propõe uma solução computacional que integra as Regras
de Exclusão de Newton e o Algoritmo de Peletarius para a obtenção (se houver) das
raízes racionais de expressões polinomiais de coeficientes inteiros. Identificando tais
raízes, as mesmas serão figuradas e o polinômio em questão é exibido conforme o
Teorema Fundamental da Álgebra. No mais, é ilustrado um fluxograma que mostra
todo o roteiro do processo executado pelo Hybritarius® e um exemplo prático do seu
funcionamento.

Por fim, no Capítulo 6, apresentam-se as conclusões finais e as perspectivas de
trabalhos futuros.
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2 POLINÔMIOS

2.1 UMA ABORDAGEM HISTÓRICA SOBRE A ÁLGEBRA E OS POLINÔMIOS

A Álgebra é a parte da matemática em que se empregam outros símbolos
além dos algarismos (Longen, 2003). Esses símbolos, chamados de variáveis, ligam-
se convenientemente por operações aritméticas e, juntos, formam as expressões
algébricas. As funções algébricas de grau maior que dois foram um dos objetos de
estudo de muitos matemáticos durante vários séculos. Nas palavras de Iezzi (2013),
ao final do século XV a álgebra tinha avançado a passos curtos em relação aos
conhecimentos adquiridos e deixados pelos babilônios e egípcios sobre o tema, a cerca
de 1800 anos antes de Cristo.

Segundo Fernandez e Santos (2010), as equações polinomiais do primeiro grau
surgiram de forma bastante tímida no papiro de Ahmes (1650 a. C.). De acordo com
Nunes, Situba e Chaquiam (2024), um dos primeiros livros que se tem registro com
conteúdo algébrico é o “Hisabal-jabrw’al-muqabala” do matemático nascido na região
da Ásia Central chamado Al-Khwarizmi (780-850 a.C.). Seu trabalho teve contribuições
bastante significativas para o ensino de Matemática com o primeiro tratado sobre
soluções de equações lineares e quadráticas. Além disso, suas contribuições foram
fundamentais para incentivar o mundo a utilizar os algarismos indu-arábicos que
culminou no nosso atual sistema de numeração.

Em sequência, já na era Cristã, uma grande referência é o matemático indiano
Bhaskara Akaria (1140-1185) cujas importantes contribuições culminaram nos atuais
métodos de resolução de equações quadráticas. Sua importância é tão significativa
para a matemática que alguns livros se dirigem a esse método como a "fórmula de
Bhaskara", que busca as raízes de uma equação quadrática.

De acordo com Iezzi (2013), até antes de 1500, a resolução de equações
cúbicas era algo ainda intangível de aplicação prática. Já em meados do século XVI,
surgiram avanços significativos na resolução de equações do terceiro grau. Ou seja,
achar as raízes de uma equação da forma x3 + ax2 + bx+ c = 0 (com a, b e c reais) já
era uma realidade. Desse ponto em diante, a álgebra obteve avanços significativos e,
com ela, a busca das raízes de uma equação polinomial de grau n.

Nas palavras de Fernandez e Santos (2010), um pioneiro na busca das soluções
de uma equação cúbica foi o matemático italiano Niccolò Fontana (Tartaglia) (1500-
1557). Suas contribuições foram além do âmbito matemático. Pois, através de seus
estudos, ele realizou aplicações matemáticas em artilharias, contribuindo com o avanço
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do poder bélico italiano. Um outro grande feito seu foi o de traduzir o honorável Livro
de Euclides “Os elementos” para sua língua nativa. De acordo com Iezzi (2013), por
volta de 1530 surgiu a notícia de que Tartaglia resolvia equações da forma x3 + px2 = q.
Tartaglia manteve o seu método de resolução em segredo por um bom tempo, mas
o acabou revelando, sob promessa de sigilo, para um “amigo” e exímio matemático
chamado Girolano Cardano.

Ainda na Itália, Girolamo Cardano (1501-1576) foi outro matemático que dividiu
o palco com Tartaglia na solução de equações cúbicas. Pela surpresa de Tartaglia, em
1545, na primeira edição do livro Ars magna lá estavam seus métodos sob a autoria de
Cardano, embora com referências de agradecimentos. Esse fato gerou uma verdadeira
“guerra” entre os dois matemáticos durante bastante tempo. Foi Cardano que identificou
no método de Tartaglia uma falha, pois o mesmo não resolvia equações com raízes
complexas. Nesse momento, não havia ainda o conceito de números complexos e
Cardano se referia a essas raízes como "sofísticas". Ou seja, "são tão sutis quanto
inúteis"(Rosa, 1998). Nessa perspectiva, em relação aos polinômios, a contribuição
matemática de Cardano pode ser equiparada a de Tartaglia, na medida em que ambos
contribuíram para o método de resolução de equações polinomiais de grau 3.

No mesmo ano, o Ars magna trazia uma outra notável descoberta pelo mate-
mático italiano e discípulo de Cardano chamado de Ludovico Ferrari (1522-1565): um
método para reduzir equações do quarto grau a equações cúbicas, através de uma
expressão radical. Para a solução de equações do quinto grau, muitos matemáticos
importantes tentaram buscar soluções, mas não obtiveram êxito. Segundo Knudsen
(1985), o notório suíço Leonard Euler (1707-1783) não conseguiu resolvê-lo. Porém
encontrou novos métodos para a resolução da equação do 4° grau. Em 1770, o mate-
mático italiano Joseph-Louis Lagrange (1736-1813) conseguiu unificar os argumentos
nos casos das equações de grau 3 e 4 e mostrou porque tal argumento falhava no caso
do grau 5. O matemático italiano Paolo Ruffini (1765-1822), em 1813, também tentou
uma demonstração de tal impossibilidade, mas seus argumentos apresentavam bas-
tante falhas. Por fim, em 1824, o matemático norueguês Niels Henrik Abel (1802-1829)
provou que a equação geral de grau 5 não é resolúvel por meio de radicais.

Já em 1843, o matemático francês Joseph Liouville (1809-1882) escreveu para a
Academia de Ciências de Paris anunciando que os trabalhos deixados pelo matemático
francês Evariste Galois (1811-1832) continham uma solução que respondia com preci-
são quando uma equação de grau 5 é ou não “resolúvel por meio de radicais” (Knudsen,
1985). A solução apresentada por Galois, ao caracterizar as equações polinomiais
resolúveis por meio de radicais, através de propriedades do grupo de automorfismos
de um corpo, é considerada uma das principais conquistas da Álgebra no século XIX.
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Outro matemático bastante influente em relação as equações algébricas e os
polinômios foi o italiano Albert Girard (1595-1632). Foi Girard que identificou as relações
entre o número de raízes de um polinômio e o seu grau (maior expoente da variável).
Ou seja, o grau do polinômio determina a sua quantidade de raízes. Não só isso, mas
também as relações dessas raízes com os coeficientes do polinômio com as famosas
"Relações de Girard".

Já no século XVII surge o brilhante matemático alemão, Carl Gauss (1777-1855).
Suas contribuições foram além do campo da matemática como a Física e a Astronomia.
O conceito de números complexos foi atribuído por Gauss e foi ele quem deu a primeira
demonstração satisfatória do Teorema Fundamental da Álgebra - TFA, ao qual será
mais explorado nos próximos capítulos.

Ainda no século XVII, o italiano Paolo Ruffini e o francês Charles Briot (1817-
1882) trouxeram contribuições significativas para a divisão de polinômios. Seus legados
são tão importantes para o campo da Álgebra que o “Dispositivo de Briot-Ruffini” é uma
das ferramentas poderosas na divisão de um polinômio de grau n ⩾ 2 por um binômio
da forma x− a. Esse dispositivo será também mais explorado nos capítulos seguintes.

Outro influente matemático do século de XVII que apresentou importantes
contribuições para a Álgebra foi o tcheco Bernard Bolzano (1781-1848). O seu teorema,
ao qual leva o seu nome (Teorema de Bolzano) permite perceber se há ou não pelo
menos uma raiz de uma determinada função contínua dentro de um domínio específico.
A contribuição deste teorema foi significativa para o âmbito dos estudos das funções
algébricas e os polinômios.

Esses são alguns dos matemáticos que tiveram seus trabalhos mais direcio-
nados ao estudo das soluções das equações algébricas. No entanto, a de considerar
que todos esses trabalhos, e tantos outros que vieram depois, se apoiaram em feitos
de outros grandes nomes da Álgebra. Há um consenso na literatura sobre os maiores
e mais importantes matemáticos que contribuíram direta (ou indiretamente) para o
desenvolvimento da Álgebra, ao qual dispensa apresentações. Entre os tais, pode-se
citar os gregos Arquimedes (287-212 a.C.), Euclides (por volta de 300 a.C.) e Pitágoras
(570-495 a.C.), a egípcia Hypatia de Alexandria (360-415 a.C.), o italiano Leonardo
Fibonacci (1170-1250), os franceses René Descartes (1596-1650) e Henri Poincaré
(1854-1912), os alemães Bernhard Riemann (1826-1866) e Gottfried Leibniz (1646-
1716) e o inglês Isaac Newton (1643-1727). Sem sombra de dúvidas, essa lista é bem
mais longa.
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2.2 A FUNÇÃO POLINOMIAL OU (SIMPLESMENTE) POLINÔMIO

Dentro do contexto científico, sabe-se que as funções algébricas são comuns
nos diversos campos da ciência; seja na Física, na Química, nas diversas Engenha-
rias, na Arquitetura, na Medicina e etc. Na matemática, as equações polinomiais são
comumente usadas para representar ou modelar o comportamento de um determinado
fenômeno prático. Resolver uma equação polinomial significa “encontrar” determinadas
soluções ou respostas de certos problemas específicos, através dos valores, até então
desconhecidos, representados por uma letra que consiste à sua incógnita (geralmente
x), onde esse valor encontrado representa a sua raiz (ou suas raízes).

Para Lima (2023), Polinômio define-se da seguinte forma:

Definição 2.2.1. Um polinômio é uma expressão formal do tipo

P (X) = anX
n + an−1X

n−1 + an−2X
n−2 + · · ·+ a3X

3 + a2X
2 + a1X + a0, (2.1)

onde (a0, a1, · · · , an) é uma lista ordenada de números reais e X é um símbolo (cha-
mado uma indeterminada), sendo X i uma abreviatura para X ·X · · ·X (i fatores).

Segundo Iezzi (2013), os números an, an−1, · · · , a2, a1, a0 são denominados coe-
ficientes e as parcelas anx

n, an−1x
n−1, an−2x

n−2, · · · , a3x3, a2x
2, a1x e a0 são chamadas

de termos do polinômio. O x é a variável única ao qual pode assumir qualquer valor
real com expoente n ∈ N.

Em se tratando de Função Polinomial, Lima (2023) conceitua da seguinte forma:

Definição 2.2.2. Diz-se que p : R −→ R é uma função polinomial quando são dados
números reais an, an−1, · · · , a2, a1, a0 tais que, para todo x ∈ R, tem-se

p(x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a3x

3 + a2x
2 + a1x+ a0. (2.2)

Para Lima (2023), há uma correspondência biunívoca entre polinômio e função
polinomial (P (X) 7−→ p(x)). Logo, não há necessidade de fazer distinção entre o
polinômio P e a função polinomial p. Pois, ambos serão representados pelo mesmo
simbolo p e serão chamados indiferentemente de polinômio ou de função polinomial.

Portanto, pode-se admitir indistintamente os termos “polinômio” ou “função
polinomial”.
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2.3 CONCEITOS E DEFINIÇÕES

A seguir, serão abordados alguns conceitos e definições que caracterizam um
Polinômio que serão pertinentes à elaboração do presente trabalho.

2.3.1 Grau, Coeficiente Líder e Coeficiente Independente

Para Hefez e Villela (2022), em todo polinômio f(x) não identicamente nulo
(f(x) ̸= 0), algum coeficiente deve ser diferente de zero, então há um maior natural
n tal que an ̸= 0. Definimos o grau de f(x) como sendo este número natural n e o
denotamos por gr(f(x)). O grau de um polinômio f é representado por Iezzi (2013)
como ∂f ou grf .

Como alguns exemplos, temos:

1. f(x) = 3x4 − 5x3 + 2x2 − 6x+ 8 ⇒ ∂f = 4.

2. g(x) = −2 + 8x− 10x3 ⇒ ∂g = 3.

3. h(x) = (a− 5)x5 + 7x4 − 6x2 + 2 ⇒

{
∂h = 4, se a = 5

∂h = 5, se a ̸= 5
.

Tem-se ainda que se o grau de f é n, então an é chamado de coeficiente líder
ou dominante do Polinômio. Pois esse é o coeficiente do termo xn de maior expoente
do Polinômio. No caso do coeficiente dominante an ser igual a 1, f é chamado de
Polinômio Unitário.

Em sequência, tem-se que a0 é o coeficiente independente ou termo inde-
pendente do Polinômio, já que o mesmo não possui produto com a variável x.

2.3.2 O valor numérico e a Raiz de um Polinômio

Dado o número real α e o polinômio f(x), o valor numérico de um polinômio f

em α é a imagem de α pela função f . Ou seja,

f(α) = anα
n + an−1α

n−1 + · · ·+ a2α
2 + a1α + a0. (2.3)

Com isso, tem-se que f(α) é a imagem de α pela função f . Portanto, o valor
numérico de α em f é f(α).

Uma observação a ser dada aqui é para α = 1 e α = 0. Pois, dado um polinômio

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 (2.4)
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temos os seguintes casos:

• Para x = 1, temos:

P (1) = an · 1n + an−1 · 1n−1 + · · ·+ a2 · 12 + a1 · 1 + a0

P (1) = an + an−1 + · · ·+ a2 + a1 + a0.

Isto é, P (1) corresponde a soma dos coeficientes de P (x).

• Para x = 0, temos que:

P (0) = an · 0n + an−1 · 0n−1 + · · ·+ a2 · 02 + a1 · 0 + a0

P (0) = a0.

Isto é, P (0) corresponde ao valor do coeficiente independente de P (x).

Em particular, se α é um número real e P (x) é um polinômio, tal que P (α) = 0,
ou seja,

P (α) = anα
n + an−1α

n−1 + · · ·+ a2α
2 + a1α + a0 = 0, (2.5)

diz-se que α é uma raiz (ou um zero da função) de P (X). Em termos de equações, α é
raiz da Equação Polinomial.

2.3.3 Polinômio Nulo e os seus coeficientes

Diz-se que um Polinômio f é considerado nulo ou identicamente nulo quando o
mesmo assume o valor numérico igual a zero para qualquer α real. Ou seja,

f = 0 ⇐⇒ f(α) = 0,∀α ∈ R. (2.6)

Essa afirmação é reforçada por Iezzi (2013) pelo seguinte teorema para Coefici-
entes de Polinômios Nulos:

Teorema 2.3.1. Um polinômio f é nulo se, e somente se, todos os seus coeficientes
forem nulos. Ou seja, sendo

f(x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a3x

3 + a2x
2 + a1x+ a0, (2.7)

temos:
f(x) = 0, ∀x ∈ R ⇐⇒ an = an−1 = · · · = a2 = a1 = a0 = 0.

Por consequência dessa definição, o fato do Polinômio possuir todos os coefici-
entes iguais a zero, não se pode definir o seu grau.
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2.3.4 Polinômios Idênticos e os seus coeficientes

A literatura acerca do assunto diz que dois Polinômios f e g são iguais ou
idênticos quando os mesmos assumem valores numéricos iguais para qualquer valor
de x real. Ou seja,

f = g ⇐⇒ f(x) = g(x), ∀x ∈ R. (2.8)

Para tal definição, Iezzi (2013) aponta o seguinte teorema para os Coeficientes
de Polinômios Idênticos:

Teorema 2.3.2. Dois Polinômios f e g são iguais se, e somente se, os coeficientes de
f e g forem ordenadamente iguais. Em símbolos, sendo

f(x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a3x

3 + a2x
2 + a1x+ a0 (2.9)

e
g(x) = bnx

n + bn−1x
n−1 + bn−2x

n−2 + · · ·+ b3x
3 + b2x

2 + b1x+ b0, (2.10)

temos que:
f = g ⇐⇒ ai = bi, ∀i ∈ {N ∪ {0}}.

Ou seja, quando an = bn; an−1 = bn−1; · · · ; a2 = b2; a1 = b1 e a0 = b0.

2.4 OPERAÇÕES COM POLINÔMIOS

A soma e o produto de funções polinomiais são ainda funções polinomiais (Lima,
2023). A seguir será mostrado como realiza-se as operações com Polinômios, tendo
em vista que essas operações são de total importância para a realização do presente
trabalho.

2.4.1 Adição

2.4.1.1 Soma de Polinômios

Para Hefez e Villela (2022), dados dois Polinômios

f(x) =
n∑

j=0

ajx
j e g(x) =

n∑
j=0

bjx
j,

representados respectivamente pelas Equações 2.9 e 2.10, definimos a soma de f

com g como sendo o Polinômio h dado por

f(x) + g(x) = h(x) =
n∑

j=0

cjx
j,
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onde cj = aj + bj, para 0 ≤ j ≤ n. Com isso, temos

h(x) = (an+ bn)x
n+(an−1+ bn−1)x

n−1+ · · ·+(a2+ b2)x
2+(a1+ b1)x+(a0+ b0), (2.11)

em que podemos reescrevê-lo como

h(x) = cnx
n + cn−1x

n−1 + cn−2x
n−2 + · · ·+ c2x

2 + c1x+ c0. (2.12)

Portanto, a soma dos Polinômios f e g corresponde ao Polinômio h, obtido
quando soma-se os seus coeficientes dos termos semelhantes.

2.4.1.2 Propriedades da Adição

De acordo com Iezzi (2013), a operação de adição define em P, conjunto dos
Polinômios de coeficientes reais, uma estrutura de grupo comutativo. Ou seja, dados
os Polinômios f , g e h, para a operação de soma de Polinômios, aceita-se as seguintes
propriedades:

• Propriedade Associativa: f + (g + h) = (f + g) + h,∀f, g, h ∈ P.

• Propriedade Comutativa: f + g = g + f,∀f, g ∈ P.

• Existência de Elemento Neutro: ∃ε ∈ P | f + ε = f, ∀f ∈ P. Ou seja, ε (elemento
neutro para a adição de Polinômios) é o Polinômio Nulo.

• Existência de Inverso Aditivo ou Simétrico: ∀f ∈ P, ∃f ′ ∈ P | f + f ′ = ε. Ou seja,
f ′ é o inverso aditivo ou simétrico de f que, somado com f , figura o Polinômio
Nulo ε. Logo, f ′ = −f(x) = (−an)x

n + (−an−1)x
n−1 + · · ·+ (−a1)x+ (−a0).

2.4.1.3 Grau da Soma

De acordo com Iezzi (2013), se f , g e f + g = h são Polinômios não nulos, então
o grau de h é menor ou igual ao maior dos números ∂f e ∂g. Ou seja, em termos gerais,
tem-se que:

∂h ≤ max{∂f, ∂g}. (2.13)

2.4.1.4 Exemplos da Soma de Polinômios

Dados os seguintes Polinômios exemplos, temos:

1. f(x) = 2x4 + 3x2 − 5x+ 1;

2. g(x) = 5x3 − x+ 3.
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Será definido o Polinômio h(x) = f(x) + g(x). Para equiparar o número de
termos, podemos reescrevê-los como:

1. f(x) = 2x4 + 0x3 + 3x2 − 5x+ 1;

2. g(x) = 0x4 + 5x3 + 0x2 − x+ 3.

Logo, executando a soma dos coeficientes de termos semelhantes, tem-se como
resultado o Polinômio

h(x) = (2 + 0)x4 + (0 + 5)x3 + (3 + 0)x2 + (−5− 1)x+ (1 + 3).

Portanto, segue que

h(x) = 2x4 + 5x3 + 3x2 − 6x+ 4.

