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RESUMO

Este trabalho apresenta o uso de invariantes matemaéticos e dos elementos extremos na re-
solugdo de problemas de olimpiadas nacionais de nivel basico OBM (Olimpiada Brasileira
de Matemaética), OBMEP (Olimpiada Brasileira de Matematica das Escolas Publicas e
Privadas) e OCM (Olimpiada Cearense de Matematica). Os invariantes sdo propriedades
que se mantém inalteradas sob transformacoes e mostram-se ferramentas poderosas em
combinatoria, teoria dos nimeros, teoria dos grafos, dlgebra e geometria. O principio
do extremo é uma estratégia eficaz para problemas com multiplos elementos e definidos
em conjuntos finitos. O método consiste em identificar elementos extremos (maximos
ou minimos) em conjuntos ordenados, explorando suas restri¢oes naturais. Esta disserta-
¢ao ressalta como esses conceitos fundamentam demonstracoes por inducgao e contradicao,
revelando estruturas essenciais em problemas olimpicos. Os problemas envolvendo o Prin-
cipio da Invariancia e do Elemento Extremo exigem nao apenas raciocinio combinatorio,
mas também criatividade e conhecimentos de diversas areas da Matematica. Como es-
ses principios nao possuem formulas prontas, sua aplicacao requer a combinacdo com
argumentos aritméticos, algébricos, geométricos e outros. Os problemas olimpicos apre-
sentados nesta pesquisa ilustram a variedade de situacoes em que esses conceitos podem
ser aplicados. Contudo, por se tratarem de questoes classicas, com solugoes claras e
acessiveis, facilitam o aprendizado e a compreensao do leitor.

Palavras-chave: Invariantes Mateméticos. Principio do Extremo. Resolugao de Proble-

mas. Olimpiadas de Matemaética.



ABSTRACT

This work presents the use of mathematical invariants and extremal elements in solving
problems from basic-level national olympiads: OBM (Brazilian Mathematics Olympiad),
OBMEP (Brazilian Public and Private Schools Mathematics Olympiad), and OCM (Ceara
Mathematics Olympiad). Invariants are properties that remain unchanged under trans-
formations and prove to be powerful tools in combinatorics, number theory, graph theory,
algebra, and geometry. The extremal principle is an effective strategy for problems with
multiple elements defined on finite sets. This method involves identifying extremal ele-
ments (maximum or minimum) in ordered sets while exploiting their natural constraints.
This dissertation emphasizes how these concepts underpin proofs by induction and con-
tradiction, revealing essential structures in olympiad problems. Problems involving the
Invariance Principle and Extremal Principle require not only combinatorial reasoning but
also creativity and knowledge from various areas of Mathematics. Since these principles
don’t have ready-made formulas, their application requires combination with arithmetic,
algebraic, geometric, and other types of arguments. The olympiad problems presented
in this research illustrate the variety of situations where these concepts can be applied.
Moreover, being classical problems with clear and accessible solutions, they facilitate the

reader’s learning and understanding..

Keywords: Mathematical Invariants. Extremal Principle. Problem Solving. Mathema-

tics Olympiads.
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13
1 INTRODUCAO

Com quase 18 anos de experiéncia como professor de matemaética e tendo viven-
ciado diversas situacoes em sala de aula, pude observar o crescente papel das olimpiadas
de matematica no cenério educacional. Motivado por essa relevancia, decidi dedicar esta
dissertacao ao estudo de técnicas para resolucao de problemas olimpicos, com foco em
dois principios matematicos pouco difundidos, porém de grande importancia: o Principio
da Invariancia e o Principio do Elemento Extremo.

Embora, como aluno, eu nao tenha participado de nenhuma olimpiada na
escola, como professor pude ver os efeitos e as conquistas na vida dos alunos que se
destacam nessas competicoes. Tive a oportunidade de trabalhar como corretor regional
da OBMEP e, com isso, acompanhar a rotina de alunos medalhistas de escolas particulares
e publicas do Ceara. Foi incrivel testemunhar a transformacao em suas vidas: muitos se
tornaram mais focados nos estudos, conquistaram bolsas integrais em colégios particulares
e ingressaram em turmas olimpicas, cursos de medicina ou direito, ao lado de alunos que ja
dispunham de mais oportunidades e recursos para desenvolver seu potencial desde cedo. E
inegavel que programas como a OBMEP abrem portas para estudantes de escolas ptublicas,
permitindo que desenvolvam suas habilidades intelectuais e conquistem condi¢oes mais
igualitarias de competir por vagas nas melhores universidades, tanto no Brasil quanto no
exterior, inclusive em cursos altamente concorridos. Essa oportunidade nao sé eleva seu
desempenho académico, mas também promove uma transformacao significativa em suas
trajetorias de vida.

Para a elaboracao desta dissertacao, conduzi uma pesquisa abrangente em
obras especializadas em olimpiadas de Matematica, complementada pela consulta aos
portais oficiais da OBM, OBMEP e OCM. O objetivo consistiu em analisar materiais
pedagogicos e compilar um extenso repertério de problemas nos quais a aplicacao dos
principios em estudo demonstra eficacia comprovada. Paralelamente, realizei um levanta-
mento historico sobre as olimpiadas brasileiras de matematica, com énfase particular na
OBM, OBMEP e OCM, incluindo uma sintese de seus impactos na formacao académica
de estudantes cearenses.

O objetivo desta dissertacao é apresentar técnicas de resolucao de problemas
olimpicos que, apesar de facilmente aplicaveis, ainda sao pouco conhecidas tanto por
alunos quanto por professores que estudam matemaética e preparam estudantes para olim-
piadas. Nesse contexto, este trabalho vai abordar dois principios bésicos e relevantes para
resolver problemas olimpicos: o Principio da Invariancia e o Principio do Elemento Ex-
tremo. Como dito antes eles nao sao tao explorados quanto o Principio de Inducao, da
Boa Ordenacao ou de Dirichlet, mas sao ferramentas valiosas para resolver certos tipos
de problemas.

Esses contetidos foram selecionados justamente por dispensarem féormulas com-
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plexas ou conceitos avancados, sendo, ao mesmo tempo, muito eficazes em problemas
olimpicos. Além disso, sao acessiveis e podem ser aplicados de forma intuitiva, o que os
torna 6timos para quem esta comecando nesse universo.

Esta dissertagdo tem como objetivo explorar o Principio da Invariancia (PT)
e o Principio do Elemento Extremo (PE), oferecendo um material de apoio robusto para
professores e estudantes envolvidos com competicoes olimpicas de matemética. Nosso
trabalho busca preencher uma lacuna importante na literatura académica, ja que pou-
cos textos abordam sistematicamente esses temas. Além de apresentar os fundamentos
tedricos, propomos técnicas e métodos de treinamento especializados, desenvolvidos para
atender as particularidades do raciocinio olimpico, que exige nao apenas conhecimento
teorico aprofundado, mas também a capacidade de reconhecer padroes e aplicar estra-
tégias criativas de forma sistemética. Preparar-se para olimpiadas de matematica nao
é s6 sobre saber formulas e conceitos, é sobre desenvolver habilidades que s6 aparecem
com muita pratica. Essa constatagao remete a profunda reflexao do filosofo Aristoteles:
“Nds somos o que repetidamente fazemos. A exceléncia, portanto, nao € um ato, mas um
hdbito.”