2.4.2 Subtração

2.4.2.1 Diferença de Polinômios

As operações que envolve a diferença de Polinômios são definidas de modo aná-
logo às realizadas na adição. Pois, dados os Polinômios f e g, dados pelas Equações
2.9 e 2.10 respectivamente, definimos a diferença entre f e g com sendo o polinômio
h = f − g = f + (−g), em que −g é o simétrico de g. Ou seja:

h(x) = (an − bn)x
n + (an−1 − bn−1)x

n−1 + · · ·+ (a2 − b2)x
2 + (a1 − b1)x+ (a0 − b0).

Com isso, segue que a diferença entre os dois Polinômios f e g corresponde ao
Polinômio h, obtido quando diminui-se os seus coeficientes dos termos semelhantes.

2.4.2.2 Propriedades da Subtração

Dado que o Polinômio h = f − g = f + (−g), as propriedades da subtração são
as mesmas da soma.

2.4.2.3 Grau da Subtração

De modo análogo ao grau da soma, se f , g e f−g = f+(−g) = h são Polinômios
não nulos, então ∂h segue conforme Equação 2.13.



Capítulo 2. Polinômios 28

2.4.2.4 Exemplos de Subtração de Polinômios

Dados os seguintes Polinômios exemplos, temos:

1. f(x) = 2x4 + 3x2 − 5x+ 1;

2. g(x) = 5x3 − x+ 3.

Será calculado o Polinômio h(x) = f(x)−g(x). Equiparando o número de termos,
os reescrevemos como:

1. f(x) = 2x4 + 0x3 + 3x2 − 5x+ 1;

2. g(x) = 0x4 + 5x3 + 0x2 − x+ 3.

Logo, executando a subtração dos coeficientes de termos semelhantes, tem-se
o Polinômio:

h(x) = (2− 0)x4 + (0− 5)x3 + (3− 0)x2 + (−5− (−1))x+ (1− 3).

Portanto, segue que

h(x) = 2x4 − 5x3 + 3x2 − 4x− 2.

2.4.3 Multiplicação

2.4.3.1 Produto de Polinômios

Dados dois Polinômios f , conforme Equação 2.9, e g, tal que

g(x) = bmx
m + bm−1x

m−1 + · · ·+ b2x
2 + b1x+ b0, (2.14)

denomina-se o produto de f · g o Polinômio h como

h(x) = anbmx
n+m + · · ·+ (a2b0 + a1b1 + a0b2)x

2 + (a1b0 + a0b1)x+ a0b0. (2.15)

Nota-se que o polinômio h corresponde a

h(x) = cn+mx
m+n + · · ·+ c2x

2 + c1x+ c0, (2.16)

ao qual, nas palavras de Iezzi (2013), cada coeficiente ck (k ∈ N ∪ {0}) pode ser obtido
da seguinte forma:

ck = a0bk + a1bk−1 + · · ·+ akb0 =
k∑

i=0

aibk−i.



Capítulo 2. Polinômios 29

Portanto, percebe-se que h pode ser encontrado multiplicando cada termo
aix

i de f por cada termo bjx
j de g, seguindo a regra que (aix

i) · (bjxj) = aibjx
i+j, e

posteriormente, somando os respectivos resultados obtidos.

2.4.3.2 Propriedades da Multiplicação

Nas palavras de Iezzi (2013), a operação de Multiplicação em P, ao qual
considera-se como o conjunto dos Polinômios de coeficientes reais, verifica-se as
seguintes propriedades, dados os Polinômios f , g e h:

• Propriedade Associativa: f · (g · h) = (f · g) · h,∀f, g, h ∈ P.

• Propriedade Comutativa: f · g = g · f,∀f, g ∈ P.

• Existência de Elemento Neutro: ∃ε ∈ P | f · ε = f, ∀f ∈ P. Ou seja, o Polinômio ε

(elemento neutro para a multiplicação de polinômios) é numericamente igual a 1.

• Propriedade Distributiva: f · (g + h) = f · g + f · h, ∀f, g, h ∈ P.

2.4.3.3 Grau do Produto

Segundo Iezzi (2013), se f e g são dois polinômios não nulos de coeficientes
reais, então o grau de f · g é igual a soma dos graus de f e g. Ou seja, em termos
gerais, tem-se que:

∂h = ∂f + ∂g. (2.17)

2.4.3.4 Técnicas de Multiplicação de Polinômios

A seguir serão apresentados dois métodos práticos para a multiplicação de
Polinômios através de dois dispositivos, a saber:

2.4.3.4.1 Método 1

Consiste em um dispositivo onde organiza-se os Polinômios, um sobre o outro,
onde cada termo de um dos polinômios, de preferência o de menor grau, multiplica
todos os termos do outro. Feito isso, as parcelas resultantes de termos semelhantes
vão se agrupando e, posteriormente, sendo somadas e formando os coeficientes ci

(com i ∈ N ∪ {0}) do Polinômio produto h. Considerando os Polinômios f e g, a Figura
1 ilustra o dispositivo que apresenta o Método 1 para a multiplicação dos Polinômios
f · g = h, da seguinte forma:
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Figura 1 – Dispositivo usado no Método 1 para a Multiplicação de Polinômios.

f(x) = anx
n + · · · + · · · + a2x

2 + a1x + a0
g(x) = bmx

m + · · · + · · · + b2x
2 + b1x + b0

anb0x
n + · · · + · · · + a2b0x

2 + a1b0x + a0b0
anb1x

n+1 · · · + · · · + a2b1x
3 + a1b1x

2 + a0b1x
anb2x

n+2 + · · · + a2b2x
4 + a1b2x

3 + a0b2x
2

... · · · ... · · · ... · · · ... · · · ...

anbmx
n+m + · · · ... · · · ... · · · ... · · · ...

h(x) = anbmx
n+m + · · · + (a0b2 + a1b1 + a2b0)x

2 + (a0b1 + a1b0)x + a0b0

Fonte: Adaptado de Iezzi (2013).

Portanto, tem-se através desse método, a Equação 2.15 resultando na Equação
2.16.

Para ilustrar a aplicação desse método, segue um exemplo:

Exemplo 2.1. Exiba o polinômio produto da multiplicação dos polinômios f(x) =

2x4 + 3x2 − 5x+ 1 e g(x) = 4x2 − x+ 3.

Solução. Organizando os mesmos no dispositivo e executando as devidas operações,
conforme Método 1, busca-se o polinômio f · g = h.

f → 2x4 + 0x3 + 3x2 − 5x + 1

g → 4x2 − x + 3

6x4 + 0x3 + 9x2 − 15x + 3

− 2x5 + 0x4 − 3x3 + 5x2 − x

8x6 + 0x5 + 12x4 − 20x3 + 4x2

h → 8x6 − 2x5 + 18x4 − 23x3 + 18x2 − 16x + 3

.

Portanto, o polinômio pedido é h(x) = 8x6 − 2x5 + 18x4 − 23x3 + 18x2 − 16x+ 3.

2.4.3.4.2 Método 2

Esse método consiste em organizar em uma tabela os coeficientes ai do polinô-
mio f e os bi de g. Posteriormente, em cada célula calcula-se todos os produtos ai · bi e
os somam-se em cada diagonal.

A Figura 2 abaixo ilustra a aplicação desse método.
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Figura 2 – Dispositivo usado no Método 2 para a Multiplicação de Polinômios.

f
g

bm · · · b2 b1 b0

an anbm · · · anb2 anb1 anb0
... · · · . . . · · · · · · · · ·
a2 a2bm · · · a2b2 a2b1 a2b0
a1 a1bm · · · a1b2 a1b1 a1b0
a0 a0bm · · · a0b2 a0b1 a0b0

Fonte: Adaptado de Iezzi (2013).

Logo, somando-se os produtos de cada diagonal da tabela, temos os coeficientes
ck do Polinômio h:

cn+m = anbm
...

...
...

c2 = a0b2 + a1b1 + a2b0

c1 = a0b1 + a1b0

c0 = a0b0.

Portanto, segue desse método a Equação 2.15 culminando na Equação 2.16.

Exemplo 2.2. Usando agora esse método, realize a multiplicação do polinômio f(x) =

2x4 + 3x2 − 5x+ 1 pelo polinômio g(x) = 4x2 − x+ 3.

Solução. Organizando os coeficientes dos mesmos na tabela e executando as devidas
operações, temos:

g

f
2 0 3 −5 1

4 8 0 12 −20 4

−1 −2 0 −3 5 −1

3 6 0 9 −15 3

.

Logo, como o ∂(f · g) = ∂f + ∂g = 4 + 2 = 6, temos os seguintes termos como
resultado:
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c6 = 8

c5 = −2 + 0 = −2

c4 = 6 + 0 + 12 = 18

c3 = 0 + (−3) + (−20) = −23

c2 = 9 + 5 + 4 = 18

c1 = −15 + (−1) = −16

c0 = 3.

Portanto, temos o Polinômio h(x) = 8x6 − 2x5 + 18x4 − 23x3 + 18x2 − 16x+ 3.

2.4.4 Divisão

2.4.4.1 Definição

Nas palavras de Iezzi (2013), dados dois Polinômios f como o dividendo e g

(com g ̸= 0) como o divisor, realizar a operação de dividir f por g é determinar dois
outros Polinômios q como quociente e r como o resto. Nesses termos, verificam-se as
duas condições seguintes:

1. f = q · g + r;

2. ∂r < ∂g ou r = 0 (quando a divisão for exata).

2.4.4.2 Casos em que as divisões são imediatas

A seguir, serão ilustrados os dois casos em que a divisão de f por g é imediata.

• 1° caso: O dividendo f é o Polinômio Nulo (f = 0). Neste caso, temos que:

f = q · g + r ⇔ 0 · g + 0 = 0.

Portanto, os Polinômios q = 0 e r = 0 satisfazem as condições (1) e (2) acima.
Logo,

f = 0 ⇒ q = 0 e r = 0.

• 2° caso: O dividendo f não é um Polinômio Nulo (f ̸= 0), mas tem grau menor
que o divisor g (∂f < ∂g). Neste caso, temos que:

f = q · g + r ⇔ f = 0 · g + r = r.



Capítulo 2. Polinômios 33

Portanto, claramente os Polinômios q = 0 e r = f satisfazem as condições (1) e
(2) da definição de divisão acima, já que ∂r = ∂f < ∂g. Logo,

∂f < ∂g ⇒ q = 0 e r = f.

2.4.4.3 Técnicas de divisão de Polinômios

Para a proposta do presente trabalho, será sempre admitido que o grau do
Polinômio f é maior ou igual ao de g. Ou seja, ∂f ⩾ ∂g. A bibliografia apresenta alguns
métodos bastante utilizados pelos matemáticos para a divisão de Polinômios. Entre
tais, Iezzi (2013) apresenta dois métodos a saber: Método de Descartes e Método da
Chave.

2.4.4.3.1 Método de Descartes

Criado pelo notável e renomado matemático francês René Descartes (1596 -
1650), esse método também é conhecido como “método dos coeficientes a determinar”,
ao qual baseia-se nos seguintes fatos:

1. Pela consequência da definição de divisão de Polinômios, ∂q = ∂f − ∂g, já que
q · g + r = f ⇒ ∂(q · g + r) = ∂f e então ∂q + ∂g = ∂f .

2. Por consequência, temos que ∂r < ∂g ou r = 0.

Esse método obedece o seguinte roteiro:

1. Calculam-se inicialmente os graus de f e de r;

2. Posteriormente constroem-se os Polinômios q e r, sem figurar os seus coeficien-
tes;

3. Por fim, determinam-se os coeficientes incógnitos através da equivalência q·g+r =

f .

A seguir, mostraremos dois exemplos de aplicações práticas utilizando esse
método:

Exemplo 2.3. Dividir o Polinômio f = 3x5 − x4 + 2x3 − 4x− 3 por g = x3 − 2x+ 1.

Solução. Temos que os graus e as formas dos Polinômios quociente q e resto r são,
respectivamente:
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• ∂q = ∂f − ∂g = 5− 3 = 2 ⇒ q(x) = ax2 + bx+ c.

• ∂r < ∂g = 3 ⇒ ∂r ≤ 2 ⇒ r(x) = dx2 + ex+ f ′.

• q ·g+r = f ⇒ (ax2+bx+c) · (x3−2x+1)+(dx2+ex+f ′) = 3x5−x4+2x3−4x−3.

Desenvolvendo os produtos do lado esquerdo da última igualdade e somando
os termos semelhantes, temos pela identidade de Polinômios e para todo x ∈ R, que:

• ax5+bx4−(2a−c)x3+(a−2b+d)x2+(b−2c+e)x+(e+f ′) = 3x5−x4+2x3−4x−3.

Pela igualdade de Polinômios, temos que:

• a = 3.

• b = −1.

• −2a+ c = 2 ⇒ −2 · 3 + c = 2 ⇒ c = 8.

• a− 2b+ d = 0 ⇒ 3− 2 · (−1) + d = 0 ⇒ d = −5.

• b− 2c+ e = −4 ⇒ −1− 2 · 8 + e = −4 ⇒ e = 13.

• c+ f ′ = −3 ⇒ 8 + f ′ = −3 ⇒ f ′ = −11.

Com isso, temos os Polinômios q(x) = 3x2 − x + 8 e r(x) = −5x2 + 13x − 11.
Portanto,

q · g + r = f ⇔

(3x2 − x+ 8) · (x3 − 2x+ 1)− 5x2 + 13x− 11 = 3x5 − x4 + 2x3 − 4x− 3.

Exemplo 2.4. Dividir o Polinômio f = 2x6−11x4+18x3−5x2−8x+6 por g = 2x2−4x+3.

Solução. Temos que os graus e as formas dos Polinômios quociente q e resto r são,
respectivamente:

• ∂q = ∂f − ∂g = 6− 2 = 4 ⇒ q(x) = ax4 + bx3 + cx2 + dx+ e.

• ∂r < ∂g = 2 ⇒ ∂r ≤ 1 ⇒ r(x) = f ′x+ g′.

• q · g+ r = f ⇒ (ax4 + bx3 + cx2 + dx+ e) · (2x2 − 4x+3)+ (f ′x+ g′) = 2x6 − 11x4 +

18x3 − 5x2 − 8x+ 6.
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Desenvolvendo os produtos do lado esquerdo da última igualdade e somando
os termos semelhantes, temos para todo x ∈ R:

• 2ax6 − (4a− 2b)x5 + (3a− 4b+ 2c)x4 + (3b− 4c+ 2d)x3 + (3c− 4d+ 2e)x2 + (3d−
4e+ f ′)x+ (3e+ g′) = 2x6 + 0x5 − 11x4 + 18x3 − 5x2 − 8x+ 6.

Pela igualdade de Polinômios, temos que:

• 2a = 2 ⇒ a = 1.

• −4a+ 2b = 0 ⇒ −4 · 1 + 2b = 0 ⇒ b = 2.

• 3a− 4b+ 2c = −11 ⇒ 3 · 1− 4 · 2 + 2c = −11 ⇒ c = −3.

• 3b− 4c+ 2d = 18 ⇒ 3 · 2− 4 · (−3) + 2d = 18 ⇒ d = 0.

• 3c− 4d+ 2e = −5 ⇒ 3 · (−3)− 4 · 0 + 2e = −5 ⇒ e = 2.

• 3d− 4e+ f ′ = −8 ⇒ 3 · 0− 4 · 2 + f ′ = −8 ⇒ f ′ = 0.

• 3e+ g′ = 6 ⇒ 3 · 2 + g′ = 6 ⇒ g′ = 0.

Com isso, temos o Polinômio q(x) = x4 + 2x3 − 3x2 + 2 e o Polinômio Nulo r = 0,
o que se configura como uma divisão exata. Portanto,

q · g + r = f ⇔

(x4 + 2x3 − 3x2 + 2) · (2x2 − 4x+ 3) = 2x6 − 11x4 + 18x3 − 5x2 − 8x+ 6.

2.4.4.3.2 Método da Chave

Esse se assemelha com a forma convencional da divisão aritmética entre dois
inteiros quaisquer. Utiliza-se uma “chave” onde nela são organizados os coeficientes
do dividendo f , os do divisor g, os do quociente q e os do resto r, conforme Figura 3
abaixo:

Figura 3 – Método da Chave para a Divisão de Polinômios.

f g
r q

Fonte: Iezzi (2013).
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Portanto, segue dessa representação que f = q · g + r. O método consiste,
inicialmente, em multiplicar os termos de g por um certo número (coeficiente líder de
q) de modo que esse produto seja o inverso aditivo do primeiro termo de f (termo do
coeficiente líder de f ). Esse processo é feito de modo sucessivo e aplicado em todos
os Polinômios ri (restos residuais de f ) até que ∂ri < ∂g. Os exemplos abaixo ilustram
como é realizado esse método.

Exemplo 2.5. Dividir o Polinômio f = 3x5 − x4 + 2x3 − 4x− 3 por g = x3 − 2x+ 1.

Solução. Temos que:

1. Primeiramente, organiza-se os coeficientes de f e g na Chave e nota-se que
∂q = ∂f − ∂g = 5 − 3 = 2 ⇒ q = ax2 + bx + c e que ∂r < ∂g ⇒ ∂r ≤ 2 ⇒ r =

dx2 + ex+ f ′. Portanto, temos:

3x5 − x4 + 2x3 + 0x2 − 4x − 3 x3 + 0x2 − 2x + 1

r1 = ax2 + bx + c
.

2. Agora, buscando “anular” o termo 3x5 de f , multiplica-se x3 de g por ax2 de
modo que ax2 · x3 = 3x5 ⇒ a = 3. Portanto, inicialmente, cada termo de g será
multiplicado por 3 e, com isso, gerando o Polinômio 3g onde esse será subtraído
de f . Consequentemente nesse processo, o termo do coeficiente líder de f (3x5,
no caso) será anulado e, com isso, surge o primeiro resto residual r1 de f . O
seguinte quadro ilustra esse processo de forma prática:

3x5 − x4 + 2x3 + 0x2 − 4x − 3 x3 + 0x2 − 2x + 1

− 3x5 − 0x4 + 6x3 − 3x2 3x2 + bx + c

r1 = 0x5 − x4 + 8x3 − 3x2 − 4x − 3

.

Com isso, temos que o primeiro resto residual de f será r1 = −x4 + 8x3 − 3x2 −
4x− 3.

3. O processo se reinicia buscando agora “anular” o termo −x4 de r1. Para isso,
multiplica-se esse termo por bx de modo que bx · x3 = −x4 ⇒ b = −1. Logo, agora
cada termo de g será multiplicado por (−1), sendo gerado o Polinômio (−g) e, em
seguida, o subtraindo de r1. Desse modo, o termo (−x4) de r1 será anulado e,
com isso, surgindo o segundo resto residual r2 de f .

O seguinte quadro ilustra essa situação:
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3x5 − x4 + 2x3 + 0x2 − 4x − 3 x3 + 0x2 − 2x + 1

− 3x5 − 0x4 + 6x3 − 3x2 3x2 − x + c

r1 = 0x5 − x4 + 8x3 − 3x2 − 4x − 3

x4 + 0x3 − 2x2 + x

r2 = 0x4 + 8x3 − 5x2 − 3x − 3

.

Com isso, temos então o segundo resto residual de f ; r2 = 8x3 − 5x2 − 3x− 3.

4. Por conseguinte, buscando agora “anular” o termo 8x3 de r2, multiplica-se o
mesmo por c de forma que c · x3 = 8x3 ⇒ c = 8. Multiplicando cada termo de g

por (8), tem-se o Polinômio (8g). Subtraindo esse de r2, o termo 8x3 é anulado
e, com isso, sendo gerado o terceiro resto residual r3 de f . Para isso, temos o
seguinte quadro:

3x5 − x4 + 2x3 + 0x2 − 4x − 3 x3 + 0x2 − 2x + 1

− 3x5 − 0x4 + 6x3 − 3x2 3x2 − x + 8

r1 = 0x5 − x4 + 8x3 − 3x2 − 4x − 3

x4 + 0x3 − 2x2 + x

r2 = 0x4 + 8x3 − 5x2 − 3x − 3

− 8x3 + 0x2 + 16x − 8

r3 = r = 0x3 − 5x2 + 13x − 11

.

Por fim, temos r3 = −5x2 + 13x− 11 como o último resto residual r de f . Como
∂r ≤ ∂q a operação é dada por finalizada. Portanto, temos que:

q · g + r = f ⇔

(3x2 − x+ 8) · (x3 − 2x+ 1)− 5x2 + 13x− 11 = 3x5 − x4 + 2x3 − 4x− 3.