O Principio da Invariancia é essencial na matematica olimpica por revelar pro-
priedades que permanecem inalteradas mesmo sob transformacoes, sendo aplicavel em
areas como combinatoria (para analisar configuracoes dindmicas), teoria dos nimeros
(identificando padrdes invariantes), teoria dos grafos (estudando caracteristicas preser-
vadas), algebra (simplificando estruturas) e geometria (detectando relagbes constantes).
Sua forca estd na capacidade de extrair regularidades ocultas, transformando problemas
aparentemente complexos em abordagens mais sistematicas e elegantes. Podemos citar
como exemplo bésico, a paridade de um nimero (ser par ou fmpar) é um invariante: se
um numero é par, ele continuara par mesmo quando multiplicado por outro inteiro, como
em 6 X 3 = 18. Outro exemplo comum seria o valor absoluto de um ntmero real, que nao
muda independente do sinal (| 5 |=| =5 |= 5). Ja na geometria podemos citar, a soma
dos angulos internos de um tridngulo sempre sera igual a 180° ou a area de uma figura
geométrica, que nao se altera mesmo que a figura seja movida ou girada no plano. Embora
simples, esses exemplos revelam o poder dos invariantes matematicos e como eles atuam
mesmo nas situagoes mais basicas. Temos que muitas provas por inducao ou contradicao
se baseiam em invariantes. Por isso reconhecer invariantes exige um olhar atento, e o
dominio do uso de invariantes nao apenas amplia o repertério de técnicas matematicas,
mas também fortalece a nossa capacidade de abstracao na resolucao de problemas.

Em geral quando tentamos resolver um problema, uma das principais difi-
culdades é lidar com uma grande quantidade de elementos a serem compreendidos e
acompanhados. Um problema pode envolver uma sequéncia com varios (talvez infinitos)
elementos, ou um problema de geometria pode incluir diversas linhas e formas. Assim

precisamos de um bom método para resolver problemas desse tipo que busque organizar
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essa complexidade de maneira eficaz. Uma 6tima estratégia para isso é o principio do
extremo : A ideia central é supor que os elementos do seu problema estejam ordenados.
Foque nos elementos “maior” e “menor”, pois eles frequentemente podem estar sujeitos a
restricoes interessantes.

O principio do elemento extremo é uma técnica matematica que consiste em
selecionar um objeto que atinja um valor extremo (maximo ou minimo) em relac¢ao a
uma determinada funcao ou situagao problema. A prova da propriedade desejada para
esse objeto segue ao demonstrar que qualquer pequena perturbacdo (ou varia¢do) em
sua estrutura levaria a um aumento ou diminuicao no valor da funcao, confirmando sua
eficiéncia. Além disso, o principio do elemento extremo é principalmente construtivo,
fornecendo um algoritmo para construir o objeto de resolucao. Por exemplo, em pro-
blemas de combinatéria ou geometria, escolher o ponto mais distante, o nimero maior
ou a configuracao mais simétrica pode fornecer um ponto de partida claro. O principio
funciona porque elementos extremos geralmente tém caracteristicas especiais que limitam
as possibilidades, ajudando a encontrar padroes ou contradigoes que levam a solucao.

O Capitulo 1 desta dissertacao apresenta uma breve exposi¢ao sobre as motiva-
coes que levaram a elaboragao do trabalho, bem como uma introducao ao tema proposto
para investigacao.

O capitulo 2 dessa dissertacao é dedicado a uma breve andlise historica das
olimpiadas de matemética, destacando sua evolugao, relevancia ao longo dos anos e suas
contribuicoes para a sociedade. O texto aborda especificamente as competicoes nacionais
OBM, OBMEP e OCM, explorando suas origens, reformulacoes e impactos no cenério
educacional brasileiro.

O capitulo 3 apresenta uma fundamentacao teérica sobre os Principios de In-
ducao, Boa Ordenacao e Dirichlet, essenciais para a compreensao adequada do tema
proposto. Esses principios sao extremamente necessarios na abordagem de problemas
de natureza combinatoria e discreta, fornecendo bases solidas para as demonstragoes e
técnicas discutidas posteriormente.

Os capitulos 4 e 5 focam na aplicagao pratica do Principio da Inducao (PI) e do
Principio do Elemento Extremo (PE), por meio de um conjunto selecionado de problemas.
Esses exemplos ilustram de maneira detalhada a utilizagao desses métodos, permitindo
ao leitor nao apenas observar, mas também assimilar as estratégias empregadas.

Por fim, o capitulo 6 consolida o estudo, aplicando as técnicas assimiladas na
resolugao de problemas provenientes das olimpiadas mencionadas. Essa andlise pratica
visa demonstrar a eficacia dos principios discutidos e sua relevancia em competicoes ma-
tematicas. Este capitulo também se consolida como o produto educacional central desta
dissertagao, oferecendo uma abordagem didatica e aplicada dos principios matematicos
discutidos ao longo do trabalho, para servir como um recurso valioso (material formativo)

tanto para professores, que podem utiliza-lo em sala de aula, quanto para estudantes, que
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encontrarao nele um guia claro e estimulante para o desenvolvimento do raciocinio logico

e da criatividade matemaética.
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2 PANORAMA DA OBM, OBMEP E OCM: SINTESE HISTORICA E CON-
TRIBUICOES

Desde sua criacao as olimpiadas de matemaética apresentam como valores, a
capacidade de identificar e aprimorar, nos participantes, o pensamento estratégico e a
criatividade na resolucao de problemas desafiadores. Elas atuam como laboratorios de
desenvolvimento intelectual, onde estudantes aprendem a enfrentar questdes complexas
por meio de raciocinio légico, persisténcia e abordagens inovadoras. Assim essas com-
peticoes abrangem tanto questoes estritamente matematicas quanto problemas de outras
naturezas que demandem abordagens matematicas para sua solu¢ao. Constituem um am-
biente privilegiado para o exercicio dessa habilidade, uma vez que os desafios propostos
geralmente requerem apenas conhecimentos fundamentais da disciplina.

Na verdade, a maioria das questoes pode ser resolvida com base no conhe-
cimentos do ensino basico, sem necessidade de topicos avancados como trigonometria
avancada, cédlculo diferencial ou geometria analitica. A esséncia do desafio reside nao
no dominio de conceitos sofisticados, mas sim na capacidade do estudante de articular,
aplicar e sintetizar esses conhecimentos basicos de maneira criativa e eficaz para alcancar
a solugao.

Uma observacao pertinente é que os problemas iniciais das olimpiadas guardam
semelhancas com aqueles presentes em avaliagoes educacionais internacionais, como o
PISA (Programa Internacional de Avaliacdo de Estudantes). Desse modo, a participagao
em competicoes olimpicas de mateméatica representa uma valiosa preparacao para exames
padronizados, pois desenvolve habilidades de raciocinio logico e resolucao de problemas.
Considere os seguintes exemplos:

e (PISA-2012) Uma escada de 5 metros estd apoiada em uma parede. Se a base da
escada é afastada 1 metro da parede, quanto o topo da escada desce?

e (OBMEP 2023 - Nivel 1) Um retangulo tem lados de 6 cm e 8cm. Se diminuirmos
seu maior lado em 2cm e aumentarmos o menor lado em xcm para que a area
permaneca a mesma, qual é o valor de z7

Ambos os problemas exigem a aplicacao de conceitos matematicos béasicos
(como o Teorema de Pitagoras e o célculo de area), envolvem a anélise de como uma mu-
danca afeta o sistema como um todo, e desenvolvem a capacidade de modelagem matema-
tica, demonstrando como competicoes olimpicas e avaliacoes padronizadas compartilham
objetivos pedagdgicos similares no desenvolvimento do raciocinio l6gico-matemético.