Exemplo 2.6. Dividir o Polinômio f = 2x6−11x4+18x3−5x2−8x+6 por g = 2x2−4x+3.

Solução. Nesse exemplo, sem perca de generalidade, serão representados somente
os coeficientes dos termos dos Polinômios envolvidos na operação, afim de facilitar os
cálculos.

1. Inicialmente, temos que o ∂q = ∂f − ∂g = 6− 2 = 4 ⇒ q = ax4 + bx3 + cx2 + dx+ e

e ∂r < ∂g ⇒ ∂r ≤ 1 ⇒ r = f ′x+ g′. Portanto, organizando os coeficientes de f e
g na Chave, temos:

2 0 −11 18 −5 −8 6 2 −4 3

r1 = a b c d e
.
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2. Buscando “zerar” o coeficiente 2 de f , multiplicamos 2 de g por a de modo que
a · 2 = 2 ⇒ a = 1. Portanto, pela propriedade do Elemento Neutro, tem-se que o
Polinômio (g) será subtraído de f e, com isso, obtendo o primeiro resto residual
r1 de f . O quadro abaixo ilustra essa passagem:

2 0 −11 18 −5 −8 6 2 −4 3

−2 4 −3 1 b c d e

r1 = 0 4 −14 18 −5 −8 6

.

Com isso, temos que r1 = 4x5 − 14x4 + 18x3 − 5x2 − 8x+ 6.

3. Reiniciando o processo agora para “anular” o coeficiente 4 de r1, multiplicamos 2

de g por b, de modo que b · 2 = 4 ⇒ b = 2. Obviamente, 2 multiplicará também os
demais coeficientes de g formando o Polinômio (2g) ao qual será subtraído de r1

e, com isso, formando o segundo resto residual r2 de f , conforme quadro abaixo:

2 0 −11 18 −5 −8 6 2 −4 3

−2 4 −3 1 2 c d e

r1 = 0 4 −14 18 −5 −8 6

−4 8 −6

r2 = 0 −6 12 −5 −8 6

.

Com isso, temos então o segundo resto residual de f , r2 = −6x4 + 12x3 − 5x2 −
8x+ 6.

4. Buscando agora “anular” o coeficiente (−6) de r2, multiplica-se 2 de q por c, de
modo que c · 2 = −6 ⇒ c = −3. Assim, como o (−3) multiplicará cada um dos
coeficientes de g, tem-se o Polinômio (−3g) ao qual será subtraído de r2. Com
isso, tem-se o seguinte quadro:

2 0 −11 18 −5 −8 6 2 −4 3

−2 4 −3 1 2 −3 0 e

r1 = 0 4 −14 18 −5 −8 6

−4 8 −6

r2 = 0 −6 12 −5 −8 6

6 −12 9

r3 = 0 0 4 −8 6

.

Por fim, tem-se o terceiro resto residual r3 = 4x2 − 8x+ 6 de f . Observa-se aqui
que, para c = −3, “zerou” também o coeficiente 12 de r2 (termo 12x3). Isso implica
dizer que d = 0.
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5. Por fim, buscando “zerar” o coeficiente 4 de r3, multiplica-se 2 de g por e (assim
como os demais coeficientes de g), de modo que e · 2 = 4 ⇒ e = 2. Portanto,
tem-se o Polinômio (2g) que, ao ser subtraído de r3, tem-se o seguinte quadro
como resultado:

2 0 −11 18 −5 −8 6 2 −4 3

−2 4 −3 1 2 −3 0 2

r1 = 0 4 −14 18 −5 −8 6

−4 8 −6

r2 = 0 −6 12 −5 −8 6

6 −12 9

r3 = 0 0 4 −8 6

−4 8 −6

r4 = r = 0 0 0

.

Como r4 = r = 0, a operação é dada por finalizada. Portanto, com q = x4 + 2x3 −
3x2 + 2, temos que:

q · g + r = f ⇔

(x4 + 2x3 − 3x2 + 2) · (2x2 − 4x+ 3) = 2x6 − 11x4 + 18x3 − 5x2 − 8x+ 6.

2.4.5 Divisão por Binômios do 1° Grau

A seguir, serão ilustradas definições e conceitos pertinentes à divisão de Polinô-
mios por Binômios do 1° grau da forma βx− α.

2.4.5.1 Divisão por binômios do 1° grau unitário.

Nessa Seção são tratadas das divisões de polinômios reais em que o dividendo
f possui ∂f ⩾ 1 e o divisor g possui ∂g = 1 e coeficiente dominante também igual a 1

(Polinômio Unitário).

Dados os polinômios f e g, dividendo e divisor, respectivamente, em que g =

x− α (com α ∈ R). De acordo com Iezzi (2013), na divisão de f por g o polinômio r é
do tipo constante. Pois, por consequência da definição (∂r < ∂g), como g é unitário e
de grau 1, então tem-se que ∂r = 0 ou r = 0. Dado o valor para x = α, percebe-se que
o valor numérico de r não depende de α. Ou seja,

f(α) = r, ∀α ∈ R.
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2.4.5.2 Teorema do resto

Teorema 2.4.1. O resto da divisão de um Polinômio f por x−α (α ∈ R) é igual ao valor
numérico de f(α). Ou seja,

f(α) = r.

Segue sua demonstração:

Demonstração. De acordo com a definição de divisão, temos:

q · (x− α) + r = f

em que q é o quociente e r é o resto. Como o grau de x−α é igual a 1, pode-se concluir
que o r ou é nulo ou tem grau nulo. Logo, r é um Polinômio constante. Com isso, temos
com igualdade acima, para x = α, que:

q(α) · (α− α) + r(α) = f(α).

Portanto, tem-se com isso que:

r(α) = r = f(α).

■

2.4.5.3 Teorema de D’Alembert

Teorema 2.4.2. Um Polinômio f é divisível por um binômio x− α se, e somente se, α
for raiz de f . Ou seja:

f(α) = 0.

Sem percas de generalidades, tomemos α uma raiz da equação polinomial
f(x) = 0 como um zero da função f .

Sua demonstração se dá por duas implicações a se provar:

Demonstração. Dado o binômio x− α (α ∈ R) e o polinômio f , com f(α) = 0, temos:

1. x − α | f ⇒ α é raiz de f . Pelo Teorema do Resto, r = f(α) = 0. Logo, como a
divisão é exata, podemos concluir que α é raiz de f .
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2. α é raiz de f ⇒ x− α | f . Como α é raiz de f , tem-se que f(α) = 0 e, pelo Teorema
do Resto, o resto r da divisão de f por x− α é igual a f(α). Dessa forma, r = f(α) = 0,
mostrando que f é divisível por x− α. ■

2.4.5.4 O Dispositivo Prático de Briot-Ruffini

Na Seção 2.4.4 é apresentado alguns métodos de divisão de Polinômios. O
Dispositivo ou Algoritmo de Briot-Ruffini (DBR) é bastante utilizado para a divisão de
polinômios por binômios unitários da forma x−α. Sua aplicação é relativamente prática
e é bastante mencionada na bibliografia e também utilizada nos cursos de Matemática,
seja no Ensino Médio ou no Ensino Superior.

2.4.5.4.1 Demonstração do Dispositivo de Briot-Ruffini

Sua demonstração se dá utilizando algumas das definições sobre as operações
com polinômios. Vamos a sua demonstração:

Considere os polinômios f da Equação 2.9 e

g = x− c. (2.18)

Buscaremos agora determinar os polinômios quociente q e resto r da divisão de
f por g. Para tal, temos que:

∂f = n e ∂g = 1 =⇒ ∂q = n− 1.

Portanto, tem-se que:

q = bn−1x
n−1 + bn−2x

n−2 + · · ·+ b2x
2 + b1x+ b0. (2.19)

Em seguida, aplicando as técnicas de multiplicação de polinômios, tratadas na
Seção 2.4.3 entre q e g, temos o seguinte:

Figura 4 – Multiplicação dos Polinômios quociente q e g = x− c.
bn−1x

n−1 + bn−2x
n−2 + bn−3x

n−3 + · · · + b2x
2 + b1x + b0

x − c
− cbn−1x

n−1 − cbn−2x
n−2 − · · · − cb3x

3 − cb2x
2 − cb1x − cb0

bn−1x
n + bn−2x

n−1 + bn−3x
n−2 + · · · + b2x

3 + b1x
2 + b0x

bn−1x
n + (bn−2 − cbn−1)x

n−1 + · · · + (b1 − cb2)x
2 + (b0 − cb1)x − cb0

Fonte: Adaptado de Iezzi (2013).

Pela condição de que q · (x− c) + r = f e pela identidade de polinômios tratado
na Seção 2.3.4, temos as seguintes igualdades:
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• bn−1 = an

• bn−2 − c · bn−1 = an−1 ⇒ bn−2 = c · bn−1 + an−1

• bn−3 − c · bn−2 = an−2 ⇒ bn−3 = c · bn−2 + an−2

•
...

...

• b1 − c · b2 = a2 ⇒ b1 = c · b2 + a2

• b0 − c · b1 = a1 ⇒ b0 = c · b1 + a1

• r − c · b0 = a0 ⇒ r = c · b0 + a0.

Os passos realizados acima (ou o Algoritmo) tornam-se bastante simples quando
os coeficientes de f e o termo independente c de g estão organizados conforme o
quadro da Figura 5 abaixo:

Figura 5 – Algoritmo de Briot-Ruffini.

c an an−1 an−2 · · · a2 a1 a0
an︸︷︷︸ c · bn−1 + an−1︸ ︷︷ ︸ c · bn−2 + an−2︸ ︷︷ ︸ · · · c · b2 + a2︸ ︷︷ ︸ c · b1 + a1︸ ︷︷ ︸ c · b0 + a0︸ ︷︷ ︸
bn−1 bn−2 bn−3 · · · b1 b0 r

Fonte: Adaptado de Iezzi (2013).

O dispositivo do quadro acima torna a divisão de um polinômio de grau n (com
n ⩾ 2) por um binômio unitário da forma x− α de modo simples e prático.

2.4.5.4.2 Aplicação prática do Dispositivo de Briot-Ruffini

A seguir, mostra-se algumas aplicações práticas do uso desse dispositivo:

Exemplo 2.7. Dividir o polinômio f = x3 − 4x2 + 5x− 2 pelo binômio g = x− 3.

Solução. Usando o DBR, temos os seguintes passos:

1. Definimos a raiz de g (x− 3 = 0 ⇒ x = 3) e a organizamos juntamente com os
coeficientes ordenados de f , obedecendo as potências decrescentes de x, no
dispositivo, conforme abaixo:

3 1 −4 5 −2
.
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2. Baixa-se o primeiro coeficiente do dividendo q (no caso, 1) e o multiplica-se pela
raiz do divisor g (1 · 3 = 3).

3 1 −4 5 −2

1
.

3. Adiciona-se o produto obtido, (3) ao coeficiente seguinte de f , (−4). A soma
(3 + (−4) = −1) é inserida abaixo desse coeficiente, conforme segue:

3 1 −4 5 −2

1 −1
.

4. Com a soma obtida (−1), repete-se as operações (multiplica-se pela raiz de g e
adiciona-se ao coeficiente seguinte de f ), e assim por diante. Com isso, ficando o
quadro da seguinte forma:

3 1 −4 5 −2

1 −1 2 4
.

O último número obtido no quadro é o resto r da divisão de f por g. Logo, r = 4.
Já os demais números correspondem aos coeficientes ordenados (segundo
potências de expoentes decrescentes de x) do polinômio quociente q. Com isso,
temos que q = x2 − x+ 2.

Portanto, segue que:

g · q + r = f ⇒ (x− 3) · (x2 − x+ 2) + 4 = x3 − 4x2 + 5x− 2.

Exemplo 2.8. Dividir o polinômio f = 2x8 + 7x7 + 13x5 − 10x4 − 35x2 + 48 por g = x+ 4.

Solução. Essa divisão pode ser facilmente realizada através do dispositivo de Briot-
Ruffini.

1. Definir a raiz de g (x+ 4 = 0 ⇒ x = −4) e juntamente com os coeficientes de f ,
organiza-los no dispositivo, conforme abaixo:

−4 2 7 0 13 −10 0 −35 0 48
.

2. O coeficiente líder de q corresponde ao de f (no caso, 2). Logo, multiplica-se esse
coeficiente pela raiz de g (2 · (−4) = −8).
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−4 2 7 0 13 −10 0 −35 0 48

2
.

3. Adiciona-se o produto obtido, (−8) ao coeficiente seguinte de f (7). A soma
(−8 + 7 = −1) é inserida abaixo desse coeficiente (7) de f , conforme segue:

−4 2 7 0 13 −10 0 −35 0 48

2 −1
.

4. Com a soma obtida (−1), repete-se as mesmas operações (multiplica-se o emi-
nente coeficiente de q pela raiz de g e adiciona-se ao coeficiente seguinte de f ),
e assim por diante. Com isso, ficando o quadro completo da seguinte forma:

−4 2 7 0 13 −10 0 −35 0 48

2 −1 4 −3 2 −8 −3 12 0
.

O último quadro nos informa que o seu último número obtido é o resto r da divisão
em questão. Como r = 0, conclui-se que a divisão é exata e que, consequente-
mente, x = −4 é raiz de f . Já os demais números correspondem aos coeficientes
ordenados do polinômio quociente q.

Portanto,

q(x) = 2x7 − x6 + 4x5 − 3x4 + 2x3 − 8x2 − 3x+ 12.

Ao qual, para g · q + r = f , segue que:

(x+4) · (2x7−x6+4x5−3x4+2x3−8x2−3x+12) = 2x8+7x7+13x5−10x4−35x2+48.

2.4.5.5 Divisão por binômios do 1° grau quaisquer

Será aqui tratado da divisão de um polinômio dividendo f = (βx−α) · q+ r, com
∂f ⩾ 1, por um polinômio g = βx− α, em que β ̸= 0 e 1.

Segundo Iezzi (2013), para a obtenção do quociente q e o resto r da divisão do
polinômio f por g, nota-se o seguinte:

f = (βx− α) · q + r ⇒
(
x− α

β

)
· (β · q)︸ ︷︷ ︸

q′

+r = f. (2.20)

Da Equação 2.20, verifica-se o seguinte processo de resolução, utilizando o
Dispositivo de Briot-Ruffini:
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1. Divide-se f por x− α

β
com o auxílio do DBR.

2. Divide-se o quociente q′ encontrado por β para obter q
(
q′ = β · q ⇒ q =

q′

β

)
.

A seguir, será ilustrado alguns exemplos práticos de sua aplicação.

Exemplo 2.9. Qual o quociente da divisão do polinômio 8x5 − 2x4 + 5x3 − 2x2 − 15x+ 9

pelo binômio 4x− 3?

Solução. Temos que 4x−3 ⇒ 4 ·(x− 3
4
). Dividindo o polinômio em questão pelo binômio

x− 3
4

com o auxílio do DBR, temos:

8 −2 5 −2 −15 9
3
4

8 4 8 4 −12 0
.

Como q′ = 8x4 + 4x3 + 8x2 + 4x− 12 e β = 4, temos que

q =
q′

β
=

8x4 + 4x3 + 8x2 + 4x− 12

4
= 2x4 + x3 + 4x2 + x− 3

e r = 0. Portanto, segue que o quociente pedido é q = 2x4 + x3 + 4x2 + x− 3.

Exemplo 2.10. Qual o quociente da divisão do polinômio 4x4 + 6x3 − 7x2 + 8x− 7 pelo
binômio 2x+ 3?

Solução. Temos que 2x+3 ⇒ 2 ·(x+ 3
2
). Dividindo o polinômio em questão pelo binômio

(x+ 3
2
) e utilizando o DBR, temos a seguinte situação:

4 6 −7 8 −7

−3
2

4 0 −7 37
2

−139
4

.

Com isso, temos que q′ = 4x3 − 7x+
37

2
e β = 2. Logo, temos que

q =
q′

β
=

4x3 − 7x+
37

2
2

= 2x3 − 7x

2
+

37

4
e r = −139

4
.

Portanto, temos que o quociente solicitado é q = 2x3 − 7x

2
+

37

4
.

Observação. Observa-se através do Exemplo 2.10 que é possível obter um certo
polinômio quociente q cujo alguns de seus coeficientes sejam racionais. Como todos os
coeficientes de f são inteiros, no processo de execução do algoritmo de Briot-Ruffini,
o resto r obtido será sempre um número racional, já que a soma de um racional não
inteiro com um inteiro será um número racional não inteiro. Logo, não nulo.
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2.5 EQUAÇÕES POLINOMIAIS

A seguir, serão apresentados alguns conceitos pertinentes as Equações Polino-
miais ou Algébricas relevantes ao desenvolvimento do presente trabalho.

2.5.1 Definição

Segundo Dante (2010), denomina-se Equação Polinomial ou Algébrica toda
equação que pode ser redutível à forma P (x) = 0, em que:

P (x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 = 0, (com an ̸= 0) (2.21)

em que os ai (i ∈ N ∪ {0}) são elementos do conjunto dos números complexos e n

(com n ∈ N ∪ 0) é o grau da equação. A partir desse ponto, para efeito de abordagem
do trabalho em questão, serão considerados que os coeficientes ai das equações
polinomiais figuradas pertencerão ao conjunto dos números rais. Ou seja, ai ∈ R.

Observação. Para o desenvolvimento do presente trabalho, o conjunto C poderá ser
mencionado na necessidade de maiores esclarecimentos.

2.5.2 Raiz de uma Equação Polinomial ou Algébrica

Denomina-se raiz da Equação 2.21 todo número que, substituído no lugar de x,
torna uma determinada igualdade verdadeira (Dante, 2010). Dessa forma, o valor de α

é raiz de uma equação P (x) = 0 se α satisfazer a igualdade. Ou seja:

P (α) = anα
n + an−1α

n−1 + · · ·+ a2α
2 + a1α + a0 = 0

2.5.3 Conjunto Solução de uma Equação Polinomial

Denomina-se conjunto solução de uma equação algébrica como o conjunto
de todas as raízes dessa equação, considerando R como o conjunto universo. Para
encontrar as raízes das equações polinomiais, pode-se utilizar as seguintes estratégias
para cada grau da equação. Segundo Iezzi et al. (2017), são elas:

• 1° Grau: Dada a equação ax + b = 0 (com a ≠ 0), para encontrar o conjunto

solução S, basta fazer: ax = −b ⇒ x = − b

a
. Logo, S =

{
− b

a

}
.

• 2° Grau: Dada a equação ax2 + bx+ c = 0 (com a ≠ 0), para encontrar o conjunto
solução S, pode-se utilizar a fórmula resolutiva da equação do 2° grau:

x =
−b±

√
∆

2 · a
, onde ∆ = b2 − 4 · a · c.
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Sobre o discriminante ∆, é importante destacar que:

∆


> 0 ⇒ A equação possui duas raízes reais e distintas.
= 0 ⇒ A equação possui duas raízes reais e iguais.
< 0 ⇒ A equação não possui raiz no conjunto dos reais.

(2.22)

Logo, S =

{
−b+

√
b2 − 4 · a · c
2 · a

,
−b−

√
b2 − 4 · a · c
2 · a

}
.

• 3° Grau: Segundo Iezzi et al. (2017), há a possibilidade de determinar as raízes
de uma equação de tal grau por meio de fórmulas que envolvem operações
aritméticas e a extração de raízes. No entanto, essas fórmulas não são estudadas
nas escolas de Ensino Médio, tendo em vista a complexidade de suas aplicações.
Mas, para resolver uma equação do 3° grau, geralmente busca-se encontrar uma
das suas raízes racionais α e, posteriormente, dividir a equação pelo binômio
x − α, onde o polinômio quociente é uma equação do 2° grau. Com isso, o
problema é reduzido a encontrar as outras duas raízes (Knudsen, 1985).