Entrando no contexto historico as Olimpifadas de Matemética, no formato
atual, tiveram origem em 1894 na Hungria, com competicoes organizadas em ambito
nacional. Progressivamente, paises do Leste Furopeu adotaram iniciativas semelhantes,
culminando na primeira Olimpiada Internacional de Matematica (IMO) em 1959, reali-

zada na Roménia.
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Ja no Brasil, a trajetoria olimpica teve inicio em 1979, quando a Sociedade
Brasileira de Mateméatica (SBM) criou a Olimpiada Brasileira de Matematica (OBM). Sua
trajetoria, construida gracas ao esfor¢o coletivo de professores universitarios, educadores
da educacao bésica e entusiastas da matematica, incluindo pioneiros como os matematicos
Angelo Barone Netto, Augusto César Morgado e Joao Bosco Pitombeira de Carvalho,
transformou-se em referéncia para o desenvolvimento cientifico brasileiro.

Inicialmente voltada para preparacao de equipes para a Olimpiada Interna-
cional de Matematica (IMO), a OBM evoluiu de um formato tnico para um sistema
abrangente, incorporando em 1998 uma significativa reformulacao liderada pelo matema-
tico Jacob Palis. A reestruturacao conduzida pelo IMPA com apoio do CNPq estabeleceu
uma arquitetura competitiva inédita, organizada em trés eixos principais: primeiro, a
formacao de uma rede nacional de Coordenadores Regionais; segundo, a segmentacao em
trés faixas educacionais contemplando alunos da 5* e 6* séries, 7* e 8* séries, e ensino
médio; e terceiro, a criacao do nivel universitario em 2001, alcancando na primeira edicao
reformulada a expressiva marca de 500 mil participantes em ambito nacional. Mesmo com
as diversas atualizacoes em seu formato, seus objetivos se mantiveram inalterados, como:

e Incentivar o estudo da Matemaética entre estudantes;
e Aprimorar a formacao de professores;

e Contribuir para a melhoria do ensino da disciplina;
e Identificar e desenvolver jovens talentos.

E esse sucesso da OBM possibilitou em 2005 a criagao da OBMEP, essa expan-
sao foi fruto da parceria entre governo federal, SBM e IMPA, que em 2017 se unificaram
em um sistema integrado.

A conexao entre escolas basicas, universidades e centros de pesquisa, estabelece
a OBM como peca fundamental para a formacao de talentos e o fortalecimento da cultura
matematica no Brasil, superando desafios orcamentarios e transformando geragoes de
jovens apaixonados pela Matematica.

A Olimpiada Brasileira de Matemética das Escolas Publicas (OBMEP) se trata
hoje de um projeto nacional voltado tanto para escolas piblicas quanto privadas, que tem
como fundamentos:

e [Estimular e promover o estudo da Matematica;

e Contribuir para a melhoria da educacao béasica, garantindo acesso a materiais dida-
ticos de qualidade;

e Identificar jovens talentos e incentiva-los a ingressar em universidades, especialmente
nas areas cientificas e tecnologicas;

e Aperfeicoar e valorizar professores da rede piblica;

e Integrar escolas, universidades publicas, institutos de pesquisa e sociedades cientifi-
cas;

e Promover inclusao social por meio da democratizacao do conhecimento.
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A importancia da OBMEP hoje nao se deve s6 do fortalecimento do ensino de
Matematica no pais, mas de uma ponte para oportunidades académicas e profissionais.
Da sua criacao voltada para estudantes do 6° ano do Ensino Fundamental ao 3° ano do
Ensino Médio, a competicao cresceu devido a sua magnitude e em 2022 langou a OBMEP
Mirim, destinada a alunos do 2° ao 5° ano do Ensino Fundamental. Esta ampliacao passa
a refletir um avanco significativo ja que ofertando mais uma modalidade, passa a inserir
mais desenvolvimento ensejando novos talentos mirins as olimpfadas cientificas no Brasil,
que hoje passam a englobar, competicoes para todas as faixas etérias, eventos regionais
e nacionais, provas adaptadas para diferentes niveis de aprendizagem e programas de
preparacao e desenvolvimento docente. Assim, nos tornamos um pais que demonstra
com o devido esmero as competicoes matematicas acompanhando nossos alunos desde os
primeiros anos escolares até o ingresso no ensino superior.

Em 2024 a OBMEP apresenta uma nova conquista, com a criacao do IMPA
Tech, iniciativa de destaque significativo no ensino superior brasileiro. O IMPA Tech
oferece uma graduacao pioneira em Mateméatica Aplicada a Tecnologia e Inovacao, in-
tegrando conhecimentos avancados de matematica com ciéncia da computacao, analise
de dados e fisica moderna. O programa foi concebido para atender prioritariamente aos
medalhistas da OBMEP, proporcionando-lhes bolsas de estudo integrais, auxilio moradia
e suporte financeiro para manutencao durante o curso.

Esta iniciativa estratégica foi fruto da colaboragao entre o Ministério da Edu-
cagao, o Ministério da Ciéncia, Tecnologia e Inovacao e a Prefeitura do Rio de Janeiro. O
principal objetivo é formar profissionais qualificados para liderar a transformacao digital
e tecnologica do pais, criando pontes entre o talento matematico identificado nas olim-
piadas cientificas e as demandas do mercado de tecnologia de ponta. O modelo combina
exceléncia académica com apoio socioeconoémico, garantindo que jovens talentos possam
dedicar-se integralmente a sua formacao.

Por fim, outro fato marcante nessa cadeia de realizacoes e transformagoes
realizadas pelos trunfos de nossas olimpiadas, foi a criacdo em 17 de outubro de 2018, da
primeira edigdo do Torneio Meninas na Matematica (TM?). Competigao direcionado a
alunas do Ensino Fundamental (a partir do 8° ano) e Médio, tanto de escolas publicas
quanto privadas, em todo o Brasil. Onde foram selecionadas estudantes com base em seu
desempenho na Olimpiada Brasileira de Matematica das Escolas Publicas (OBMEP) e
na Olimpiada Brasileira de Matematica (OBM) em 2018, além de indicagdes por mérito
académico.

O TM?2 nao apenas reconheceu o talento das jovens matematicas, mas tam-
bém serviu como etapa seletiva para a European Girls’” Mathematical Olympiad (EGMO),
competicao internacional exclusiva para meninas. Desde 2017, o IMPA financia a partici-
pacao brasileira na EGMO, e as melhores competidoras do TM? tiveram a oportunidade

de representar o Brasil na edicao de 2019, em Egmond, Holanda. A iniciativa por sua
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vez visou reduzir a disparidade de género nas olimpiadas cientificas, onde os dados mais
recentes mostram que a participacao feminina na OBMEP cresceu 15% entre 2018 e 2023
em niveis avancados.

Agora falaremos de outra competicdo mas de ordem regional, a OCM (Olim-
piada Cearense de Matematica), realizada todo ano sem interrupgoes desde a sua criagao
em 1981, ¢ uma competicao que ja revelou centenas de alunos, professores e escolas com
talento especial para aprender e ensinar matematica. Organizada pela Universidade Fe-
deral do Ceara (UFC), por meio do Departamento de Matematica, a OCM ¢é voltada
para estudantes do Ensino Fundamental e Médio, divididos em duas categorias de ensino
(fundamental e médio). Os desafios propostos nas provas sao criados por professores da
Comissao de Olimpiadas da UFC. Muitos deles inéditos, desenvolvidos exclusivamente
para a competicao.