• 4° Grau: Assim como as equações do 3° grau, as fórmulas usadas para a re-
solução de uma equação do 4° grau são bastante complexas e não aplicáveis
aos cursos de Ensino Médio. Esse processo de resolução se dá por técnicas
de completamento de quadrados e substituição de variáveis com o objetivo de
reduzir a uma equação do terceiro grau. Dai, aplica-se as técnicas de redução
para equações do segundo grau, onde as resoluções são bastante conhecidas
(Knudsen, 1985). No entanto, o método mais convencional (sem usar fórmulas
resolutivas) é o mesmo para as equações do 3° grau (e para os demais graus).

• 5° Grau ou maior: Não existe uma fórmula resolutiva que se aplique a qual-
quer situação. No entanto, graças aos trabalhos de Évarise Galois (1811-1832),
que deram início a chamada Álgebra Moderna, generalizou-se as condições de
resolubilidade de uma equação algébrica qualquer Iezzi (2013).

2.5.4 Teorema Fundamental da Álgebra - TFA

Enunciado e provado por Carl Gauss (1777-1855) em 1799, então com 21 anos
de idade, em sua tese de doutorado na Universidade de Helmstadt, esse teorema
constitui um elemento central e essencial para o estudo das equações algébricas.

Teorema 2.5.1. Toda função polinomial p : C −→ C, com P (x) = anx
n + an−1x

n−1 +

· · ·+ a2x
2 + a1x+ a0, com (n ⩾ 1) e (n ̸= 0), possui uma raiz no corpo C dos números

complexos.
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Observação. A correspondência biunívoca entre Polinômio e Função Polinomial real,
tratada na Seção 2.2, logo após a Definição 2.2.2, é válida também para o contexto
dos Números Complexos.

Segundo Fernandez e Santos (2010), a maioria das demonstrações sobre o
TFA, apresentadas nos cursos de bacharelado em matemática, exigem que os alunos
tenham cursado uma disciplina de análise complexa ou de funções complexas.

Nas palavras de Costa (2016), depois da demonstração de Gauss, inúmeras
outras demonstrações do TFA surgiram, exibindo uma enorme diversidade. Portanto,
considerando a complexidade da demonstração desse teorema e a sua numerosa quan-
tidade de provas disponíveis na literatura, a sua demonstração no presente trabalho
será omitida.

Uma das inúmeras demostrações do Teorema Fundamental da Álgebra é atribu-
ída a Fernandez e Santos (2010) e, segundo Costa (2016), o mesmo apresenta dois
Corolários bastante significativos:

Corolário. Todo polinômio P (x) não constante de grau n possui exatamente n raízes,
não necessariamente distintas.

Corolário. Também conhecido na bibliografia como Teorema da Decomposição, esse
item será tratado no próximo tópico.

2.5.4.1 O Teorema da Decomposição

Nas palavras de Iezzi et al. (2017), esse teorema afirma que:

Teorema 2.5.2. Seja P (x) um polinômio de grau n, com n ⩾ 1, dado pela Equação
2.21. Então, P (x) pode ser decomposto em n fatores do 1° grau sob a forma:

P (x) = an · (x− α1) · (x− α2) · . . . · (x− αn) (2.23)

em que α1, α2, · · · , αn são as raízes de P (x) e an é o coeficiente dominante de P (x).

Com exceção da ordem dos fatores, tal decomposição é única (Iezzi, 2013).

2.5.4.2 Consequências do Teorema da Decomposição

Nos apontamentos de Iezzi et al. (2017), há duas consequências bastante
peculiares em relação ao Teorema da Decomposição:
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Corolário. Toda equação polinomial de grau n (n ⩾ 1), admite n, e somente n, raízes
complexas.

Corolário. Multiplicidade de uma raiz: Tendo em vista o Teorema da Decomposição,
nada impede que essa decomposição de P (x) apresente fatores iguais ou idênticos.
Isso implica dizer que o polinômio P (x) apresente raízes idênticas ou múltiplas. Com
isso, diz-se que α é raiz de multiplicidade m (m > 1) da equação P (x) = 0 se, e
somente se,

P (x) = (x− α)m ·Q(x) e Q(x) ̸= 0.

Isto é, α é raiz de multiplicidade m de P (x) = 0 quando o polinômio P é divisível por
(x− α)m e não é divisível por (x− α)m+1. Ou seja, a decomposição de P (x) apresenta
exatamente m fatores iguais a (x− α).

2.5.5 Relações entre coeficientes e raízes de uma equação polinomial - Relações
de Girard

As famosas “Relações de Girard” são atribuídas ao matemático francês Albert
Girard (1595 – 1632) que estabeleceu relações de soma e produto entre as raízes de
uma equação polinomial.

Para as equações polinomiais de grau n, seguem as seguintes relações:

• Equações do 2° Grau: Tomemos a equação ax2 + bx+ c = 0 com a ≠ 0 e cujas
raízes são α1 e α2.

Pelo Teorema da Decomposição, essa equação pode ser escrita na forma:

a · (x− α1) · (x− α2) = 0.

Com isso, tem-se então a identidade polinomial:

ax2 + bx+ c = a · (x− α1) · (x− α2), ∀x.

Isto é:
x2 +

b

a
· x+

c

a
= x2 − (α1 + α2) + (α1 · α2), ∀x.

Portanto, segue pela Identidade de Polinômios que:

α1 + α2 = − b

a
e α1 · α2 =

c

a

são as relações entre coeficientes e raízes de equação do 2° grau.
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• Equações do 3° Grau: Tomemos a equação ax3 + bx2 + cx+ d = 0 com a ≠ 0

e cujas raízes são α1, α2 e α3. Pelo Teorema da Decomposição essa equação
também pode ser escrita na forma:

a · (x− α1) · (x− α2) · (x− α3) = 0.

Dessa forma, tem-se a identidade polinomial:

ax3 + bx2 + cx+ d = a · (x− α1) · (x− α2) · (x− α3), ∀x.

Através de algumas operações aritméticas, tem-se que:

x3+
b

a
·x2+

c

a
·x+d

a
= x3−(α1+α2+α3)·x2+(α1·α2+α1·α3+α2·α3)·x−(α1·α2·α3), ∀x.

Finalmente, acompanhando a Identidade de Polinômios, tem-se:

α1 + α2 + α3 = − b

a
, α1 · α2 + α1 · α3 + α2 · α3 =

c

a
e α1 · α2 · α3 = −d

a

são as relações entre coeficientes e raízes da equação do 3° grau.

• Equações de grau n qualquer: A seguir será deduzido as relações entre coefici-
entes e raízes de uma equação polinomial de grau n (n ⩾ 1). Dado a Equação
2.21, cujas raízes são α1, α2, α3, · · · , αn. Pelo Teorema da Decomposição, essa
equação pode ser escrita da seguinte forma:

P (x) = an · (x− α1) · (x− α2) · (x− α3) · . . . · (x− αn) = 0.

Realizando as devidas operações com Polinômios, temos a seguinte identidade:

P (x) = an · xn + an · (α1 + α2 + α3 + · · ·+ αn)︸ ︷︷ ︸
S1

·xn−1 +

+ an · (α1 · α2 + α1 · α3 + · · ·+ αn−1 · αn)︸ ︷︷ ︸
S2

·xn−2 −

− an · (α1 · α2 · α3 + α1 · α2 · α4 + · · ·+ αn−2 · αn−1 · αn)︸ ︷︷ ︸
S3

·xn−3 + · · ·+

+ (−1)n · an · Sm · xn−m + · · ·+ (−1)n · an · (α1 · α2 · α3 · · ·αn)︸ ︷︷ ︸
Sn

, ∀x,

em que Sm corresponde a soma de todos os
(
n

m

)
produtos de m raízes da equa-

ção e Sn é o produto das n raízes. Portanto, aplicando a condição de igualdade,
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temos:

S1 = α1 + α2 + α3 + · · ·+ αr = −an−1

an

S2 = α1 · α2 + α1 · α3 + α1 · α4 + · · ·+ αn−1 · αn =
an−2

an

S3 = α1 · α2 · α3 + α1 · α2 · α4 + · · ·+ αn−2 · αn−1 · αn = −an−3

an
... =

...

Sm = (−1)m · an−m

an
... =

...

Sn = α1 · α2 · α3 · . . . · αn = (−1)n · a0
an

são as relações entre coeficientes e raízes da equação P (x) = 0, amplamente
conhecida na literatura como Relações de Girard. Com isso, o número n de
relações coincide com o grau n de P (x).

Segundo Iezzi (2013), as n relações de Girard para uma determinada equação
polinomial P (x) = 0 de grau n, não são suficientes para obter α1, α2, α3, . . . , αn. Pois,
na tentativa de obter qualquer uma das raízes, após várias substituições, obtêm-se a
equação inicial P (x) = 0.

Portanto, é necessário que seja dada uma condição ou relação entre as raízes
de P (x) para que seja possível a determinação do conjunto solução.

2.5.6 Teorema das Raízes Racionais de uma Equação Algébrica de Coeficientes
Inteiros

Sabe-se que as equações polinomiais de grau maior que 4 não possuem um
processo determinado de resolução por meio de fórmulas (Knudsen, 1985). Até mesmo
as equações de grau 3 ou 4, apesar de haver desde o século XVI fórmulas para
encontrar as suas raízes, tais fórmulas não são comumente empregadas na Matemática
do Ensino Médio, dadas as suas complexidades de execução (Iezzi et al., 2017). Diante
de tal constatação, para encontrar, por exemplo, as raízes de uma equação de grau 6,
deve-se encontrar uma ou mais raízes para, então, com elas buscar todas as outras. O
presente capítulo trará uma propriedade que auxiliará na pesquisa das raízes racionais
(e inteiras) de uma equação algébrica de coeficientes inteiros.

2.5.6.1 Definição

A propriedade em questão é o Teorema das Raízes Racionais ao qual, segundo
Iezzi (2013), afirma que:
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Teorema 2.5.3. Seja a equação polinomial de coeficientes inteiros anx
n + an−1x

n−1 +

. . . + a2x
2 + a1x + a0 = 0, com an ̸= 0. Se o número racional

p

q
, com p ∈ Z, q ∈ Z∗ e

(p, q) = 1, é raiz dessa equação, então p | a0 e q | an.

2.5.6.2 Demonstração do Teorema das Raízes Racionais

Segue sua demonstração:

Demonstração. Tomando
p

q
como raiz da equação polinomial, temos:

an ·
(
p

q

)n

+ a1 ·
(
p

q

)n−1

+ · · ·+ a1 ·
(
p

q

)
+ a0 = 0.

Multiplicando ambos os membros por qn, temos:

an · pn + an−1 · pn−1 · q + · · ·+ a1 · p · qn−1 + a0 · qn = 0. (2.24)

Isolando an · pn e colocando q em evidência na Equação 2.24, segue que:

an · pn = −q (an−1p
n−1 + · · ·+ a1pq

n−2 + a0q
n−1)︸ ︷︷ ︸

A

. (2.25)

Agora, isolando a0 · qn e colocando p em evidência, a partir da Equação 2.24,
temos:

a0 · qn = −p (anp
n−1 + an1p

n−2 + · · ·+ a1q
n−1)︸ ︷︷ ︸

B

. (2.26)

Como todos os coeficientes ai (i ∈ N∪ 0) são inteiros, segue que A e B também
são inteiros.

Das Equações 2.25 e 2.26, temos:
an · pn = −q · A ⇒ an · pn

q
= −A ∈ Z (∗)

e

a0 · qn = −p ·B ⇒ a0 · qn

p
= −B ∈ Z (∗∗)

.

As igualdades acima obtidas mostram que:

• De (∗), temos que q | anpn. Como (p, q) = 1, an é divisível por q. Isto é, q é divisor de
an.
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• De (∗∗), temos que p | a0qn. Como (q, p) = 1, a0 é divisível por p. Ou seja, p é divisor
de a0. ■

Esse Teorema não garante a existência de raízes racionais em uma equação
com coeficientes inteiros. Mas, caso existam tais raízes, o teorema fornece todas as
possibilidades.

2.5.6.3 Aplicação prática do Teorema das Raízes Racionais

A seguir, alguns exemplos práticos de aplicação desse Teorema.

Exemplo 2.11. Dado a equação 3x3 + 8x2 + 3x− 2 = 0, quais as suas possíveis raízes
racionais?

Solução. Como não há qualquer outra informação sobre as raízes dessa equação,
além do fato de que são 3 (equação polinomial de grau 3) e, como ela possui todos
os coeficientes inteiros, o Teorema das Raízes Racionais vem a calhar. Por meio do
teorema, sabe-se que, se a equação tiver alguma raiz racional, ela será da forma

p

q
,

em que p é divisor de (−2) e q é divisor de 3. Ou seja, p ∈ {±1,±2} e q ∈ {±1,±3}.

Portanto, os “candidatos” a raízes racionais são:
{
± 1,±1

3
,±2,±2

3

}
.

Exemplo 2.12. Dada a equação 2x4 + 9x3 − 12x2 − 29x+ 30, quais as suas possíveis
raízes inteiras?

Solução. A equação em questão possui 4 raízes e todos os seus coeficientes são
inteiros. Logo, o teorema das raízes racionais será bastante útil para determinar as
suas possíveis raízes inteiras. Pelo teorema, as suas raízes racionais, se houver, serão
da forma

p

q
, em que p | 30 e q | 2. Isto é, p ∈ {±1,±2,±3,±5,±6,±10,±15,±30} e

q ∈ {±1,±2}.

Com isso, os candidatos a raízes racionais são:
{
±1,±1

2
,±2,±3,±3

2
,±5,±5

2
,±6,

±10,±15,
15

2
,±30

}
. Como o problema está interessado nas possíveis raízes inteiras,

temos que os candidatos são: {±1,±2,±3,±5,±6,±10,±15,±15}.

Para Bezerra (1974), há observações bastante significativas a respeito desse
teorema:

Observação 1. Toda equação algébrica de coeficientes inteiros, cujo coeficiente do
termo de maior grau (coeficiente dominante) é a unidade, se possuir raízes racionais
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elas serão inteiras. Então, uma equação da forma

xn + an−1 · xn−1 + · · ·+ a2 · x2 + a1 · x+ a0 = 0

não pode ter raízes racionais.

Observação 2. Uma equação algébrica de coeficientes inteiros que possuir o coefici-
ente do termo de maior grau (coeficiente dominante) diferente da unidade (an ̸= 1), se
houver raízes, não pode ter apenas inteiras.

Observação 3. Toda raiz inteira (α) de uma equação algébrica de coeficientes inteiros
é um divisor do termo independente da equação (suposta desprovida de raízes nulas).
Ou seja,

±α | a0.

Observação 4. Toda raiz racional tem para o numerador um divisor do termo indepen-
dente da equação e para o denominador um divisor do coeficiente dominante.

2.5.7 Delimitação das Raízes de uma Equação Polinomial

A busca pelas raízes de uma equação polinomial pode ser bastante onerosa,
dependendo das características da equação em questão. Além do grau da equação,
há a observância do coeficiente líder e o termo independente que, como visto na
Seção 2.5.6, estão diretamente conectados as suas raízes. Para Bezerra (1974), a
delimitação das raízes consiste em determinar dois números l e L, entre os quais
estejam compreendidas as raízes racionais de uma equação algébrica. Para tal, tem-se
que o número l trata-se da cota inferior (ou limite inferior das raízes negativas) e L da
cota superior (ou limite superior das raízes positivas).

A pesquisa das raízes exige intervalos pequenos de investigação, pois quanto
mais próximos de l e L elas forem, mais fácil tornam-se as suas buscas. De acordo
com Bezerra (1974), a determinação dessas cotas baseiam-se no seguinte princípio:

É condição necessária e suficiente para que um número L seja cota superior
das raízes de

P (x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0 = 0 (2.27)

que tenhamos: P (x) > 0 para x ⩾ L.

A condição é necessária. Pois, de fato, como an > 0, P (x) > 0 quando x crescer
indefinidamente. Logo, se L é limite superior das raízes, então P (x) > 0 ∀x ⩾ L. Pois,
caso contrário, se P (x) < 0 teríamos que, primeiramente, obter P (x) = 0 antes de
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P (x) > 0. Portanto, não há raízes superiores a L. Como consequência, se P (x) não se
anular para x ⩾ L, L é maior que qualquer raiz de P (x) = 0. Portanto, sendo L uma
cota superior.

Para a determinação da cota inferior l, o raciocínio é de modo análogo para
P (−x) = 0, onde essa é a transformada de P (x) = 0. Pois, calculando a transformada
P (−x) = 0 e a sua cota superior sendo l > 0, teríamos −l como a cota inferior de
P (x) = 0.

2.5.7.1 Método de Laguerre

Atribuído ao matemático francês Edmond Laguerre (1834-1886), esse método é
o mais indicado entre os métodos existentes, pois é de fácil aplicação, além de permitir
achar uma cota superior bastante reduzida (Bezerra, 1974).

O método de Laguerre permite a determinação da cota superior L. Além disso,
através da transformada P (−x) = 0, é possível pelo mesmo método determinar,
também, a cota inferir l.

Para tal verificação desse método, dada a Equação 2.27 e supondo a divisão de
P (x) por x− L, com o auxílio do Dispositivo de Briot-Rufinni, temos o seguinte arranjo,
conforme exposto na Figura 6:

Figura 6 – Divisão de P (x) por (x− L) (cota superior L) no Dispositivo Prático de Briot-Ruffini.

an an−1 · · · a1 a0
L bn−1 bn−2 · · · b0 R

Fonte: Adaptado de Bezerra (1974).

Dessa forma, podemos escrever a Equação 2.27 como:

P (x) = (x− L) · (bn−1x
n−1 + bn−2x

n−2 + · · ·+ b2x
2 + b1x+ b0) +R (2.28)

em que, conforme Figura 6, aplicando o Dispositivo de Briot-Ruffini e pela identidade
de polinômios, temos as seguintes relações:
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

bn−1 = an

bn−2 = bn−1 · L+ an−1 = an · L+ an−1

bn−3 = bn−2 · L+ an−2 = (an · L+ an−1) · L+ an−2 = an · L2 + an−1 · L+ an−2

...
b0 = b1 · L+ a1 = an · Ln−1 + an−1 · Ln−2 + · · ·+ a2 · L+ a1

R = P (L) = an · Ln + an−1 · Ln−1 + · · ·+ a2 · L2 + a1 · L+ a0

.

(2.29)

Supondo que an > 0 e, consequentemente, bn−1 > 0, um real L que tornar
positivos os números bn−1, bn−2, · · · , b1, b0 e R em 2.29, será um número que tornará
na Equação 2.28, P (x) > 0. Portanto, segue que ∀x ⩾ L, nas relações apontadas em
2.29, P (x) > 0. Com isso, seguindo o princípio tratado na Seção 2.5.7, L é uma cota
superior das raízes positivas de P (x).

Para Roxo et al. (1955), a simples observação da identidade

P (x) = (x− L) ·Q(x) + P (L) (2.30)

que define a divisão de P (x) por x− L, permite a determinação dos intervalos onde se
encontram as raízes racionais de uma equação algébrica. Com efeito, escolhendo um
L de tal forma que, para x > L, tem-se um P (x) > 0. Como por hipótese P (x) não se
anulará para valores maiores que L, nenhuma raiz ultrapassará L.

Portanto, a determinação de um certo número L satisfazendo essa condição, o
resultado é imediato. Pois, para tal, bastará por tentativas, procurar o divisor L para o
qual sejam positivos os coeficientes bi de Q(x) e o resto P (L).

2.5.7.2 Aplicação prática do Método de Laguerre

Para o uso do método de Laguerre, o Dispositivo de Briot-Ruffini torna o processo
bastante simples para o cálculo da cota L. Para tal, deve-se observar que se L for
cota superior de P (x) = 0, ao dividir P (x) por x − L, os coeficientes bi do quociente
Q(x) e o resto R, necessariamente, devem ser positivos. Portanto, usando o dispositivo
de Briot-Ruffini, divide-se sucessivamente P (x) pelos naturais {1, 2, 3, · · · }, até que se
encontrem todos os bi e R positivos.