Ao longo dos anos, a OCM se tornou uma espécie de trampolim para compe-
ticoes matematicas mundo afora, onde estudantes cearenses vém brilhando regularmente.
Nao é a toa que o estado é reconhecido nacionalmente pelos resultados impressionantes
na Olimpiada Brasileira de Matematica (OBM) e em torneios internacionais. Tudo co-
megou com a iniciativa de professores visionarios como Marcondes Franca, Joao Marques,
Guilherme Ellery e Raimundo Thompson (1944-1993), que deram os primeiros passos.
Mais tarde, a coordenacao passou por Frederico Girao (2014-2017) e, desde 2018, esta sob
responsabilidade do professor Romildo José da Silva.

A OCM é uma atividade de extensao da UFC, com objetivos similares aos
das olimpiadas ja consolidadas Brasil a fora. Esse proposito visa, descobrir e estimular
talentos matemaéticos, incentivar a participacio de jovens em competiges globais (como
a Olimpiada do Cone Sul e a Internacional), melhorar o ensino da disciplina nas escolas
e fortalecer a conexao entre a universidade e a educacao bésica. Mais do que uma prova,
¢ um projeto que une geracoes, transformando o “medo” de niimeros em oportunidades
reais e orgulho para o estado.

As Olimpiadas de Matemaética Basica, como a OBM, OBMEP e outras com-
peticoes regionais, sao fundamentais para o avanco da educacao matematica no Brasil e
portanto para garantir o sucesso continuo dessas iniciativas, é importante que haja um
suporte institucional sélido e um compromisso com a inclusao e a equidade. Assim, as
olimpiadas podem continuar a desempenhar um papel crucial na educagao matematica e
no estimulo ao potencial dos jovens brasileiros.

Para mais informagoes indico Gomes (2019)), o Noticiario SBM (2019) e os sitios
da OBM (2025), OBMEP (2025) e OCM (2025) que nos serviram de base informativa.
Pe¢o também que vejam o documentario OBMEP (2013) a titulo de conhecer o grande

impacto que ela proporciona relatado em histérias de vida.
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3 PRINCIPIO DE INDUCAO, PRINCIPIO DA BOA ORDENACAO E PRIN-
CIPIO DE DIRICHLET

Neste capitulo, serd apresentado uma exposicao das principais propriedades,
axiomas, proposicoes, lemas, corolarios, teoremas e nogoes fundamentais para o desenvol-
vimento do objetivo principal deste trabalho: a andlise do Principio da Invariancia e do
Principio do Elemento Extremo, bem como suas aplicagoes.

Dito isto revisitaremos outros principios mateméticos que sao apresentados no
inicio da jornada académica do aluno de matematica que sao importantissimos métodos
na resolucao de problemas. Destes destacaremos os Principio de Inducgao, Principio da
Boa Ordenacao e por tltimo o Principio de Dirichlet. Iremos cita-los brevemente neste
trabalho como titulo de revisao, ja que o bom entendimento desses principios ensejara na

melhor compreensao do tema dessa dissertacao.

3.1 PRINCIPIO DE INDUCAO

O Principio da Inducao é uma ferramenta poderosa para demonstrar proprie-
dades relacionadas aos nimeros naturais. Logo, ele é fundamental na resolucao de muito
problemas. Além disso, é igualmente importante compreender seu significado e seu papel
no contexto geral da Matematica. Dominar o Principio da Inducgao equivale, em grande
parte, a entender a esséncia dos niimeros naturais.

Os niimeros naturais formam um modelo matemético, uma escala padrao que
permite realizar a operacao de contagem. Ao comparar conjuntos de objetos com essa
escala abstrata e ideal, tornamos mais precisa a nogao de quantidade. Esse processo de
contagem pressupoe, portanto, o conhecimento prévio da sequéncia numérica.

Sabemos que os nimeros naturais sao 1, 2, 3, 4, 5, e assim por diante. O
conjunto completo desses niimeros é denominado conjunto dos ntimeros naturais, repre-
sentado pelo simbolo N = {1,2,3,4,5,...}.

Vale ressaltar que essa nocao faga sentindo se ja reconhecemos o que é ser
um numero natural. Porém, se nao dominamos esse conceito? Investigamos o que é
fundamental na sequéncia dos nimeros 1,2,3,4,5...

Giuseppe Peano (1858-1932) mostrou que toda a teoria dos ntimeros naturais
pode ser construida com base em quatro principios basicos, conhecidos como os Axiomas
de Peano.

e Todo ntimero natural possui um tnico sucessor, que também é um nimero natural.

e Numeros naturais diferentes possuem sucessores diferentes. (Ou ainda: ndimeros
que tém 0 mesmo sucessor sao iguais.)

e Existe um tnico ntimero natural que nao é sucessor de nenhum outro. Este nimero
é representado pelo simbolo 1 e chamado de "ntimero um".

e Se um conjunto de nimeros naturais contém o nimero 1 e, além disso, contém o
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sucessor de cada um de seus elementos, entao esse conjunto coincide com N, isto é,
contém todos os niimeros naturais.

Para entender melhor como funciona o principio de inducao, consideremos um
conjunto A C N tal que 1 € A. Suponha, além disso, que sempre que um nimero natural
k € A, entao k + 1 também pertence a A. Nesse caso, 1 € A garante que 2 € A. Da
mesma forma, 2 € A nos permite concluir que 3 € A. Seguindo esse raciocinio, concluimos
que A contém todos os nimeros naturais, ou seja, A = N, ou seja, podemos enunciar da
seguinte forma.

Axioma 3.1. Seja A C N um conjunto satisfazendo as condicoes:
i) 1€ A.
ii) Sek € A, entdo k+1€ A. Entao A=N.
Proposicao 3.1. Dada uma propriedade P(n), temos P(n) verdadeira para todo n € N
se e somente se:
i) P(1) é verdadeira.
ii) P(k) verdadeira. = P(k + 1) verdadeira.
Entao, P(n) € vdlida para todo n € N.

Demonstra¢ao. Para mostrar a equivaléncia, primeiro suponha que P(n) é verdadeira para
todo n € N. Imediatamente obtemos P(1) verdadeira (caso particular para n = 1) e, para
qualquer k € N, como tanto P(k) quanto P(k+1) sdo verdadeiras por hipotese, a implica-
¢do P(k) = P(k+1) segue trivialmente. Reciprocamente, assumindo (i) P(1) verdadeira
e (ii) P(k) = P(k+1) para todo k, considere o conjunto S = {n € N; P(n) é verdadeira}.
Pela condigao (i), 1 € S, e pela condicao (ii), sempre que k € S temos k+ 1 € S. Pelo

Axioma da Indugao, segue que S = N, ou seja, P(n) vale para todo nimero natural n. [

Exemplo 3.1. Prove por inducao que para cada n € N a soma dos n primeiros quadrados

perfeitos é igual a:
1
én(n +1)(2n+1).