Caso algum bi ou R for negativo, o processo de divisão pode ser imediatamente
encerrado. Além disso, é importante destacar que é possível que um ou mais coefici-
entes do quociente sejam nulos. Por fim, para determinar a cota inferior l das raízes
negativas de P (x) = 0, basta que seja determinado a cota superior da transformada
simétrica P (−x) = 0.
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A seguir, vejamos alguns exemplos de sua aplicação:

Exemplo 2.13. Determine as cotas superiores e inferiores da equação:

P (x) = x6 + 3x5 − 36x4 − 45x3 + 93x2 + 132x+ 140.

Solução. Determinando L com o auxílio do Dispositivo de Briot-Ruffini, temos o seguinte
resultado a partir de L ⩾ 1:

1 3 −36 −45 93 132 140

1 1 4 −
2 1 5 −
3 1 6 −
4 1 7 −
5 1 8 4 −
6 1 9 18 63 + + +

.

Portanto, segue que L = 6 é cota superior de P (x) = 0.

Buscando agora determinar l, temos que a transformada de P (x) = 0 é:

P (−x) = x6 − 3x5 − 36x4 + 45x3 + 93x2 − 132x+ 140.

Organizando os seus coeficientes no dispositivo de Briot-Ruffini, temos o se-
guinte resultado a partir de l ⩾ 1:

1 −3 −36 45 93 −132 140

1 1 −
2 1 −
3 1 0 −
4 1 1 −
5 1 2 −
6 1 3 −
7 1 4 −
8 1 5 4 77 709 + +

.

Portanto, segue que a cota inferior de P (x) = 0 é l = −8. Com isso, temos que
se P (x) = 0 possuir alguma raiz real, elas pertencerão ao intervalo −8 < x < 6.

Observação. Para o cálculo de L, nota-se que não foi necessário calcular os últimos
coeficientes para 1 ≤ L ≤ 5, pois os mesmos seriam negativos. Assim como para L ⩾ 6,
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pois os mesmos seriam positivos. De modo análogo, o mesmo pôde ser aplicado para
o cálculo de l.

Exemplo 2.14. Dado a equação polinomial P (x) = 3x5 − 50x4 + 2x− 40 = 0, determine
o intervalo que se encontram as suas possíveis raízes racionais, se existir.

Solução. Devemos determinar as cotas superiores e inferiores das raízes de P (x).

Para L, temos com o auxílio do algoritmo de Briot-Ruffini o seguinte quadro:

3 −50 0 0 2 −40

1 3 −
· · · · · · · · ·
16 3 −
17 3 1 17 + + +

.

Logo, segue que L = 17.

Para o cálculo de l, temos que a transformada de P (x) = 0 é:

P (−x) = 3x5 + 50x4 + 2x+ 40 = 0.

Dessa forma, organizando os dados no dispositivo prático de Briot-Ruffini, temos
o seguinte quadro:

3 50 0 0 2 40

1 3 + + + + +
.

Logo, temos com isso que l = −1.

Portanto, temos que o intervalo pedido é: −1 < x < 17.
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3 REGRAS DE EXCLUSÃO DE NEWTON

Como já visto na Seção 2.5.6, as raízes inteiras de uma equação algébrica
P (x) = 0 são os divisores do seu termo independente. Além disso, através do Método
de Laguerre, tratado na Seção 2.5.7.1, o mesmo permite limitar, ainda mais, o campo
de busca das possíveis raízes da equação. No entanto, as cotas podem ser de tal forma
que o número de divisores ainda seja relativamente grande. Diante desse fato, serão
apresentadas as Regras de Exclusão de Newton que permitem excluir os não divisores
de a0, portanto improváveis raízes de P (x) = 0, compreendidos no intervalo entre l e L.

3.1 CONTEXTUALIZAÇÃO E DEFINIÇÃO

Para Roxo et al. (1955), as Regras de Exclusão de Newton são condições
necessárias, mas não suficientes para que um determinado número, compreendido no
intervalo entre l e L, seja raiz de P (x) = 0. Segundo Bezerra (1974), essas regras de
exclusão são também atribuídas ao matemático francês Étienne Bézout (1730 – 1783),
ao qual diz que:

Definição 3.1.1. Se um determinado número inteiro α é raiz de uma equação algébrica
de coeficientes inteiros P (x) = 0, então:

1. α− 1 divide P (1).

2. α+ 1 divide P (−1).

Para tanto, é importante destacar que é possível que um número α seja de tal
forma que α− 1 | P (1), α+1 | P (−1) e α, mesmo assim, não ser raiz de P (x) = 0. Pois,
como dito, essas regras são condições necessárias, mas não suficientes.

3.2 DEMONSTRAÇÃO DAS REGRAS DE EXCLUSÃO DE NEWTON

A seguir, sua demonstração:

Demonstração. Dado um α ∈ Z, raiz de P (x) = 0, tem-se que:

P (x) = (x− α) ·Q(x) (3.1)

em que Q(x) é o quociente da divisão de P (x) por x−α. Com isso, temos os seguintes
casos:
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1. Para x = 1, em 3.1, temos: P (1) = (1 − α) · Q(1) =⇒ P (1) = −(α − 1) · Q(1).
Portanto,

P (1)

α− 1
= −Q(1).

Logo, α− 1 | P (1).

2. Para x = −1, em 3.1, temos: P (−1) = (−1− α) ·Q(−1) =⇒ P (−1) = −(α+ 1) ·
Q(−1).

Portanto,
P (−1)

α + 1
= −Q(−1).

Logo, α + 1 | P (−1). ■

Com isso, dado um certo α inteiro que, diminuído de uma unidade, não divide
P (1) ou que, aumentado de uma unidade, não divide P (−1), não poderá ser raiz do
polinômio P (x) = 0.

3.3 APLICAÇÃO DAS REGRAS DE EXCLUSÃO DE NEWTON

A seguir, alguns exemplos de sua aplicação:

Exemplo 3.1. Dada uma equação polinomial P (x) = 0, cujo valor numérico para x = 1

é 70 e para x = −1 é 126, verifique se os inteiros {2, 3, 4, 5, 6, 7, 8} podem ser candidatos
a raízes de P (x).

Solução. Temos que P (1) = 70 e P (−1) = 126. Logo,

• x = 2 ⇒ 2− 1 = 1 | P (1) e 2 + 1 = 3 | P (−1) (2 pode ser raiz).

• x = 3 ⇒ 3− 1 = 2 | P (1), mas 3 + 1 = 4 ∤ P (−1) (3 não pode ser raiz).

• x = 4 ⇒ 4− 1 = 3 ∤ P (1) (4 não pode ser raiz).

• x = 5 ⇒ 5− 1 = 4 ∤ P (1) (5 não pode ser raiz).

• x = 6 ⇒ 6− 1 = 5 | P (1) e 6 + 1 = 7 | P (−1) (6 pode ser raiz).

• x = 7 ⇒ 7− 1 = 6 ∤ P (1) (7 não pode ser raiz).

• x = 8 ⇒ 8− 1 = 7 | P (1) e 8 + 1 = 9 | P (−1) (8 pode ser raiz).

Portanto, as possíveis raízes inteiras de P (x) = 0 são: {2, 6, 8}.
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Exemplo 3.2. Determine as possíveis raízes racionais de P (x) = x3 + 7x2 − 4x− 28.

Solução. Como visto na Seção 2.5.6, só poderão ser raízes racionais de P (x) aqueles
que pertencem ao conjunto dos divisores de a0 = −28. Logo, são eles: {±1,±2,±4,±7,

±14,±28}.

Buscando delimitar ainda mais o campo de procura das possíveis raízes, através
do Método de Laguerre, tratado na Seção 2.5.7.1, buscaremos as cotas inferiores l e
superiores L do intervalo onde elas possivelmente se encontram. Logo, temos:

• Com o auxílio do DBF, segue que L:

1 7 −4 −28

1 1 8 4 −
2 1 9 14 0

3 1 10 26 50

.

Logo, L = 3 é cota superior do intervalo que se encontram as supostas raízes de
P (x).

• Buscando agora encontrar l, alocando os coeficientes da transformada de P (x)

no DBR, temos:

1 −7 −4 −28

1 −6 −
· · · · · · · · ·
7 1 0 −4

8 1 1 4 4

.

Logo, l = −8 é cota inferior do intervalo em questão. Com isso, −8 < x < 3.

Como P (1) = −24 e P (−1) = −18, x = ±1 não são raízes. Logo, com o auxílio
das Regras de Exclusão de Newton, verificaremos se os números {−7,−4,−2, 2} são
candidatos a raiz de P (x). Com isso, segue;

• x = −7 ⇒ −7− 1 = −8 | P (1) e −7 + 1 = −6 | P (−1) (−7 pode ser raiz).

• x = −4 ⇒ −4− 1 = −5 ∤ P (1) (−4 não pode ser raiz).

• x = −2 ⇒ −2− 1 = −3 | P (1) e −2 + 1 = −1 | P (−1) (−2 pode ser raiz).

• x = 2 ⇒ 2− 1 = 1 | P (1) e 2 + 1 = 3 | P (−1) (2 pode ser raiz).

Portanto, as possíveis raízes racionais de P (x) = 0 são {−7,−2, 2}.
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3.4 AS REGRAS DE EXCLUSÃO DE NEWTON APLICADAS A RAÍZES RACIONAIS
DE UMA EQUAÇÃO ALGÉBRICA DE COEFICIENTES INTEIROS

A seguir, será apresentado uma aplicação das Regras de Exclusão de Newton
para as candidatas a raízes racionais de P (x) = 0, tratado na Seção 2.5.6. Ou seja,
dentro do conjunto das possíveis raízes racionais, da forma

p

q
(com p ∈ Z e q ∈ Z∗), de

uma equação algébrica, é possível apontar se uma das frações pode (ou não) ser uma
raiz racional de P (x) = 0.

3.4.1 Contextualização e Definição

Segundo Andrade (1989), o seguinte teorema nos permite eliminar muitas das
possíveis raízes, sem a necessidade de realizar quase nenhum cálculo, já conhecidos
os valores numéricos de P (±1). O teorema diz o seguinte:

Teorema 3.4.1. Seja
p

q
uma raiz de P (x) = anx

n+an−1x
n−1+ · · ·+a2x

2+a1x+a0 onde

p, an, · · · , a2, a1, a0 ∈ Z, q ∈ Z∗ e (p, q) = 1. Então, (p− α · q) | P (α), ∀α ∈ Z.

Em particular, (p− q) | P (1) e (p+ q) | P (−1).

3.4.2 Demonstração

Para a sua demonstração, será necessário a apresentação do Polinômio de
Taylor que decorre da fórmula de Taylor.

Segundo Leithold (1994), temos o seguinte teorema que estabelece a fórmula
de Taylor:

Teorema 3.4.2. Seja f uma função tal que f e suas n primeiras derivadas são contínuas
no intervalo fechado [a, b]. Além disso, f (n+1)(x) existe para todo x no intervalo aberto
(a, b). Então, existe um número ϵ no intervalo aberto (a, b) tal que

f(b) = f(a)+
f ′(a)

1!
·(b−a)+

f ′′(a)

2!
·(b−a)2+ · · ·+ f (n)(a)

n!
·(b−a)n+

f (n+1)(ϵ)

(n+ 1)!
·(b−a)n+1.

(3.2)

Se na Equação 3.2, b for substituído por x e a por α, obtêm-se a fórmula de
Taylor que é

f(x) = f(α)+
f ′(α)

1!
·(x−α)+

f ′′(α)

2!
·(x−α)2+· · ·+ f (n)(α)

n!
·(x−α)n+

f (n+1)(ϵ)

(n+ 1)!
·(x−α)n+1

(3.3)
onde ϵ encontra-se no intervalo (α, x).
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A validade pela qual a Equação 3.3 ocorre é pelo fato de que f e suas n

primeiras derivadas dever ser contínuas no intervalo [α, x] e a (n+1)-ésima derivada de
f deve existir em todos os pontos do intervalo aberto correspondente. Diante dessas
constatações, a Equação 3.3 pode ser escrita como

f(x) = Pn(x) +Rn(x) (3.4)

onde

Pn(x) = f(α) +
f ′(α)

1!
· (x− α) +

f ′′(α)

2!
· (x− α)2 + · · ·+ f (n)(α)

n!
· (x− α)n (3.5)

e

Rn(x) =
f (n+1)(ϵ)

(n+ 1)!
· (x− α)n+1 (3.6)

onde ϵ ∈ (α, x).

O Pn(x) é chamado de polinômio de Taylor de enésimo grau da função f no
número α e o Rn(x) é chamado de resto na forma de Lagrange, em homenagem ao
matemático francês Joseph L. Lagrange (1736-1813) (Leithold, 1994).

Consequentemente, com ∂Pn(x) = n < ∂Rn(x) = n+ 1 (ordem da derivada do
Resto), tem-se que que

Rn(x) = 0.

Logo, a Equação 3.4 corresponde a

f(x) ≡ Pn(x). (3.7)

As palavras de Andrade (1989) traz contribuições bastante elucidativas sobre a
demonstração desse teorema, ao qual será então mostrado.

Demonstração. Seja α ∈ Z. Pelo Teorema 3.4.2 e a Equação 3.5, existem inteiros βi

(i ∈ N ∪ {0}), tais que

P (x) = βn · (x− α)n + βn−1 · (x− α)n−1 + · · ·+ β2 · (x− α)2 + β1 · (x− α) + β0.

Cada βi é o resto da divisão de P (x) por um polinômio Pi(x) de coeficientes
inteiros. Tomando p

q
como raiz de P (x), temos:

P

(
p

q

)
= βn ·

(
p

q
− α

)n

+ · · ·+ β1 ·
(
p

q
− α

)
+ β0 = 0.
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Multiplicando a igualdade acima por (qn) e isolando −β0 · qn, temos:

βn · (p− αq)n + q · βn−1 · (p− αq)n−1 + · · ·+ qn−1 · β1 · (p− αq) = −β0 · qn. (3.8)

Observa-se que o primeiro membro desta última equação é um inteiro múltiplo
de (p− αq). Logo, (−β0 · qn) é também múltiplo de (p− αq).

Toma-se d ∈ Z, tal que d | q e d | (p − αq). Com isso, tem-se que d | αq,
implicando que d | (αq + (p− αq)). Ou seja, d | p.

Dessa forma, tem-se que d é um divisor de p e q. Logo, d = 1 ou d = −1, já que
(p, q) = 1. Portanto, (p− αq, q) = 1.

De acordo com Hefez (2022), dados a, b, c ∈ Z, se a | b · c e (a, b) = 1, então
a | c. Aplicando esse fato às n parcelas do primeiro termo da Equação 3.8, tem-se que
(p − αq) | β0 · qn, o que implica que (p − αq) | β0; já que os inteiros (p − αq) e q são
primos entre si. Ou seja, (p− αq) é um divisor de P (α),∀α ∈ Z. ■

3.4.3 Aplicação das Regras de Exclusão de Newton em Raízes Racionais

A seguir, será mostrado alguns exemplos de sua aplicação.

Exemplo 3.3. Dada a equação 6x6−7x5−76x4+91x3+190x2−252x+72 = 0, verifique

quais dos números
3

2
,
4

3
,
2

3
,
1

2
,
1

3
,
1

6
podem ser suas possíveis raízes racionais.

Solução. Usando as Regras de Exclusão de Newton, temos que para x = 1, P (1) = 24

e para x = −1, P (−1) = 360. Com isso, tem-se:

• x =
3

2
⇒ 3− 2 = 1 | P (1) e 3 + 2 = 5 | P (−1).

(
3

2
pode ser raiz

)
.

• x =
4

3
⇒ 4− 3 = 1 | P (1), mas 4 + 3 = 7 ∤ P (−1).

(
4

3
não pode ser raiz

)
.

• x =
2

3
⇒ 2− 3 = −1 | P (1) e 2 + 3 = 5 | P (−1).

(
2

3
pode ser raiz

)
.

• x =
1

2
⇒ 1− 2 = −1 | P (1) e 1 + 2 = 3 | P (−1).

(
1

2
pode ser raiz

)
.

• x =
1

3
⇒ 1− 3 = −2 | P (1) e 1 + 3 = 4 | P (−1).

(
1

3
pode ser raiz

)
.

• x =
1

6
⇒ 1− 6 = −5 ∤ P (1).

(
1

6
não pode ser raiz

)
.
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Portanto, as possíveis raízes da equação são
{
3

2
,
2

3
,
1

2
,
1

3

}
.

Exemplo 3.4. Considere a equação 6x4 − 7x3 − 37x2 + 8x+ 12. Apresente os números
racionais com potencial de ser suas possíveis raízes.

Solução. Inicialmente, vamos determinar as possíveis raízes racionais da equação
usando o Teorema das Raízes Racionais, tratado na Seção 2.5.6. Para isso, temos
que os divisores de a0 = 12 são d(12) = {±1,±2,±3,±4,±6,±12} e os divisores de
an = 6 são d(6) = {±1,±2,±3,±6}. Logo, as possíveis raízes racionais da equação

são:
{
± 1,±1

2
,±1

3
,±1

6
,±2,±2

3
,±3,±3

2
,±4,±4

3
,±6,±12

}
.

Para reduzir o campo de procura das possíveis raízes, utilizaremos o Método
de Laguerre, tratado na Seção 2.5.7.1, para definir as cotas inferiores l e superiores L

do intervalo onde as raízes candidatas se encontram. Para L, com a ajuda do DBR,
temos:

6 −7 −37 8 12

1 6 −1

2 6 5 −27

3 6 11 −4

4 6 17 31 + +

.

Logo, L = 4.

Buscando l, temos no DBF os coeficientes da transformada da equação em
questão:

6 7 −37 −8 12

1 6 13 −24

2 6 19 1 −5

3 6 25 38 + +

.

Logo, l = −3. Portanto, −3 < x < 4.

Usando agora as Regras de Exclusão de Newton para limitar ainda mais o
conjunto das possíveis raízes, temos que P (1) = −18 e P (−1) = −20. Portanto, {±1}
não é raiz. Logo, para os demais candidatos, temos:

• x =
1

2
⇒ 1− 2 = −1 | P (1), mas 1 + 2 = 3 ∤ P (−1)

(
1

2
não pode ser raiz

)
.
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• x = −1

2
⇒ −1− 2 = −3 | P (1) e −1 + 2 = 1 | P (−1)

(
− 1

2
pode ser raiz

)
.

• x =
1

3
⇒ 1− 3 = −2 | P (1) e 1 + 3 = 4 | P (−1)

(
1

3
pode ser raiz

)
.

• x = −1

3
⇒ −1− 3 = −4 ∤ P (1)

(
− 1

3
não pode ser raiz

)
.

• x =
1

6
⇒ 1− 6 = −5 ∤ P (1)

(
1

6
não pode ser raiz

)
.

• x = −1

6
⇒ −1− 6 = −7 ∤ P (1)

(
− 1

6
não pode ser raiz

)
.

• x = 2 ⇒ 2− 1 = 1 | P (1), mas 2 + 1 = 3 ∤ P (−1)(2 não pode ser raiz).

• x = −2 ⇒ −2− 1 = −3 | P (1) e −2 + 1 = −1 | P (−1)(−2 pode ser raiz).

• x =
2

3
⇒ 2− 3 = −1 | P (1) e 2 + 3 = 5 | P (−1)

(
2

3
pode ser raiz

)
.

• x = −2

3
⇒ −2− 3 = −5 ∤ P (1)

(
− 2

3
não pode ser raiz

)
.

• x = 3 ⇒ 3− 1 = 2 | P (1) e 3 + 1 = 4 | P (−1)(3 pode ser raiz).

• x =
3

2
⇒ 3− 2 = 1 | P (1) e 3 + 2 = 5 | P (−1)

(
3

2
pode ser raiz

)
.

• x = −3

2
⇒ −3− 2 = −5 ∤ P (1)

(
− 3

2
não pode ser raiz

)
.

• x =
4

3
⇒ 4− 3 = 1 | P (1), mas 4 + 3 = 7 ∤ P (−1)

(
4

3
não pode ser raiz

)
.

• = −4

3
⇒ −4− 3 = −7 ∤ P (1)

(
− 4

3
não pode ser raiz

)
.