Solugao: Devemos mostrar a validade da igualdade:

P(n) Zj2 _ n(n + 1)6(2n—|- 1).

i) Para n = 1; temos P(1) = ;1(1+1)(2-1+1) =1=1?

ii) Entao supomos que P(k) é verdade para algum k € N, precisamos mostrar que vale

k+1 kE+Dl(k+1 1|12(k + 1 1
também para k + 1, ou seja, »_ j2 = (ke + DI(k + )Z (e +1) +1]
=1

. Usando a
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hipotese de inducao temos que:

k+1 k
2 7= 0+ (kt1y
j=1 j=1

k(k+1)(2k+1)

— c + (k+1)

(R DECE+T)+6(k+1)]  (B+1)(k+2)(2k + 3)

B 6 - 6 '
Portanto por indu¢ado P(n) é verdadeira para todo n € N. [ |

Exemplo 3.2. Mostre que para todo n € N, 4" 4 6n — 1 é divisivel por 9.
Solucao:
i) Note que P(1)=4'+6-1—1=09, entao P(1) é verdade, pois 9/9.
ii) Suponhamos que P(k) seja verdade para algum k € N, ou seja, 4° +6k —1 & divisivel
por 9, é equivalente dizer que existe um s inteiro tal que P(k) = 9s. Logo teremos
4% = 95 — 6k + 1. Se multiplicarmos ambos os lados da expressdo por 4, obtemos
4R+ = 365 — 24k + 4. Assim 451+ 6(k +1) — 1= 36s — 24k +4+6(k+1) — 1 =
36s — 18k + 9 = 9(4s — 2k + 1). Concluindo que, 4*** + 6(k + 1) — 1 ¢ divisivel por
9, deste modo P(k+ 1) é verdadeira. Assim mostramos que P(k) implica P(k+ 1),
para todo k natural. Logo pelo Principio da Indugao Finita, P(n) é verdade para

todo n € N. -

Axioma 3.2. Sejaa € N e A C{a,a+1,a+2,...} um conjunto tal que:
i) a€ A
ii) Se k € A, entio k+1 € A.

Logo teremos A ={a,a+1,a+2,...}.

Essa proxima variacao do principio de inducao oferece maior uso como método
de prova. Suponha, novamente, que temos uma propriedade P(n) associada a um nimero
natural n, e desejamos demonstrar que ela é verdadeira para todos os ntimeros naturais
a partir de um certo valor a (ou seja, para todo n > a). Entdo definido o conjunto
A = {k € N;P(k) é verdadeira} e visto que A = {a,a + 1,a + 2,...}, tem-se P(n)
verdadeira para todo n > a natural.

Proposicao 3.2. Dado a € N e uma propriedade P(n) do natural n, temos P(n) verda-
deira paro todo n > a, se e somente se as duas condigoes a sequir forem satisfeitas:

i) P(a) é verdadeira.

ii) P(k) verdadeira = P(k + 1) verdadeira.
Exemplo 3.3. (ENQ PROFMAT 2024.1) Considere a sequéncia de Fibonacci (u,,) defi-
nida recursivamente por u,.; = u, + u,_1, para n > 2, com u; = us = 1. Sabendo que
o niimero real ¢ é raiz da equacdo z? = = + 1, mostre que: ¢ = u,q + u,_1, para todo
n > 2.

Solucao: Usaremos inducao sobre n.
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i) Para n igual a 2 temos que ¢® = usq + uy, logo a afirmagao ¢ verdade pois, g é raiz
da equacgao 22 =z + 1.
ii) Agora supomos que ¢" = u,q+u,_1, para um certo n > 2. Multiplicando a equacao

n+1

por g obtemos ¢"* = ¢*u,, + qu,,_1. Substituindo ¢> = q + 1, temos que:

qn+1 = (q + 1)un + qup—1 = qUn+1 + Uy,

Logo, a afirmagao é valida para n + 1. Portanto ¢" = u,q + u,_1, é verdade para todo
n > 2. [ |
Exemplo 3.4. Mostre que existem inteiros nao negativos x e y tais que 7z + 8y = n para
todo n > 42. Seria possivel tomar um nimero menor que 42 na afirmativa acima?
Solugao: Iremos primeiro responder se é possivel encontrar um par (x,y) de inteiros ndo
negativos que sejam solucao, quando n < 42. A resposta é nao! Basta verificar que se
tomarmos y € {0,1,2,3,4,5,6} na equagdo 7z + 8y = 41 ndo encontramos um z inteiro
nao nulo como solucao.

Agora demonstraremos por inducao que sempre é possivel encontrar um par
(x,y) de inteiros nao negativos que sejam solugao, quando n > 42.

i) Para n = 42, temos que a equagdo 7x + 8y = 42 possui solu¢do para o par (6,0),
pois 7-6+8 -0 =42.

ii) Entao suponha que a equacao 7z + 8y = 42 tenha solugao (a, b) para algum n > 42;
isto é, Ta + 8b = n. Note que, para qualquer solu¢ao (a,b), devemos ter a > 1 ou
b>1. Se a > 1, observando que 7-(—1)+8-1 =1, segue que 7(a— 1) +8(b+1) =
Ta—T7+8+8=Ta+8 +1=n+1, o que mostra que a equagao 7z + 8y =n + 1
admite solu¢do para (a — 1,0+ 1). Se a = 0, entdo b > 6. Usando a igualdade
7-748-(—6) = 1, segue que 7(a+7)+8(b—6) = 7Ta+49+8v—48 = Ta+8b+1 = n+1,
0 que prova que mostra que 7z + 8y = n + 1 admite solu¢ao para (a + 7,b — 6).
Logo concluimos que, em qualquer caso a equacao 7z + 8y = n + 1 admite solugao,

sempre que a equacao 7x + 8y = n, para algum n > 42, tenha solucao. -

Exemplo 3.5. (OBM 1998) Para cada inteiro n > 3, mostre que existem n ndimeros
naturais dois a dois distintos tais que a soma de seus inversos é igual a 1.
Solugao: Vamos proceder por inducao sobre k > 3. Basta observar que no caso base

n = 3 temos:
1 1 1

Agora suponha que para um nimero natural £ > 3 existam ntimeros naturais r; < x <

.-+ < 1, tals que:
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Multiplicando ambos os lados da igualdade por % e somando % a ambos os lados, obtemos:

Como 2 < 2z1 < 2wy < - -+ < 21y, obtivemos k 4+ 1 ntimeros naturais distintos dois a dois
cuja soma dos inversos é igual a 1, completando assim o passo de inducao. [ |
Observagao 3.1. Note que na solucao do problema acima encontramos a ideia para deter-
minar os nimeros r; < rs < --- < ) explicitamente. A saber, comecamos com a terna
(2,3,6) que resolve o caso k = 3. Dai, produzimos a quadrupla (2,4, 6, 12) que resolve o
caso k = 4. Do mesmo modo, produzimos a quintupla (2,4, 8,12,24), que resolva o caso
k = 5. Com isso, podemos conjecturar que a k—upla (2,22,23 ... 2F=2 3.2k=3 3. 2k=2)
resolve para um natural k qualquer. A verificacao dessa conjectura é imediata, por in-
ducao, pois como vimos no passo de inducao feito acima, para produzir a solucao para o
caso k41 é suficiente duplicarmos cada niimero da solugao para k e acrescentar o nimero
2 no inicio.

Exemplo 3.6. (OBM 2006) Sejam (xy)r>1 € (yk)p>1 sequéncias de niimeros reais tais

que, para todo n natural, temos:
_ .3 _ .3
Tpg1 =T, —3Tp € Ypt1 = Y, — 3Yn.

Se 22 = y; + 2, mostre que 2 = y,, + 2 para todo n natural.

Solucgao: Para n = 1, a igualdade vale por hipotese:
2=y +2.
Agora suponha que para n = k vale:
r7 =y, +2 (Hipotese de Indugdo).
Calculamos z7_;:

$z+1 = (a} — 3a3)?

= 2} — 65 + 977,
Calculamos yy. 1 + 2 usando y;, = 27 — 2.

Yer1 +2 = (yp — 3yp) +2
= (27 —2)° —3(27 —2) +2

6 4 2
=z, — 6z + 9y
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Portanto, 27, = yr41 + 2. Pelo Principio de Indugio

x2 =y, + 2 para todo n € N.