Portanto, temos que as possíveis raízes racionais do polinômio em questão são{
− 1

2
,
1

3
,−2,

2

3
, 3,

3

2

}
.
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4 O ALGORITMO DE PELETARIUS

De acordo com Roxo et al. (1955), não há regra geral para investigar as raízes
inteiras de uma equação algébrica de coeficientes inteiros, como a Equação 4.1. Para
tal fim, será sempre possível, mediante certo número de tentativas sistemáticas, calcular
tais raízes. Para Bezerra (1974), dada uma tal equação, podemos usar o Algoritmo de
Peletarius para verificar se um dos divisores d do termo independente é realmente raiz
de P (x) = 0.

4.1 CONTEXTUALIZAÇÃO E DEFINIÇÃO

Como já discutido, de acordo com a pesquisa realizada, a bibliografia que
aborda essa técnica é bastante limitada. As referências as quais se teve acesso sobre
o algoritmo de Peletarius, não trazem uma definição precisa sobre o mesmo. Apenas
relatam a sua aplicação, através da demonstração do algoritmo, seguido de alguns
exemplos práticos.

Visando suprir essa lacuna, buscou-se então elaborar uma proposição que
caracterizasse o algoritmo de Peletarius, ao qual se segue:

Proposição 4.1.1. Dado o polinômio de coeficientes inteiros

P (x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a3x

3 + a2x
2 + a1x+ a0 (4.1)

e um certo polinômio Q(x) de coeficientes reais, com ∂Q(x) = n− 1, e um dado d ∈ Z.
Se todos os casos a seguir ocorrerem:

1. o número d for divisor do coeficiente a0 de P (x) (d | a0);

2. os coeficientes bi de Q(x) (com i = 0, 1, 2, 3, · · · , n− 1.) forem inteiros (bi ∈ Z) e

3. os coeficientes dominantes de P (x) e Q(x) forem iguais (an = bn−1),

então P (x) pode ser representado de modo fatorado da forma

P (x) = (x− d) ·Q(x). (4.2)

Ou seja, o inteiro d será uma raiz de P (x).

A seguir será dada uma demonstração do algoritmo desenvolvido por Jaques
Peletier (Peletarius) e alguns exemplos práticos de sua aplicação.
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4.2 DEMONSTRAÇÃO DO ALGORITMO DE PELETARIUS

Demonstração. Considere um certo polinômio P (x) de coeficientes inteiros e um nú-
mero inteiro d sendo uma de suas raízes. Pelo Teorema de D’Alembert tratado na
Seção 2.4.5.3, d será raiz de P (x), conforme Equação 4.1, se, e somente se, existir um
certo polinômio de coeficientes reais

Q(x) = bn−1x
n−1 + bn−2x

n−2 + · · ·+ b3x
3 + b2x

2 + b1x+ b0, (4.3)

tal que
P (x) = (x− d) ·Q(x). (4.4)

Substituindo a Equação 4.3 na Equação 4.4, temos

P (x) = (x− d) · (bn−1x
n−1 + bn−2x

n−2 + · · ·+ b3x
3 + b2x

2 + b1x+ b0). (4.5)

Desenvolvendo o produto da Equação 4.5 e agrupando os termos semelhantes,
temos

P (x) = bn−1x
n+(bn−2−dbn−1)x

n−1+(bn−3−dbn−2)x
n−2+· · ·+(b1−db2)x

2+(b0−db1)x−db0.

(4.6)

Pela identidade de polinômios, tratado na Seção 2.3.4, e comparando os coefici-
entes de P (x) nas Equações 4.1 e 4.6, temos as seguinte igualdades:

an = bn−1

an−1 = bn−2 − d · bn−1

an−2 = bn−3 − d · bn−2

...
a2 = b1 − d · b2
a1 = b0 − d · b1
a0 = −d · b0

. (4.7)

Isolando os coeficientes de Q(x), temos agora que:

bn−1 = an

bn−2 = an−1 + d · bn−1

bn−3 = an−2 + d · bn−2

...
b1 = a2 + d · b2
b0 = a1 + d · b1
b0 = −a0

d

. (4.8)
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Observa-se de 4.7 que toda raiz inteira d de P (x) é necessariamente um divisor
de a0. Esse fato se comprova ao ler 4.8 de cima para baixo onde bn−1, bn−2, bn−3, · · · , b2, b1, b0
são números inteiros, já que são resultados de operações com inteiros. Logo, d | a0.

Diante do exposto, o Algoritmo de Peletarius trata exatamente da questão
inversa. Ou seja, se um dado d inteiro e divisor de a0 é ou não uma raiz de P (x).

Por fim, isolando os coeficientes de Q(x) em função de d, temos que:

bn−1 = an

bn−1 =
bn−2 − an−1

d

bn−2 =
bn−3 − an−2

d...

b2 =
b1 − a2

d

b1 =
b0 − a1

d

b0 =
−a0
d

. (4.9)

Como todos os coeficientes de P (x) são inteiros e observando as últimas
igualdades de 4.9, de cima para baixo, é fato que bn−1, bn−2, · · · , b2, b1, b0 são inteiros e
que, consequentemente, d | a0.

Essa primeira observação mostra que, em particular, se P (x) tiver uma raiz
inteira, então todos os coeficientes de Q(x) são também números inteiros. Consequen-
temente, se em algum momento da execução do algoritmo deparar-se com um certo bk

(com k ∈ N ∪ {0}) que não seja inteiro, pode-se concluir que d não é raiz de P (x).

Uma segunda observação é que se mesmo todos os coeficientes de Q(x) forem
inteiros, mas se o seu coeficiente líder for diferente do de P (x), ou seja, an ̸= bn−1,
ainda pode-se concluir que d não é raiz de P (x).

Por fim, pode-se afirmar que se bn−1, bn−2, · · · , b2, b1, b0 forem todos inteiros e
an = bn−1, então d é uma raiz de P (x). ■

4.3 DISPOSITIVO PRÁTICO DO ALGORITMO DE PELETARIUS

A seguir, será apresentado um dispositivo prático, bastante similar ao de Briot-
Ruffini, ao qual facilita por demais a aplicação do algoritmo de Peletarius.

Seja d um divisor do termo independente de um Polinômio P (x). Ou seja, d | a0.
Inicialmente, para tal verificação prática, dispõe-se os coeficientes inteiros de P (x) e d
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num quadro de formato semelhante ao utilizado no dispositivo de Briot-Rufini, em que
b0 =

−a0
d

, conforme quadro da Figura 7.

Figura 7 – Alocação do termo b0 de Q(x) no dispositivo do Algoritmo de Peletarius

an an−1 an−2 · · · a2 a1 a0 x
b0︸︷︷︸
−a0
d

d

Fonte: Adaptado de Bezerra (1974) .

Em seguida, inicia-se o processo de completamento do quadro calculando,

de modo sequencial, os inteiros b1 =
b0 − a1

d
, b2 =

b1 − a2
d

, · · · , bn−2 =
bn−3 − an−2

d
,

bn−1 =
bn−2 − an−1

d
. Se no processo em questão surgir algum bk (k ∈ N ∪ 0) que não

seja inteiro, então d não é raiz de P (x). Além disso, mesmo que todos os bk sejam
inteiros e os coeficientes líderes de P (x) e Q(x) sejam diferentes, d continua não sendo
raiz de P (x). Caso isso não ocorra, encontra-se, então, os inteiros acima mencionados,
dispostos no quadro conforme Figura 8.

Figura 8 – Alocação dos bk termos de Q(x) no dispositivo do Algoritmo de Peletarius.

an an−1 an−2 · · · a2 a1 a0 x
bn−1︸︷︷︸

an=
bn−2−an−1

d

bn−2︸︷︷︸
bn−3−an−2

d

· · · b2︸︷︷︸
b1−a2

d

b1︸︷︷︸
b0−a1

d

b0︸︷︷︸
−a0
d

d

Fonte: Adaptado de Bezerra (1974) .

Para Bezerra (1974), o Algoritmo de Peletarius apresenta a grande vantagem
de abandonar o processo do divisor d, caso encontre uma divisão inexata. Além disso,
assim como o dispositivo de Briot-Ruffini, encontrada uma raiz, o processo pode ser
continuado para os outros divisores com os coeficientes do quociente obtido.

4.4 APLICAÇÃO DO ALGORITMO DE PELETARIUS

Para tais aplicações práticas do uso do Algoritmo de Peletarius, serão usadas
expressões polinomiais de coeficientes inteiros, definições, conceitos e técnicas de
operações com polinômios vistos nos capítulos anteriores.

Exemplo 4.1. Dado o polinômio P (x) = x3 − 6x2 + 11x− 6, determine as suas raízes
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inteiras, se existir.

Solução. Temos que o ∂P (x) = 3 (possui três raízes) e os seus coeficientes são a3 = 1,
a2 = −6, a1 = 11 e a0 = −6. Observa-se que P (1) = 0. Logo, a primeira raiz de P (x)

é x1 = 1. Como P (x) = Q(x) · (x − 1); onde Q(x) = b2x
2 + b1x + b0, podemos usar

o algoritmo de Peletarius para encontrar as outras duas raízes x2 e x3 de P (x) que
também são as raízes de Q(x).

Organizando os coeficientes de Q(x) no quadro de divisão, temos:

1 −6 11 −6 x

1
.

Buscando os demais coeficientes de Q(x), temos:

b0 =
−(−6)

1
= 6 ∈ Z, b1 =

6− 11

1
= −5 ∈ Z e b2 =

−5− (−6)

1
= 1 = a3.

Logo, completando o quadro, temos que:

1 −6 11 −6 x

1 −5 6 1
.

Portanto, segue que o quociente é Q(x) = x2− 5x+6. Para encontrar as demais
raízes, podemos utilizar os métodos tratados na Seção 2.5.2 para encontrar as raízes
de uma equação do segundo grau. No caso específico de Q(x) = 0, podemos usar a
fórmula resolutiva para uma equação do segundo grau, onde

x =
−b±

√
∆

2 · a
, onde ∆ = b2 − 4 · a · c.

Tem-se que os coeficientes de Q(x) são a = 1, b = −5 e c = 6. Substituindo os
devidos valores na expressão, temos:

x =
−(−5)±

√
(−5)2 − 4 · 1 · 6
2 · 1

=
5± 1

2

{
x1 = 2

x2 = 3
.

Portanto as raízes de P (x) são {1, 2, 3} e pelo TFA, tratado na Seção 2.5.4, sua
forma fatorada é

P (x) = (x− 1) · (x− 2) · (x− 3).
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Exemplo 4.2. Considere o polinômio P (x) = x4 − 20x2 + 64. Quais as suas possíveis
raízes inteiras, se houver?

Solução. Temos que os coeficientes de P (x) são a4 = 1, a3 = 0, a2 = −20, a1 = 0 e
a0 = 64 e ∂P (x) = 4. Portanto, P (x) possui quatro raízes. Pelo Teorema das Raízes
Racionais, tratado na Seção 2.5.6, se P (x) possuir raízes racionais, elas pertencerão
ao conjunto dos divisores de 64, já que a4 = 1. Portanto, as possíveis raízes são:
{±1,±2,±4,±8,±16,±32,±64}.

Observa-se que P (±1) ̸= 0. Logo, utilizando o algoritmo de Peletarius, tes-
taremos os demais candidatos a raiz. Começando o teste com x = 2, faremos a
divisão de P (x) por x− 2 e, caso seja, encontraremos que P (x) = Q(x) · (x− 2), onde
Q(x) = b3x

3 + b2x
2 + b1x+ b0.

Montando o quadro com os coeficientes de P (x), temos:

1 0 −20 0 64 x

2
.

Executando o algoritmo e completando o quadro, tem-se que:

b0 =
−64

2
= −32 ∈ Z, b1 =

−32− 0

2
= −16 ∈ Z, b2 =

−16− (−20)

2
= 2 ∈ Z e

b3 =
2− 0

2
= 1 = a4.

Logo,

1 0 −20 0 64 x

1 2 −16 −32 2
.

Portanto, segue que x1 = 2 é raiz de P (x) e que o quociente corresponde a
Q(x) = x3 + 2x2 − 16x− 32.

O algoritmo permite também que o processo seja continuado em busca das
demais raízes de P (x) através do polinômio quociente Q(x). Vejamos que, tomando
o polinômio Q(x) = x3 + 2x2 − 16x− 32, vamos analisar agora se x = −2, também é
uma das raízes de P (x). Logo, caso seja, temos que Q(x) = S(x) · (x + 2), em que
S(x) = c2x

2 + c1x+ c0. Com isso, continuando com o quadro, temos:



Capítulo 4. O Algoritmo de Peletarius 73

1 0 −20 0 64 x

1 2 −16 −32 2

−2

.

Executando o algoritmo e completando o quadro, temos:

c0 =
−(−32)

−2
= −16 ∈ Z, c1 =

−16− (−16)

−2
= 0 ∈ Z e c2 =

0− 2

−2
= 1 = b3.

Com isso, completando o quadro, encontramos:

1 0 −20 0 64 x

1 2 −16 −32 2

1 0 −16 −2

.

Portanto, segue x2 = 2 é raiz de Q(x) e, consequentemente, é também raiz de
P (x) e que o quociente corresponde a S(x) = x2 − 16 = 0. Nesse caso, as outras duas
raízes de P (x) podem ser encontradas usando métodos algébricos práticos para a
busca das raízes de uma equação quadrática quando a mesma é da forma ax2 + c = 0.
Especificamente para S(x) = 0, temos:

S(x) = x2 − 16 = 0 ⇐⇒ x2 = 16 ⇐⇒ x = ±
√
16 ⇐⇒ x = ±4.

Logo, x3 = 4 e x4 = −4. Por fim, temos que o conjunto solução de P (x) é:
{±2,±4}. E, pelo TFA, sua forma decomposta ou fatorada é

P (x) = (x− 2) · (x+ 2) · (x− 4) · (x+ 4).

Exemplo 4.3. Considere o polinômio P (x) = x7 − 3x6 − 29x5 + 75x4 + 280x3 − 612x2 −
864x2 + 1728. Se existir, quais as suas raízes inteiras?

Solução. Temos que ∂P (x) = 7. Portanto, o polinômio possui sete raízes em C. Sabe-se
que nenhuma dessas raízes é racional não inteira, dado que P (x) é unitário (a7 = 1). Por-
tanto, de acordo com o Teorema das Raízes Racionais, suas possíveis raízes racionais
são os divisores de a0 = 1728, que são: {±1,±2,±3,±4,±6,±8,±9,±12,±16,±18,±24,

±27,±32,±36,±48,±54,±64,±72,±96,±108,±144,±192,±216,±288,±432,±576,±864,

±1728}.

Como a quantidade de possíveis raízes é relativamente grande, iremos usar o
Método de Laguerre, tratado na Seção 2.5.7.1, para diminuir o intervalo de busca. Para
isso, montando o quadro com o DBR para encontrar L, temos:
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1 −3 −29 75 280 −612 −864 1728

1 1 −
2 1 −
3 1 0 −
...

...
...

...
7 1 4 −
8 1 5 11 163 1584 + + +

.

Portanto, temos que L = 8 é cota superior do intervalo ao qual se encontram as
possíveis raízes de P (x).

De modo análogo, buscando encontrar a cota inferior l, temos que a transfor-
mada de P (x) = 0 é P (−x) = x7 + 3x6 − 29x5 − 75x4 + 280x3 + 612x2 − 864x− 1728 = 0.
Alocando os seus coeficientes no DBR, temos:

1 3 −29 −75 280 612 −864 −1728

1 4 −
...

...
...

4 1 7 −
5 1 8 11 −
6 1 9 25 75 730 + + +

.

Logo, l = −6 é cota inferior do referido intervalo. Portanto, as possíveis raízes
de P (x) encontra-se em (−6, 8).

Com isso, o conjunto solução, contendo as possíveis raízes racionais de P (x),
reduz-se a {±1,±2,±3,±4, 6}.

Buscando agora as verdadeiras raízes de P (x), observa-se que P (±1) ̸= 0. Logo,
x = ±1 não são raízes. Testando agora para as demais possíveis raízes, utilizaremos
o quadro com o algoritmo de Peletarius para, inicialmente, testar se x = ±2 é raiz de
P (x). Portanto, temos:

1 −3 −29 75 280 −612 −864 1728 x
11
2

−14 −1 77 126 −864 864 −2

1 −1 −31 13 306 0 −864 2

.

Como P (−2) ̸= 0, então {−2} não é raiz de P (x). Como todos os requisitos para
x = 2 foram atendidos, temos P (2) = 0. Vamos realizar o processo novamente para
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x = 2 com o intuito de buscar supostas raízes idênticas ou múltiplas (multiplicidade),
conforme tratado na Seção 2.5.4.2. Observa-se que o processo pode ser realizado
sobre o polinômio quociente Q(x) = x6 − x5 − 31x4 + 13x3 + 306x2 − 864. Portanto,
continuando o processo, temos:

1 −3 −29 75 280 −612 −864 1728 x
11
2

−14 −1 77 126 −864 864 −2

1 −1 −31 13 306 0 −864 2

1 1 −29 −45 216 432 2

.

Conforme quadro acima, para x = 2, temos que Q(2) = 0. Logo, podemos até o
momento dizer que x = 2 é raiz de multiplicidade 2 de P (x). Realizando o processo mais
uma vez para x = 2 sobre o último polinômio S(x) = x5 + x4 − 29x3 − 45x2 + 216x+ 432,
testaremos se {2} é raiz de multiplicidade 3 de P (x). Para isso, temos:

1 −3 −29 75 280 −612 −864 1728 x
11
2

−14 −1 77 126 −864 864 −2

1 −1 −31 13 306 0 −864 2

1 1 −29 −45 216 432 2

−171
2

−216 −216 2

.

Como o quociente −171
2

/∈ Z, temos que S(2) ̸= 0. Portanto, segue que {2} não
é raiz de multiplicidade 3 de P (x). Logo, temos então as duas primeiras raízes de P (x),
x1 = x2 = 2.

Vamos agora testar para x = ±3. Continuando o quadro, temos:

1 −3 −29 75 280 −612 −864 1728 x
11
2

−14 −1 77 126 −864 864 −2

1 −1 −31 13 306 0 −864 2

1 1 −29 −45 216 432 2

−171
2

−216 −216 2
4
3

−25 −120 −144 3

1 −2 −23 24 144 −3

.

Como para x = 3 o último quociente corresponde a 4
3
/∈ Z, temos que S(3) ̸= 0 e,

com isso, não é raiz de P (x). Em sequência, observa-se que para x = −3, S(−3) = 0.
Portanto, {−3} também é raiz de P (x). Buscando agora averiguar se x = −3 é raiz
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múltipla de P (x), vamos realizar o processo mais uma vez sobre o último polinômio
quociente T (x) = x4 − 2x3 − 23x2 + 24x+ 144. Logo, usando o quadro, temos:

1 −3 −29 75 280 −612 −864 1728 x
11
2

−14 −1 77 126 −864 864 −2

1 −1 −31 13 306 0 −864 2

1 1 −29 −45 216 432 2

−171
2

−216 −216 2
4
3

−25 −120 −144 3

1 −2 −23 24 144 −3

1 −5 −8 48 −3

.

Observa-se também que para x = −3, T (−3) = 0. Portanto, {−3} é raiz de
multiplicidade 2 de P (x). Aplicando mais uma vez o algoritmo de Peletarius no polinômio
quociente V (x) = x3 − 5x2 − 8x+ 48 para x = −3, temos o seguinte:

1 −3 −29 75 280 −612 −864 1728 x
11
2

−14 −1 77 126 −864 864 −2

1 −1 −31 13 306 0 −864 2

1 1 −29 −45 216 432 2

−171
2

−216 −216 2
4
3

−25 −120 −144 3

1 −2 −23 24 144 −3

1 −5 −8 48 −3

1 −8 16 −3

.

Logo, V (−3) = 0. Portanto, como verificado, {−3} é raiz de multiplicidade 3 de
P (x) e com isso, temos x3 = x4 = x5 = −3.

Por fim, tem-se o polinômio de 2 grau Z(x) = x2−8x+16, onde podemos aplicar
umas das formas de encontrar as suas raízes, tratadas no Capítulo 2.5. Usando, por
exemplo, as Relações de Girard, tratadas na Seção 2.5.5, temos que:

x6 + x7 = −−8

1
= 8

x6 · x7 =
16

1
= 16.