3.2 PRINCIPIO DA BOA ORDENACAO

O Principio da Boa Ordenacao (PBO), também conhecido como Principio da
Boa Ordem, é um dos alicerces da matematica discreta e da teoria dos ntimeros, com impli-
cacoOes profundas em demonstracoes, estruturas algébricas e algoritmos. Além de simples-
mente garantir a existéncia de um menor elemento em conjuntos de ntimeros naturais, o
PBO fornece uma estrutura logica robusta para provas matematicas, sendo especialmente
importante em situagoes onde trabalhamos com conjuntos finitos e discretos.

Para essa dissertagao, o PBO sera de suma importancia, dado que ele possibi-
lita a construcao de solugoes em conjuntos finitos, garantindo a existéncia de elementos
minimos e permitindo argumentos rigorosos por inducgao e contradi¢do. Sua aplicagao com
os principios da Invariancia e do Elemento Extremo permitird abordagens: Assegurando
a existéncia de configuracoes minimas essenciais para aplicagao da invariancia, enquanto
valida a escolha de elementos extremos em argumentos de otimizagao. Antes de tudo para
garantir a compreensao do PBO, ¢ importante primeiro estudarmos a estrutura de ordem

no naturais, que constituem a base sobre a qual o PBO sera definido.

3.2.1 Ordem

A adicao dos niimeros naturais nos permiti incluir uma relacao de ordem nos
N. Assim dados m,n € N podemos ter m menor que n e denotaremos m < m, ou seja,
significa que existe p € N tal que n = m+p. A notacdo m < n representa duas condicoes,
m < n ou m = n. Por definicdo, tem-se portanto m < m + p para quaisquer m,p € N e
que 1 < n para todo natural n # 1.

Dessa forma, pelo axioma de Peano, n # 1 implica que ele é sucessor de algum
natural m, ou seja, n = m + 1, assim n > 1. De fato 1 é o menor dos naturais.
Proposicao 3.3 (Transitividade). Se m <n en < p, entao m < p.

Demonstracao. Se m < n, n < p entao existem k,r € Ntal que n =m+k, p=n-+r,
logo p = (m+ k) +r=m+ (k+r), portanto m < p. O

Observagao 3.2. Outro fato importante de relacao de ordem é que, dados dois nimeros
naturais diferentes m,n dizemos que sao comparaveis quando se tem m = n, m < n ou
n <m.

Proposicao 3.4 (Comparabilidade). Todo nimero natural n é compardvel com qualquer

numero natural m.
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Demonstracao. Por inducao. Temos que o 1 é comparavel com qualquer outro natural
pois vimos que 1 < m qualquer que seja m # 1. Suponhamos agora que o nimero n seja
comparavel com todos os nimeros naturais. Mostremos, a partir dai, que n + 1 também
tem essa propriedade. Com efeito, seja m € N pego arbitrariamente. Temos que: m < n,
m=mnoun <m.
i) Se m < n. Entao m < n + 1 por transitividade, pois sabemos que n < n + 1.
ii) Se for m = n, entdo m < n + 1.
ili) Se for n < m entdo existe p € N tal que m = n + p. Neste caso, ha duas possibili-
dades. Ou se tem p = 1, donde m = n+ 1, ou entdo p > 1, logo p = 1 + p/, e dai

m = (n+ 1) + p’ e concluimos que n + 1 < m. =

Proposicao 3.5 (Tricotomia). Dados m,n € N, qualquer das afirmagoes m < n, m = n,
n < m exclui as outras duas.

Demonstracao. Se tivéssemos m < n e m = n, entao existiria p € N tal que m = m + p,
donde m +1 = m + (p + 1) e, concluirfamos que 1 = p + 1, um absurdo, pois 1 ndo é
sucessor de p. Portanto m < n (e analogamente, n < m) é incompativel com m = n. Do
mesmo modo, se tivéssemos m < n e n < m, entao existiria p,q € N tais que n = m + p
e m =n+k, que resultarian =n+k + p, logon+ 1 =n+ (k+ p+ 1) e, concluiriamos
que 1 =k + p+ 1, um absurdo. O

Proposicao 3.6. Nao existem nimeros naturais entre n e n + 1.

Demonstracao. Suponha, por absurdo, que exista p € N tal que n < p < n+ 1. Como
n < p, existe k € N tal que p = n + k. Analogamente, como p < n + 1, existe r € N
tal que n + 1 = p + r. Substituindo p, obtemos n + 1 = (n + k) + r, o que implica
n+1=n+ (k+r). Cancelando n, segue que 1 = k + r. No entanto, como k,r € N,
temos k > 1er > 1, logo k+r > 2, o que contradiz k + r = 1. Portanto, a suposi¢ao

inicial é falsa, e nao h& nimeros naturais entre n e n + 1. O

Proposicao 3.7 (Monotonicidade). Seja m,n € N se m < n, entGbo m+p < n+p e

mp < np.

Demonstra¢ao. Usando a defini¢do de <, temos que m <n=n=m+k=n+p= (m+

k)+p = m+p < n+p. Analogamente, m < n = n =m+k = np = mp+kp = np > mp.
m

Observacao 3.3. A reciproca da monotonicidade é a Lei do Corte para desigualdades:

mtp<nt+p=>m<<nemp<np=m<n.

Dado um subconjunto A C N diz-se que um numero natural a é o menor (ou
primeiro) elemento de a quando a € A e, além disso, a < z, para todos os elementos
x € A. Por exemplo, 1 é o menor elemento de N. A seguir, dado n € N, denotaremos
I,, o conjunto de todos os naturais p tais que 1 < p < n. Assim, I, = {1}, I, = {1,2},
I3 ={1,2,3} etc.
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Proposicao 3.8. (Principio da Boa Ordenacio.) Todo subconjunto nao-vazio A C N
possui um menor elemento.

Demonstragao. Sem perda de generalidade, podemos admitir que 1 ¢ A, pois caso contra-
rio o 1 seria o menor elemento de A. O menor elemento de A cuja a existéncia desejamos
mostrar, serd da forma n+ 1. Pois devemos encontrar um natural n tal que n+ 1 pertenca
a A e, além disso, todos os elementos de A sdao maiores do que n, logo maiores do que
1,2,3,...n. Em outras palavras, queremos um natural n tal que I, C N—Aen+1 € A.
Assim, consideremos o conjunto X = {n € N;I,, C N — A}. Portanto X ¢é o conjunto
dos ntimeros naturais n tais que todos os elementos de A sao maiores do que n. Como
supomos que 1 ¢ A, sabemos que 1 € X. Por outro lado como A nao ¢ vazio, nem todos
os naturais pertencem a X, ou seja, X # N. Entdo temos que X nao é um conjunto
indutivo, isto é, deve existe algum n € X tal que n + 1 ¢ X. Isto significa que todos
os elementos de A sdo maiores que n mas nem todos sao maiores que n + 1. Como nao

existem naturais entre n e n + 1, concluimos que n +1 € A e é o menor elemento de

A. ]

Exemplo 3.7. Mostre que nao existe um inteiro m tal que 0 <m < 1.
Solucao: Suponha por absurdo que exista um m que satisfaca essa relacao. Assim, existe
um conjunto S = {m;0 < m < 1} nao vazio. Pelo principio da boa ordenagao temos que

deve existir mg pertencente a S tal que mg = min(S). E como my € S entao:

0<mg<1,
= 0-mg<mg-mg<1-mg.
= mg < mg < 1;
o que resulta num absurdo, pois assim teriamos m32 pertencente a S (pois m2 esté entre 0

e 1) sendo menor que my contrariando a minimalidade de my. [

3.3 PRINCIPIO DE DIRICHLET

O Principio da Casa dos Pombos é um dos métodos de demonstragao mais
utilizados em competigoes de matemética. Em alguns paises, como a Rissia, ¢ conhecido
como Principio de Dirichlet, em homenagem ao matematico Lejeune Dirichlet, que foi o
primeiro a aplicar essa ideia na solucao de problemas nao triviais. Matematicos como os
hungaros Paul Erdés e George Szekeres também se destacaram pelo uso desse principio
para resolver uma variedade de problemas. Sua forma mais simples pode ser enunciada
da seguinte forma: “Se em n gaiolas sao postos n + 1 pombos, entao pelo menos uma
das gaiolas terd mais de um pombo”. De fato, essa afirmacao é a traducao alegérica do
seguinte fato matemético.

Definigao 3.1. Seja A um conjunto qualquer. A cardinalidade de A, denotada por |A|
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ou card(A), é uma medida do “tamanho” de A definida da seguinte forma:
e Para A finito: o niimero de elementos de A.

e Para A infinito: dizemos que |A| = |B| quando existe uma bijecao f: A — B.

Proposicao 3.9. Se M e N sao dois conjuntos finitos tais que |M| > |N|, entdo ndo
existe func¢ao injetiva f: M — N.

Demonstracao. Inicialmente lembre-se de que para cada y € N, sua imagem inversa é
dada f~'(y) = {z € M; f(x) = y}. Com isso, temos

M= w.

yeEN

Essa ¢ uma uniao disjunta e, além disso, se f fosse injetiva, terfamos | f~*(y)| < 1. Assim,

M=) If ' WI< ) 1=IN].

yeEN yeN

seguiria que

Isso contradiz a hipotese |M| > |N|. Logo, nas condigbes do enunciado, ndo pode existir

funcao injetiva. O

Em termos menos formais, a demonstracao acima corresponde ao raciocinio
que se em cada gaiola tivéssemos no maximo um pombo, entao o ntimero de pombos seria
menor ou igual ao nimero de gaiolas.

O Principio de Dirichlet admite uma generalizacao natural.

Defini¢ao 3.2. Seja x € Z. A fungdo piso |z| é definida como o maior inteiro que nao

supera x, ou seja:

|z] =max{n €Z |n <z}

A dupla desigualdade n < x < m + 1 caracteriza unicamente a funcao piso,

fornecendo uma defini¢ao alternativa equivalente a definicao por maximo.

Exemplo 3.8. Determine o maior inteiro.
o |m|] =3, pois3<7m<4
o | V2| =2, pois -2 < —v2 < —1
e |5] =5, pois b € Z (caso de igualdade)

Proposicao 3.10. Se colocarmos n pombos em k gaiolas, entao ao menos uma das gaiolas
n—1
%
Demonstracao. Por contradicao, suponha que, quando dispusemos os n pombos nas k

conterd, no minimo, |%—=| + 1 pombos.

gaiolas, nenhuma delas ficou com pelo menos L”T_lj + 1 pombos. Entao cada uma das k

gaiolas terd no méximo [“-!] pombos. Assim, todas as gaiolas terdo, no méximo, k| %2 |
pombos. Dai teremos:
n—1 n—1
k <k =n—-1<n.
) < k()
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Absurdo! O]

Exemplo 3.9. Prove que, em qualquer grupo de 20 pessoas, hd ao menos 3 que nasceram
no mesmo dia da semana.

Solucao: Considere no problema os sete dias da semana como gaiolas e as pessoas como
os pombos. O modo de colocar uma pessoa em uma gaiola ¢ determinado pelo dia que a
pessoa nasceu. O principio da casa dos pombos nos garante que pelo menos uma gaiola
(dia da semana) tera ao menos 2= | 41 = 3 pombos (pessoas). Assim confirmamos que
pelo menos duas pessoas terao nascido no mesmo dia. [ |
Exemplo 3.10. Em um grupo com 53 pessoas, sempre temos pelo menos 5 delas que
fazem aniversario no mesmo més do ano.

Solucao: Consideremos os meses do ano como sendo as gaiolas. Assim, basta observar
que L%J +1=4+1 = 5. Portanto, a proposicao garante que existe pelo menos um més
do ano em que temos pelo menos 5 aniversariando. |
Exemplo 3.11. Se em uma urna contém 3 bolas vermelhas, 8 bolas verdes, 7 bolas azuis
e 5 amarelas, qual é o menor nimero de bolas que devemos tirar (sem olhar) para que
possamos ter certeza de termos tirado pelo menos 4 de uma mesma cor?

Solucao: Tomando as quatro cores diferentes como sendo as gaiolas, segue que se retirar-
mos 5 bolas conseguimos garantir pelo menos duas bolas de uma mesma cor, concordando
com Lg‘l—lj + 1 =1+ 1 = 2. Para garantir pelo menos quatro bolas de uma mesma cor,
observe que queremos o menor valor de n tal que L"T’lj + 1 = 4. Ou seja, L”T’lj = 3.
Portanto, devemos ter n —1 = 12 e n = 13. De fato, ao retirarmos 12 bolas, pode ocorrer
que tenhamos trés bolas de cada cor. Porém, com a retirada da proxima bola teremos
necessariamente 4 bolas de uma mesma cor. [ |
Observacao 3.4. O exemplo nos chama a atencao para o fato que a aplicabilidade
da proposicao [3.10] esta condicionada a informacao de que cada gaiola tenha capacidade
pelo menos igual a L"T’lj Veja que se no referido exemplo tivéssemos somente duas bo-
las vermelhas (em vez de trés), entdo a retirada de 12 bolas seria suficiente garantir que
tivéssemos quatro bolas de uma mesma cor. Nesses casos em que hé gaiolas com capaci-
dade menor que a esperada, recomendamos que essas sejam desconsideradas, o problema
seja resolvido considerando as gaiolas com capacidade suficientes e ao final somamos as
capacidades das gaiolas que foram desconsideradas.

Exemplo 3.12. Se em uma urna contém 2 bolas vermelhas, 3 bolas verdes, 7 bolas azuis,
5 amarelas e 6 pretas, qual é o menor nimero de bolas que devemos tirar (sem olhar)
para que possamos ter certeza de termos tirado pelo menos 6 de uma mesma cor?
Solugao: Nesse caso temos 5 gaiolas, que correspondem as cinco cores. Como queremos
pelo menos 6 bolas de uma mesma cor, deverfamos ter [2=4] 4+ 1 = 6, ou seja, [%=1] = 5.
No entanto, a capacidade das gaiolas com bolas vermelhas e verdes nao atinge essa média.
Assim, resolvemos o problema considerando apenas as trés gaiolas que tém a capacidade

esperada. Portanto, devemos achar o menor valor de n tal que L”T’lj +1 = 6. Isso nos da
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n = 16. Portanto, a resposta para o problema é 16 + 2 + 3 = 21. [ |
Exemplo 3.13. Se escolhermos aleatoriamente 55 elementos do conjunto {1,2,3,...,100}
sempre existirao dois desses nimeros cuja diferenca é igual a 9.