Observa-se que os únicos pares que atendem aos requisitos são x6 = 4 e x7 = 4.
Com isso, temos Z(4) = 0 e, com isso, {4} é raiz de multiplicidade 2 de P (x). Logo,
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temos que x6 = x7 = 4. Portanto, em função do ∂P (x), temos todas as suas raízes e
podemos reescrever o polinômio na seguinte forma fatorada:

P (x) = (x− 2)2 · (x+ 3)3 · (x− 4)2.

4.5 O ALGORITMO DE PELETARIUS PARA RAÍZES RACIONAIS

4.5.1 Contextualização

No decorrer da elaboração do presente trabalho, após determinar um certo
conjunto Ω ∈ Q, onde esse contém as possíveis raízes racionais αi (i ∈ N) de um dado
polinômio de coeficientes inteiros, através do Teorema das Raízes Racionais, surgiu a
necessidade de averiguar se algum dos αi ∈ {Ω − Z} eram, efetivamente, raízes de
P (x) = 0. Após terem atendidos os critérios estabelecidos pelas Regras de Exclusão
de Newton, o uso do Dispositivo de Briot-Rufini é um dos métodos utilizados para tal
verificação, como visto na Seção 2.4.5.5. No entanto, como a proposta do trabalho em
questão versa sobre o algoritmo de Peletarius, surgiu a necessidade de investigar se o
método desenvolvido por Peletier poderia ser aplicado à racionais não inteiros.

Como já tratado, a literatura acerca do assunto já é bastante escassa no que se
refere ao método aplicado apenas aos inteiros. Na pesquisa realizada, não foi encon-
trado nenhum registro sobre o uso do Algoritmo de Peletarius para raízes racionais não
inteiras. No entanto, buscando a possibilidade de sua aplicação à esse subconjunto
de racionais, será aqui apresentada uma definição desse algoritmo, seguida de sua
proposição e demonstração, de autoria própria, para raízes racionais não inteiras. Além
disso, será apresentado também um dispositivo prático que torna o método bastante
simples, análogo ao empregado aos inteiros e, em seguida, alguns exemplos práticos
de sua aplicação.

4.5.2 Extensão do Algoritmo de Peletarius

O Algoritmo de Peletarius permite também verificar se um certo número racional

não inteiro é uma raiz de um polinômio P (x) = 0. Ou seja, se um certo x =
d

c
for raiz

de P (x), então P

(
d

c

)
= 0.

Proposição 4.5.1. Dado o polinômio de coeficientes inteiros

P (x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a3x

3 + a2x
2 + a1x+ a0 (4.10)

e um certo polinômio Q(x) de coeficientes reais, com ∂Q(x) = n− 1, e um dado
d

c
∈ Q,

com d ∈ Z e c ∈ Z∗ e mdc(c, d) = 1. Se todos os casos a seguir ocorrerem:
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1. os inteiros d e c forem divisores dos coeficientes a0 e an de P (x), respectivamente
(d | a0 e c | an);

2. os coeficientes bi de Q(x) (com i = 0, 1, 2, 3, · · · , n− 1.) forem inteiros (bi ∈ Z) e

3. os coeficientes dominantes de P (x) e Q(x) obedecerem a relação: bn−1 =
an
c

,

então P (x) pode ser representado de modo fatorado da forma

P (x) = (c · x− d) ·Q(x). (4.11)

Ou seja, o racional
d

c
será uma raiz de P (x).

A seguir, será apresentada a sua demonstração e alguns exemplos práticos de
sua aplicação.

4.5.3 Demonstração do Algoritmo de Peletarius para Raízes Racionais

Demonstração. Considere o polinômio P (x) de coeficientes inteiros, conforme Equação
4.10 e o polinômio

Q(x) = bn−1x
n−1 + bn−2x

n−2 + · · ·+ b3x
3 + b2x

2 + b1x+ b0, (4.12)

de coeficientes reais.

Considere também um certo binômio não unitário

G(x) = c · x− d (4.13)

com coeficiente líder e termo independente c e d, respectivamente, inteiros. Tome que
P (x) pode ser reescrito em função de G(x) e Q(x), conforme

P (x) = G(x) ·Q(x) = 0. (4.14)

Com isso, substituindo as Equações 4.13 e 4.12 na Equação 4.14, temos que

P (x) = (c · x− d) · (bn−1x
n−1 + bn−2x

n−2 + · · ·+ b2x
2 + b1x+ b0) = 0. (4.15)

Desenvolvendo o produto da Equação 4.15, temos que

P (x) = cbn−1x
n−dbn−1x

n−1+cbn−2x
n−1−· · ·−db2x

2+cb1x
2−db1x+cb0x−db0 = 0. (4.16)
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Agrupando os termos semelhantes da última igualdade, temos

P (x) = cbn−1x
n+(cbn−2−dbn−1)x

n−1+ · · ·+(cb1−db2)x
2+(cb0−db1)x−db0 = 0. (4.17)

Pela identidade de Polinômios, comparando as Equações 4.10 e 4.17, temos as
seguintes relações: 

an = c · bn−1

an−1 = c · bn−2 − d · bn−1

an−2 = c · bn−3 − d · bn−2

...
a2 = c · b1 − d · b2
a1 = c · b0 − d · b1
a0 = −d · b0

. (4.18)

Isolando os coeficientes de Q(x), temos o seguinte:

bn−1 =
an
c

bn−1 =
c · bn−2 − an−1

d

bn−2 =
c · bn−3 − an−2

d...

b2 =
c · b1 − a2

d

b1 =
c · b0 − a1

d
b0 = −a0

d

. (4.19)

De 4.18 observa-se que o termo independente d de G(x) é necessariamente
um divisor de a0, assim como o coeficiente líder c é de an. Portanto, como já tratado
na Seção 4.2, temos que, por definição, necessariamente bi ∈ Z. Com isso, se em
qualquer uma das operações em 4.19 surgir algum bi /∈ Z (com i = 0, 1, 2, 3, · · · ),

pode-se concluir que P

(
d

c

)
̸= 0. Ou seja, x =

d

c
não é raiz de P (x).

Se mesmo que todos os coeficientes bi de Q(x) forem inteiros, mas se o seu

coeficiente líder for diferente de
an
c

, ou seja, c · bn−1 ̸= an, ainda pode-se concluir que
d

c
não é raiz de P (x). ■

Portanto, ficando então demonstrado o Algoritmo de Peletarius, aplicado a
Raízes Racionais.
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4.5.4 Dispositivo prático do Algoritmo de Peletarius para Raízes Racionais

A seguir, será ilustrado um dispositivo prático de execução desse método para
raízes racionais, similar ao utilizado para raízes inteiras.

Para tal, seja
d

c
, (c, d) = 1, uma suposta raiz de um polinômio P (x) de coeficien-

tes inteiros ai com termo independente a0 e coeficiente líder an. Considere que d | a0 e
c | an. Dispondo os coeficientes de P (x) no dispositivo prático, temos:

Figura 9 – Alocação dos coeficientes de P (x) e da suposta raiz
d

c
no dispositivo do Algoritmo

de Peletarius

an an−1 an−2 · · · a2 a1 a0 x
d

c

Fonte: Elaborado pelo autor .

Em sequência, inicia-se o processo determinando b0 =
−a0
d

de Q(x). Com isso,
o quadro da Figura 9 se apresenta da seguinte forma:

Figura 10 – Determinação de b0 de Q(x).

an an−1 an−2 · · · a2 a1 a0 x

b0︸︷︷︸
−a0
d

d
c

Fonte: Elaborado pelo autor .

Para completar o quadro, utiliza-se as relações determinadas em 4.19. Com
isso, tem-se o seguinte quadro conforme Figura 11.

Figura 11 – Alocação dos coeficientes bi de Q(x) e da suposta raiz d
c no dispositivo do

Algoritmo de Peletarius

an an−1 an−2 · · · a2 a1 a0 x

bn−1︸︷︷︸
an
c
=

c·bn−2−an−1
d

bn−2︸︷︷︸
c·bn−3−an−2

d

· · · b2︸︷︷︸
c·b1−a2

d

b1︸︷︷︸
c·b0−a1

d

b0︸︷︷︸
−a0
d

d
c

Fonte: Elaborado pelo autor .
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Finalmente, se ao final do processo surgir que bn−1 ̸=
an
c

, pode-se afirmar que
d

c
não é raiz de P (x). Assim como para raízes inteiras, esse dispositivo é bastante

vantajoso para um rápido processo de verificação de raízes racionais de uma equação
algébrica de coeficientes inteiros. Pois, constatando que algum bi /∈ Z, o processo pode
ser imediatamente abandonado. Além disso, ao encontrar uma raiz, o processo pode
ser prosseguido para outras possíveis candidatas a raiz, aplicado ao polinômio Q(x)

obtido.

4.5.5 Aplicação do Algoritmo de Peletarius para Raízes Racionais

Visando exemplificar o uso prático desse dispositivo, serão usadas expressões
polinomiais de coeficientes inteiros, definições, conceitos e técnicas relacionadas às
expressões polinomiais até então abordadas.

Exemplo 4.4. Dado o polinômio P (x) = 8x5 − 54x4 − 69x3 − 78x2 − 77x− 24, determine
as suas possíveis raízes inteiras e racionais, se houver.

Solução. Apresenta-se um polinômio de grau 5 (possui cinco raízes) e não unitário
(a5 = 8). Portanto, como já discutido na Seção 2.5.6, como o coeficiente líder é diferente
de 1, podemos afirmar que P (x) não possui apenas raízes inteiras. Para encontrar as
possíveis raízes candidatas de P (x), utilizaremos o Teorema das Raízes Racionais.
Para tal, devemos observar que se P (x) possuir alguma raiz racional, ela é da forma
x =

p

q
, onde p pertence ao conjunto dos divisores de a0 = −24 e q pertence ao conjunto

dos divisores de a5 = 8. Os divisores de 24 são: {±1,±2,±3,±4,±6,±8,±12,±24} e
os divisores de 8 são: {±1,±2,±4,±8}. Logo, as possíveis raízes racionais de P (x)

são:
{
± 1

8
,±1

4
,±3

8
,±1

2
, ±3

4
,±1,±2,±3,±4,±6,±8, ±12,±24

}
.

Visando diminuir o intervalo onde se encontram tais raízes, utilizaremos o Mé-
todo de Laguerre, tratado na Seção 2.5.7.1. Para tal, com o auxílio do DBF, buscaremos
encontrar a cota superior L.

8 −54 −69 −78 −77 −24

1 8 −
...

... −
7 8 2 −
8 8 10 11 10 3 0

9 8 + + + + +

.

De acordo com o quadro acima, segue que L = 9 e {8} é uma das raízes de
P (x), já que o resto da divisão é zero.
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Para a determinação da cota inferior l, temos que a transformada de P (x) = 0 é:

P (−x) = 8x5 + 54x4 − 69x3 + 78x2 − 77x+ 24.

Organizando os seus coeficientes no DBR, temos:

8 54 −69 78 −77 24

1 8 62 −
2 8 70 71 220 + +

.

Portanto, temos que l = −2 é cota inferior do procurado intervalo. Logo, −2 <

x < 9. Diante disso, temos que as possíveis soluções de P (x) = 0 se reduz ao conjunto:{
± 1

8
,±1

4
,±1

2
,±3

8
,±3

4
,±1, 2, 3, 4, 6, 8

}
.

Buscando reduzir ainda mais o conjunto das candidatas a raízes, utilizaremos
as Regras de Exclusão de Newton, abordada na Seção 3.1, para tal fim. Para isso,
temos que P (1) = −294 e P (−1) = −18, onde os seus conjuntos de divisores naturais
são {1, 2, 3, 6, 7, 14, 21, 42, 49, 147, 98, 294} e {1, 2, 3, 6, 9, 18}, respectivamente.

Para x = −1

8
,±1

4
,±3

8
,
3

4
,±3,±4,±6, os resultados dessas operações, realiza-

das com esses números, aplicadas as Regras de Exclusão de Newton, não dividem
P (1) ou P (−1) ou ambos. Logo, o conjunto das prováveis candidatas a raízes é reduzido

aos elementos:
{
1

8
,±1

2
,−3

4
,±2, 8

}
.

Buscando agora comprovar se esses números são realmente raízes de P (x),
usaremos o Algoritmo de Peletarius. A verificação será realizada inicialmente com
as candidatas a raízes inteiras, pois, caso se comprovando ser raiz, o procedimento
pode ser continuado com o polinômio quociente, ao qual os cálculos irão diminuindo,
tendo em vista a redução do grau do polinômio dividendo. Montando o quadro com os
coeficientes de P (x) e começando para x = −2, temos:

8 −54 −69 −78 −77 −24 x

−2
.

Executando o algoritmo, temos o seguinte quadro:

b0 =
−(−24)

−2
= −12 ∈ Z; b1 =

−12− (−77)

−2
= −65

2
/∈ Z.
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8 −54 −69 −78 −77 −24 x

−65
2

−12 −2
.

Como
−65

2
/∈ Z, podemos concluir que P (−2) ̸= 0. Logo, {−2} não é raiz de

P (x).

Testando para x = 2, temos o seguinte quadro:

8 −54 −69 −78 −77 −24 x

−65
2

−12 −2
89
2

12 2

.

Como b1 =
89

2
/∈ Z, pose-se afirmar que {2} também não é raiz de P (x).

Montando o quadro para x = 8 e executando o algoritmo, temos:

8 −54 −69 −78 −77 −24 x

−65
2

−12 −2
89
2

12 2

8 10 11 10 3 8

.

Com isso, temos que para as supostas raízes inteiras apontadas, a única verda-
deira corresponde a x = 8, como já comprovado anteriormente. Observa-se também
que o coeficiente líder do polinômio quociente Q(x) = 8x4 + 10x3 + 11x2 + 10x+ 3 = 0

é o mesmo de P (x). Ou seja, a5 = b4 = 8. Como P (x) é de grau 5, o mesmo possui 5
raízes, onde apenas uma delas é inteira.

Agora, buscando comprovar a veracidade das raízes racionais não inteiras,
usaremos também o Algoritmo de Peletarius para raízes dessa natureza. Portanto,
continuando com o quadro, testaremos as supostas raízes com o polinômio quociente

encontrado com x = 8. Iniciaremos o teste para x = −1

2
. Para isso, temos:

8 −54 −69 −78 −77 −24 x

8 10 11 10 3 8

4︸︷︷︸
8
2
= 2·3−10

−1

3︸︷︷︸
2·4−11

−1

4︸︷︷︸
2·3−10

−1

3︸︷︷︸
−3
−1

−1

2

.
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Portanto, segue então que
{
− 1

2

}
é uma raiz racional de P (x) = 0.

Testando agora para x =
1

2
, temos o seguinte:

8 −54 −69 −78 −77 −24 x

8 10 11 10 3 8

4 3 4 3 −1
2

−23︸︷︷︸
4
2
̸= 2·(−10)−3

1

−10︸︷︷︸
2·(−3)−4

1

−3︸︷︷︸
−3
1

1

2

.

Como −23 ̸= 4

2
= 2, pode-se concluir que P

(
1
2

)
̸= 0. Logo, não sendo uma das

raízes de P (x).

Verificando para x = 1
8
, não há a necessidade de testarmos no dispositivo prático

do algoritmo de Peletarius, tendo em vista que a condição c | an não é atendido. Pois,

como an = a3 = 4 e c = 8, tem-se que
4

8
=

1

2
/∈ Z. Portanto,

{
1

8

}
também não é raiz de

P (x).

Por fim, testando agora para x = −3

4
, temos o seguinte quadro:

8 −54 −69 −78 −77 −24 x

8 10 11 10 3 8

4 3 4 3 −1
2

−23 −10 −3 1
2

1︸︷︷︸
4
4
= 4·0−3

−3

0︸︷︷︸
4·1−4
−3

1︸︷︷︸
−3
−3

−3

4

.

Portanto, temos que
{
− 3

4

}
é uma das raízes de P (x) e o polinômio quociente

resultante Q(x) = x2 + 1.

Por fim, temos que P (x) = 0 possui como conjunto-solução, em Q, S ={
8,−1

2
,−3

4

}
. Com isso, podemos reescrevê-lo de modo fatorado como:

P (x) = 8 · (x− 8) ·
(
x+

1

2

)
·
(
x+

3

4

)
· (x2 + 1).



Capítulo 4. O Algoritmo de Peletarius 85

Como visto em 2.22, observa-se no polinômio Q(x) que ∆ = 02−4 ·1 ·1 = −4 < 0.
Com isso, temos que as suas outras duas raízes restantes não pertencem ao conjunto
dos números reais.

Exemplo 4.5. Dado polinômio P (x) = 900x6 + 180x5 − 397x4 − 65x3 + 51x2 + 5x− 2,
quais as suas raízes racionais, se existir?

Solução. O polinômio em questão apresenta, no primeiro momento, um certo grau de
dificuldades; tendo em vista que o seu grau é 6 (possui seis raízes) e o seu coeficiente
líder é 900. Logo, suas supostas raízes, se existir, não são apenas inteiras. Para exibir
tais raízes, buscaremos primeiramente definir as suas possíveis raízes racionais da
forma x =

p

q
utilizando o Teorema das Raízes Racionais, tratado na Seção 2.5.6. Como

a6 = 900 é seu coeficiente líder e a0 = −2 o seu termo independente, temos que p corres-
ponde aos divisores de a0 e q aos de a6. Os divisores de −2 são: {±1,±2}. Os divisores
de 900 são: {±1,±2,±3,±4,±5,±6,±9,±10,±12,±15,±18,±20,±25,±30,±36,±45,

±50,±60,±75,±90,±100,±150,±180,±225,±300,±450,±900}.

Com isso, as possíveis raízes racionais de P (x) são:
{
± 1,±1

2
,±1

3
,±1

4
,±1

5
,±1

6
,

±1
9
,± 1

10
,± 1

12
,± 1

15
,± 1

18
,± 1

20
,± 1

25
,± 1

30
,± 1

36
,± 1

45
,± 1

50
,± 1

60
,± 1

75
,± 1

90
,± 1

100
,± 1

150
,± 1

180
,

± 1
225

,± 1
450

,± 1
900

,±2,±2
3
,±2

5
,±2

9
,± 2

15
,± 2

25
,± 2

45
,± 2

75
,± 2

225

}
.

Visando diminuir o intervalo onde se encontram as possíveis raízes de P (x),
não há a necessidade de usar o Método de Laguerre, pois observa-se que as mesmas
encontram-se no intervalo −2 ≤ x ≤ 2. Portanto, suas possíveis raízes inteiras é
para x = ±1 e x = ±2. Para x = 1 temos que P (1) = 672 ̸= 0 e para x = −1,
P (−1) = 432 ̸= 0. Por conseguinte, ambos não são raízes. Utilizando o Algoritmo de
Peletarius para testar se x = ±2 são raízes, temos o seguinte:

900 180 −397 −65 51 5 −2 x

−89
2

24 3 −1 −2

−53
2

−2 1 2

.

Observa-se que x = −2 não é raiz de P (x), já que b3 = −89
2

/∈ Z. Da mesma
forma para x = 2, pois b2 = −53

2
/∈ Z. Portanto, podemos concluir que o presente

polinômio não possui raiz inteira e as demais raízes são possivelmente racionais e
encontra-se no intervalo −1 < x < 1. Buscando agora reduzir o campo de busca dessas
raízes, serão utilizadas as Regras de Exclusão de Newton para raízes racionais, tratado
na Seção 3.1.

Para facilitar os cálculos, para P (1) = 672, os seus divisores naturais são
{1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 32, 42, 48, 56, 84, 96, 112, 168, 224, 336, 672}.
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E para P (−1) = 432, seus divisores naturais são {1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27,
36, 48, 54, 72, 108, 144, 216, 432}.

Logo, para x = ±1
4
,±1

6
,±1

9
,± 1

10
,± 1

12
,− 1

15
,± 1

18
,± 1

20
,± 1

25
,± 1

30
,± 1

36
,± 1

45
,± 1

50
,± 1

60
,

± 1
75
,± 1

90
,± 1

100
,± 1

180
,± 1

225
,± 1

450
,± 1

900
,±2

3
, 2
5
,±2

9
,± 2

15
,± 2

25
,± 2

45
,± 2

75
,± 2

225
, os resultados

obtidos pela aplicação das Regras de Exclusão de Newton a esses números, não divi-
dem P (1) ou de P (−1) ou ambos.

Com isso, restam apenas como possíveis raízes de P (x) os números
{
± 1

2
,

±1
3
,±1

5
, 1
15
,−2

5

}
. Para isso, utilizaremos o Algoritmo de Peletarius para Raízes Racio-

nais, para testar se esses números são realmente raízes de P (x).

Começando para x =
1

2
temos:

900 180 −397 −65 51 5 −2 x

450︸︷︷︸
900
2

= 2·315−180
1

315︸︷︷︸
2·(−41)−(−397)

1

−41︸︷︷︸
2·(−53)−(−65)

1

−53︸︷︷︸
2·(−1)−51

1

−1︸︷︷︸
2·2−5

1

2︸︷︷︸
−(−2)

1

1

2
.

De acordo com o quadro acima,
{

1
2

}
é raiz de P (x) = 0.

Testando agora para
{
− 1

2

}
, temos:

900 180 −397 −65 51 5 −2 x

450 315 −41 −53 −1 2 1
2

225︸︷︷︸
450
2

= 2·45−315
−1

45︸︷︷︸
2·(−43)−(−41)

−1

−43︸︷︷︸
2·(−5)−(−53)

−1

−5︸︷︷︸
2·2−(−1)

−1

2︸︷︷︸
−2
−1

−1

2

.

Com isso, temos que
{
− 1

2

}
também é uma das raízes do presente polinômio.

Verificando para x = −2

5
, temos o seguinte quadro:

900 180 −397 −65 51 5 −2 x

450 315 −41 −53 −1 2 1
2

225 45 −43 −5 2 −1
2

45︸︷︷︸
225
5

=
5·(−9)−45

−2

−9︸︷︷︸
5·(−5)−(−43)

−2

−5︸︷︷︸
5·1−(−5)

−2

1︸︷︷︸
−2
−2

−2

5

.
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Com isso, comprova-se que
{
− 2

5

}
é também raiz do polinômio.

Averiguando agora para x = −1

5
, temos a seguinte situação:

900 180 −397 −65 51 5 −2 x

450 315 −41 −53 −1 2 1
2

225 45 −43 −5 2 −1
2

45 −9 −5 1 −2
5

41︸︷︷︸
45
5
̸= 5·(−10)−(−9)

−1

−10︸︷︷︸
5·1−(−5)

−1

1︸︷︷︸
−1
−1

−1

5

.

Como 41 ̸= 45

5
= 9, segue que

{
− 1

5

}
não é raiz de P (x).

Buscando comprovar para
1

15
, temos:

900 180 −397 −65 51 5 −2 x

450 315 −41 −53 −1 2 1
2

225 45 −43 −5 2 −1
2

45 −9 −5 1 −2
5

41 −10 1 −1
5

−141︸ ︷︷ ︸
45
15

̸= 15·(−10)−(−9)
1

−10︸︷︷︸
15·(−1)−(−5)

1

−1︸︷︷︸
−1
1

1

15

.

Como −141 ̸= 45

15
= 3, segue que

{
1

15

}
não é raiz de P (x).

Testando para x =
1

5
, temos:

900 180 −397 −65 51 5 −2 x

450 315 −41 −53 −1 2 1
2

225 45 −43 −5 2 −1
2

45 −9 −5 1 −2
5

41 −10 1 −1
5

−141 −10 −1 1
15

9︸︷︷︸
45
5
=

5·0−(−9)
1

0︸︷︷︸
5·(−1)−(−5)

1

−1︸︷︷︸
−1
1

1

5

.
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Logo,
{
1

5

}
é também raiz do polinômio em questão.

Buscando testar se
{
− 1

3

}
é também raiz, temos:

900 180 −397 −65 51 5 −2 x

450 315 −41 −53 −1 2 1
2

225 45 −43 −5 2 −1
2

45 −9 −5 1 −2
5

41 −10 1 −1
5

−141 −10 −1 1
15

9 0 −1 1
5

3︸︷︷︸
9
3
=

3·(−1)−0
−1

−1︸︷︷︸
−(−1)
−1

−1

3

.

Verifica-se que x = −1

3
é também uma das raízes racionais do polinômio.

Por fim, testando agora para x =
1

3
, temos:

900 180 −397 −65 51 5 −2 x

450 315 −41 −53 −1 2 1
2

225 45 −43 −5 2 −1
2

45 −9 −5 1 −2
5

41 −10 1 −1
5

−141 −10 −1 1
15

9 0 −1 1
5

3 −1 −1
3

1︸︷︷︸
3
3
=

−(−1)
1

1

3

.

Com isso, temos então a constatação de que
{
1

3

}
é a última raiz procurada.

Portanto, as raízes do polinômio P (x) = 900x6+180x5−397x4−65x3+51x2+5x−2

são
{
± 1

2
,±1

3
, 1
5
,−2

5

}
.
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Com isso, segue que sua forma fatorada ou decomposta é:

P (x) = 900 ·
(
x− 1

2

)
·
(
x+

1

2

)
·
(
x− 1

3

)
·
(
x+

1

3

)
·
(
x− 1

5

)
·
(
x+

2

5

)
.

Logo, todas as suas raízes são racionais.
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5 HYBRITARIUS®: MODELO HÍBRIDO PARA A DETERMINAÇÃO DE RAÍZES
RACIONAIS EM POLINÔMIOS DE COEFICIENTES INTEIROS

A seguir, será apresentado o aplicativo educacional Hybritarius® que implementa
uma solução computacional, integrando os métodos do Algoritmo de Peletarius e as
Regras de Exclusão de Newton, para a identificação de raízes racionais em polinômios
de coeficientes inteiros. Desenvolvido sob a proposta de auxiliar no ensino de álgebra
no Ensino Médio e em cursos de Análise Numérica. Com uma interface intuitiva, o
aplicativo é implementado em linguagem R e gera relatórios automatizados em LATEX.

O aplicativo consiste em exibir, através de um relatório automatizado, as raízes
racionais (inteiras e racionais não inteiras), dados os coeficientes de um determinado
polinômio. Além disso, identificando a existência de tais raízes, o Hybritarius® exibe o
polinômio em questão em sua forma fatorada. Caso o polinômio possua não somente
raízes racionais, o aplicativo exibe o polinômio quociente ao qual encontram-se as
demais raízes (irracionais ou complexas). Por fim, caso o polinômio não possua raízes
racionais, o Hybritarius® aponta tal característica.

Para isso, apresentando os coeficientes do polinômio P (x) proposto, o aplicativo
segue o seguinte roteiro para identificar as suas possíveis raízes racionais:

1. Determinação do conjunto Ω que contém as suas candidatas a raízes racionais,
através do Teorema das Raízes Racionais, tratado na Seção 2.5.6.

2. Delimitação de Ω através da redução do intervalo onde se encontram as ver-
dadeiras raízes de P (x), utilizando o Método de Laguerre, tratado na Seção
2.5.7.1.

3. Exclusão das improváveis raízes de P (x), através das Regras de Exclusão de
Newton (tratadas no Capítulo 3), aplicadas as candidatas inteiras e racionais não
inteiras, e reduzindo os elementos de Ω.

4. Aplicação do Algoritmo de Peletarius, inicialmente nas candidatas a raízes inteiras,
através do método tratado no Capítulo 4, reduzindo assim o conjunto Ω e também
o grau do polinômio quociente; tornando os cálculos mais simples.

5. Reaplicação do algoritmo de Peletarius nas raízes inteiras identificadas a fim de
encontrar possíveis multiplicidade de raízes, conforme tratado na Seção 2.5.4.2.

6. Execução do Algoritmo de Peletarius para as raízes racionais não inteiras, tratado
na Seção 4.5.
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7. Reaplicação do algoritmo nas raízes racionais não inteiras, buscando encontrar
possíveis raízes múltiplas.

8. Exibição de um relatório automatizado em LATEX, elencando as raízes racionais de
P (x) (se houver), assim como a sua representação na forma fatorada, conforme
tratado na Seção 2.5.4.

A Figura 12 abaixo ilustra o fluxograma dos processos realizados pelo Hybritarius®.

Figura 12 – Fluxograma dos processos executados pelo aplicativo Hybritarius® para
determinar as raízes racionais x de uma equação polinomial P (x).

Começo
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de ?
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Sim
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Fonte: Elaborado pelo autor.

Para iniciar o Hybritarius®, é necessário apenas inserir os coeficientes inteiros
do polinômio P (x) ao qual deseja-se investigar. Feito isso, o aplicativo automaticamente
emite através de um relatório, as suas raízes inteiras e racionais não inteiras (caso as
possua) e a forma fatorada do polinômio investigado, conforme o TFA.
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Para ilustrar o funcionamento do aplicativo, vamos usar o polinômio P (x) =

6x4 − 7x3 − 37x2 + 8x+ 12 como exemplo.

Após inserir os coeficientes de P (x) (6,−7,−37, 8, 12) no prompt de comando, o
Hybritarius® emite o seguinte relatório, conforme explicado através das figuras abaixo:

Figura 13 – Capa do Relatório Automatizado em LATEX, emitido pelo Hybritarius® com as
informações específicas de apresentação.

Fonte: Hybritarius®.

A Figura 13 acima ilustra a capa do Relatório Automatizado em LATEX, emitido
pelo Hybritarius® trazendo informações prévias de apresentação do Aplicativo como
autores e N° de registro no INPI, por exemplo.
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A seguir, tem-se a Figura 14 ilustrando o Certificado de Registro de Programa
de Computador do Hybritarius® junto ao Instituto Nacional da Propriedade Industrial -
INPI, sob o N° BR512025002351-0.

INSTITUTO NACIONAL DA PROPRIEDADE INDUSTRIAL
MINISTÉRIO DO DESENVOLVIMENTO, INDÚSTRIA, COMÉRCIO E SERVIÇOS

REPÚBLICA FEDERATIVA DO BRASIL

DIRETORIA DE PATENTES, PROGRAMAS DE COMPUTADOR E TOPOGRAFIAS DE CIRCUITOS

Certificado de Registro de Programa de Computador

Processo Nº: BR512025002351-0

O Instituto Nacional da Propriedade Industrial expede o presente certificado de registro de programa de
computador, válido por 50 anos a partir de 1° de janeiro subsequente à data de 21/05/2025, em conformidade com o
§2°, art. 2° da Lei 9.609, de 19 de Fevereiro de 1998.

Título: Hybritarius - Sistema computacional para determinação de raízes racionais em polinômios de coeficientes
inteiros com base nos métodos: Laguerre, Algoritmo de Peletarius e Regras de Exclusão de Newton

Data de publicação: 21/05/2025

Data de criação: 02/01/2025

Titular(es): ANTONIO ALISSON PESSOA GUIMARÃES

Autor(es): ANTONIO ALISSON PESSOA GUIMARÃES; FRANCISCO FÁBIO SALES DE ALMEIDA

Linguagem: R; OUTROS

Campo de aplicação: ED-04; MT-02

Tipo de programa: AP-01; DS-05; FA-01; TC-01

Algoritmo hash: SHA-512

Resumo digital hash:
5c724c98a6638d5b30bbfd028c255197775e9141dc9fcbf983d40be9c75499e7bb21f4ef87318e780e5ac388d2d1835496
80aa0bff35bc96f0438c95d283bf2f

Expedido em: 10/06/2025

Aprovado por:
Carlos Alexandre Fernandes Silva

Chefe da DIPTO

Figura 14 – Certificado de Registro do Hybritarius® junto ao INPI.
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A Figura 15 ilustra as informações preliminares do polinômio P (x) proposto,
como a sua representação, conforme Equação 2.21, e a delimitação do intervalo das
suas possíveis raízes racionais pelo Método de Laguerre. São ilustradas as Tabelas
1 e 2 que contemplam os seus limites superiores e inferiores, respectivamente, que
contém tais supostas raízes. Ou seja, o intervalo na reta real onde essas raízes se
encontram (caso existam).

Figura 15 – Informações preliminares do polinômio proposto, emitido pelo Hybritarius® com as
informações específicas de P (x).

Fonte: Hybritarius®.

A Figura 16 abaixo ilustra os conjuntos das possíveis raízes inteiras Ωi e racio-
nais não-inteiras Ωr do polinômio proposto.
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Figura 16 – Ωi e Ωr de P (x), emitido pelo Hybritarius®.

Fonte: Hybritarius®.

A seguir tem-se a Figura 17 esboçando o Algoritmo de Peletarius aplicado às
possíveis raízes inteiras de P (x) que pertencem ao conjunto Ωi.

Figura 17 – Algoritmo de Peletarius aplicado aos elementos do conjunto Ωi, a distribuição das
raízes inteiras de P (x) e a sua decomposição em relação a essas raízes.

Fonte: Hybritarius®.
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Além disso, a figura traz também a distribuição dessas raízes quanto a sua
multiplicidade e a decomposição prévia de P (x) em relação a essas raízes.

A Figura 18 ilustra a execução do algoritmo das Regras de Exclusão de Newton
aplicadas ao conjunto Ωr, onde excluem-se as improváveis candidatas a raízes de
P (x) e, com isso, determinando o conjunto das possíveis raízes racionais não inteiras
remanescentes Ω

(rem)
r .

Figura 18 – As Regras de Exclusão de Newton aplicadas aos elementos do conjunto Ωr e a
determinação do conjunto Ω

(rem)
r .

Fonte: Hybritarius®.

Por fim, tem-se a Figura 19 que ilustra a execução do Algoritmo de Peletarius
para as raízes racionais não inteiras, aplicado aos elementos do conjunto Ω

(rem)
r . Além

dessas informações, o relatório também traz a distribuição dessas raízes quanto a
sua multiplicidade e a decomposição final do polinômio P (x), conforme o Teorema
Fundamental da Álgebra.
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Figura 19 – O Algoritmo de Peletarius para raízes racionais não inteiras, distribuição dessas
raízes quanto as suas multiplicidades e a decomposição final de P (x).

Fonte: Hybritarius®.
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6 CONCLUSÕES E PERSPECTIVAS FUTURAS

Este capítulo resume os principais apontamentos obtidos neste trabalho, des-
tacando as contribuições resultantes da pesquisa e também apresentam-se algumas
perspectivas de novas direções de pequisas na área de ensino de matemática.

6.1 CONCLUSÕES

A presente pesquisa nos remete a uma pergunta em relação às Regras de
Exclusão de Newton (REN) e ao Algoritmo de Peletarius (AP): “Por que esses métodos
não mais figuram nos atuais livros didáticos de Matemática?”.

Para buscar responder a essa indagação em relação ao AP, vem em mente
dois possíveis motivos de cunho prático. O primeiro seria pelo fato do Dispositivo
de Briot-Ruffini (DBR) apresentar operações aritméticas mais simples de serem exe-
cutadas pelos estudantes em seu algoritmo. Pois, como visto, no AP as operações
envolvidas são a subtração e a divisão. Enquanto que no DBR, envolvem operações de
multiplicação e adição. Pois, segundo dados do Programme for International Student
Assessment - PISA, realizado em 2022 e divulgados em 2023, cerca de 70% das cri-
anças e adolescentes brasileiros possuem dificuldades básicas em Matemática. Esse
dado corrobora com um fato que é de conhecimento comum entre os professores de
matemática do Ensino Fundamental II (6° ao 9° ano) e Ensino Médio que é também
sustentado por Lautert (2005) e Mello (2008), ao qual a maioria dos estudantes da
Educação Básica apresentam dificuldades com a subtração e/ou a divisão.

Outro ponto que torna o DBR mais “popular” que o AP é a divisão de Polinômios.
Pois, na divisão de um certo polinômio f por um binômio g = ax+ b, o DBR, além de
apontar o polinômio quociente q, esse método aponta também o polinômio do resto r,
conforme equação f = q · g + r. Já com o AP, o polinômio q só é figurado se a divisão
em questão for exata. Ou seja, r = 0.

No entanto, o AP apresenta uma grande vantagem em relação ao DBR na
verificação se um determinado racional d é ou não raiz de um certo polinômio P (x).
Pois, se no decorrer do processo de execução do algoritmo nos depararmos com
qualquer resultado não inteiro, o ensaio pode ser abandonado. Ou seja, d não é raiz de
P (x). Há de se observar que se mesmo os resultados encontrados sejam inteiros, os
coeficientes dominantes dos polinômios P (x) e quociente necessariamente precisam
coincidirem. Assim como o DBR, encontrada uma raiz, o processo pode ser continuado
com outras possíveis raízes d de P (x) com os coeficientes do polinômio quociente
obtido.
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Em relação às REN, observa-se que as mesmas não apresentam maiores
complexidades de sua aplicação ou execução, tendo em vista que seu mecanismo
consiste praticamente em comparar se a soma e a subtração de dois inteiros é dividível
por P (−1) e P (1) de P (x), respectivamente.

Em relação ao Hybritarius®, o mesmo se apresenta como uma promissora opção
de instrumento educacional de auxílio nas aulas de Álgebra. Sua interface é bastante
simples de ser utilizada e os seus resultados são precisos e esclarecedores, graças
aos seus relatórios automatizados emitidos em LATEX. Sua aplicação em linguagem R
pode ser executada em qualquer ambiente computacional e sem a necessidade de
rede de internet, desde que as máquinas possuam o aplicativo previamente instalado.

Por fim, as Regras de Exclusão de Newton e o Algoritmo de Peletarius são
técnicas que, outrora, foram bastante usadas nas aulas de Matemática em décadas
passadas, mas que se apresentam com um grande potencial de reuso nas atuais
atividades docentes que envolvem a Álgebra. Combinados às técnicas do Teorema
das Raízes Racionais para determinar o conjunto-solução ao qual encontram-se as
possíveis raízes racionais de um certo polinômio de coeficientes inteiros e ao Método
de Laguerre para restringir esse conjunto; essas técnicas se apresentam como uma
grande proposta no campo do ensino da Álgebra nas turmas de Ensino Médio e, porque
não dizer, no Ensino Superior.

6.2 PERSPECTIVAS FUTURAS

Como proposta de estudos futuros, podemos buscar aprofundar essa mesma
linha de pesquisa a aplicação do Algoritmo de Peletarius na sala de aula, nas turmas de
3° ano do Ensino Médio, etapa onde o estudo do Conjuntos dos Números Complexos e
Polinômios são mais evidentes.

Para tal, pode ser realizado uma pesquisa investigativa comparando os métodos
do Dispositivo de Briot-Ruffini e do Algoritmo de Peletarius e buscar perceber, de modo
mais prático, os possíveis reais motivos da desutilidade do método desenvolvido por
Peletier no decorrer do tempo. O mesmo se aplica às Regras de Exclusão de Newton e
também ao Método de Laguerre. Pois esse método se mostrou bastante eficiente para
a limitação do intervalo real onde se encontram, não só as possíveis raízes racionais
de uma equação polinomial, mas também as suas possíveis raízes irracionais. Conse-
quentemente, de posse de tais dados, espera-se compreender também as possíveis
causas que culminaram para a não publicação desses métodos pelos contemporâneos
autores de livros didáticos de Matemática contemplados pelo PNLD.
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Em relação ao Hybritarius®, o programa computacional pode ser expandido
e, com isso, ser desenvolvido para outras plataformas digitais, como por exemplo,
aplicativos executáveis no sistema operacional Android para dispositivos portáteis. Pois,
pelo menos no Estado do Ceará, através da Lei Nº 17.347 de 11 de dezembro de
2020 que autoriza o poder executivo estadual a adquirir e distribuir Tablets a alunos do
Ensino Público Superior e da Rede Estadual de Ensino, a maioria dos estudantes do
Ensino Médio possuem tal equipamento com possibilidades de uso em sala de aula.

Além dessas perspectivas, há carência de se pesquisar outros promissores con-
ceitos e métodos, também esquecidos e não mais trabalhados nas aulas de Matemática
da Educação Básica e Superior. Ao identificá-los, buscar compreender os possíveis
motivos que os levaram a não mais participarem dos conteúdos programáticos das
aulas de Matemática, principalmente nos cursos de licenciatura.
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