Solucgao: Sejam 1 < 1 < x93 < 23 < ... < 755 < 100 os nimeros escolhidos, escritos
em ordem crescente. Consideremos essa lista de ntimeros transladados em 9 unidades,
ou seja, olhemos para a lista 10 < 1 +9 < 22 +9 < 23+9 < ... < x55+ 9 < 109.
Ao juntarmos essas duas listas, ficaremos com 110 nimeros (pombos) que sao elementos
com conjunto {1,2,3,...,109}, que tem apenas 109 elementos (gaiolas). Assim, dois
desses ntimeros devem coincidir. Mais especificamente, um elemento da primeira lista
deve coincidir com um elemento da segunda lista, jA que em ambas as listas os nimeros
sao distintos. Portanto, existem dois indices 4,j € {1,2,3,...,55} para os quais teremos
x; = x; +9, ou ainda, z; —x; = 9. [ |
Observagao 3.5. Observamos que ao analisarmos a solu¢ao do exemplo acima, vemos que
o argumento nao funcionaria diretamente se quiséssemos provar que sempre existem dois
numeros dentre os 55 niimeros escolhidos cuja diferenca é 10. De fato, trocando 9 por 10
ficariamos com duas listas de nimeros, totalizando 110 ntimeros, cada um deles com valor
entre 1 e 110. Assim, nao temos mais como garantir que as listas terao um elemento em
comum. No entanto, se tal elemento comum nao existir, a uniao das duas listas coincide

necessariamente com o conjunto {1,2,3,...,110}. Nessas condigbes teriamos
2-(x1+xo+ws+ ... +x55)+10-55=14+2+3+...+110

=2 (x1+zo+ 23+ ...+ x55) = 101 - 55.
Isso é um absurdo, pois o primeiro membro é par enquanto o segundo é impar.
Esse absurdo mostra que as duas listas tém elemento em comum e portanto, sempre
existem dois nimeros dentre os 55 escolhidos de modo que a diferenca é 10.
Por outro lado, destacamos que é possivel fazer a escolha de 55 elementos do conjunto
{1,2,3,...,110} de modo que nao existam dois deles cuja diferenca seja 11. Basta, por

exemplo, tomarmos
{%1,$2,$3,...,$11} = {1,2,3,,11}

{12, 213, T14, - . ., T2} = {23,24,25,...,33}
{223, To4, Tas, ..., T33} = {45,46,47,... 55}
{234, 235, T36, ..., Taa} = {67,68,69,...,77}
{45, T46, Ta7, ..., 55} = {89,90,91,...,99}.

Nas consideragoes acima verificamos que a estratégia usada para resolver a
versao original do problema (diferenca igual a 9) nao se aplica aos demais casos (diferenca

igual a 10 ou 11). E natural perguntarmos se existiria uma estratégia que funcionasse
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para todos os casos. Felizmente, para esse problema uma tal estratégia existe. Comeca-
mos observando que se queremos saber se é possivel escolher 55 elementos do conjunto
{1,2,3,...,100} de modo que a diferenca entre quaisquer dois deles nunca seja igual a
um certo natural n, entao basta considerarmos classes de congruéncia médulo n. De fato,
os elementos do conjunto {1,2,3,...,100} sao distribuidos nas n classes de congruéncia
0,1,2,...,,n — 1. Portanto, como os elementos do conjunto sao consecutivos, cada uma
dessas classes de congruéncia deve conter pelo menos [+2] e no méximo [22| + 1. Por
outro lado, ao escolhermos 55 niimeros no conjunto, pelo menos uma das classes de con-
gruéncia deve conter pelo menos L%j + 1 dos ntimeros escolhidos. Dentro de uma mesma
classe de congruéncia, colocando os niimeros em ordem crescente, temos que dois termos

consecutivos tém diferenca igual a n. Assim, em cada classe podemos formar no méximo

b

| + 1) pares de termos consecutivos. Dai, se
1
2 n n
significa que para escolhermos os L%J + 1 nameros dentro de uma mesma classe, seremos

obrigados a escolher dois em um mesmo par, o que implica que teremos dois nimeros cuja

diferenca é n.

Por outro lado, se

100 54

L (E R LT

seremos capazes de escolher os 55 nimeros de modo que nao haja dois ntimeros com
diferenca igual a n.

Exemplo 3.14. Em uma festa ha n pessoas. Mostre que podemos encontrar duas pessoas
que conhecem, na festa, uma mesma quantidade de outras pessoas (supondo que a relagao
de conhecer alguém ¢é simétrica).

Solugao: Primeiramente, observe que qualquer pessoa na festa conhece no minimo 0 e
no maximo n — 1 outras pessoas. Consideramos dois casos:

(a) Cada pessoa conhece pelo menos uma outra: Considere n—1 salas numeradas
de 1 an—1. Colocamos na sala i todas as pessoas que conhecem exatamente ¢ outras
pessoas na festa. Como temos n — 1 salas e n pessoas, pelo principio da casa dos
pombos, pelo menos uma sala deve conter no minimo duas pessoas. Essas duas
pessoas conhecem a mesma quantidade de outras pessoas na festa.

(b) Existe pelo menos uma pessoa que nao conhece ninguém (penetra): Neste
caso, ninguém na festa conhece todas as n—1 outras pessoas (pois ha pelo menos uma
pessoa que ndo conhece ninguém). Portanto, podemos usar n — 1 salas numeradas

de 0 a n — 2 e aplicar o mesmo raciocinio do caso (a). Novamente, pelo principio
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da casa dos pombos, havera pelo menos duas pessoas na mesma sala, ou seja, que
conhecem a mesma quantidade de outras pessoas na festa.

Em ambos os casos, concluimos que existem pelo menos duas pessoas na festa
que conhecem o mesmo nimero de outras pessoas. [ |
Exemplo 3.15. (CHINA/2001) Se 51 nameros sao escolhidos arbitrariamente entre os
primeiros 100 nimeros naturais {1,2,...,100}, prove que necessariamente existirao dois
nimeros escolhidos tais que um é multiplo do outro.

Solugao: Seja A = {1,2,3,...,100}. Existem um total de 50 nimeros impares neste
conjunto:
2k—1, k=1,2,3,...,50.

Pelo teorema fundamental da aritmética, qualquer nimero em A pode ser escrito de forma
tnica a forma 2™q, onde m é um inteiro ndao negativo, e ¢ ¢ um nimero fmpar. Quando
particionamos todos os niimeros de A em classes de acordo com seus valores de ¢, obtemos
50 classes distintas, onde cada nimero pertence a exatamente uma classe. Ao selecionar
51 ntimeros quaisquer de A, pelo Principio da Casa dos Pombos, necessariamente havera
dois nimeros na mesma classe (ou seja, com o mesmo fator impar ¢). Sejam estes dois
nameros:
a=2"q e b=2"%.

sem perda de generalidade, assuma my > msy. Entao:
a@=2mM7m2 (M) = 2mTm2 L]

o que mostra que a é miltiplo de b. [ |
Exemplo 3.16. (SASMO/1990) Dados quaisquer 2n — 1 inteiros positivos, prove que

existem n deles cuja soma é divisivel por n para:

(a) n=3
(b) n=09.
Solucao:

(a) Para n = 3 temos 2n — 1 = 5. Particionamos os cinco nimeros de acordo com seus
restos modulo 3 em trés classes: Cy, C7 e Cy. Se uma das trés classes nao contém
nenhum ntimero, ou seja, os cinco niimeros estao em duas classes, pelo principio da
casa dos pombos, deve haver pelo menos uma classe contendo pelo menos 3 ntimeros.
Entao, quaisquer trés nimeros da mesma classe terao soma divisivel por 3. Se cada
classe contém pelo menos um nimero, entao tomando um ntimero de cada classe, a
soma desses trés nimeros sera divisivel por 3.

(b) Paran =9, temos 2n— 1 = 17 nameros dados, digamos ny,ns, - - - ,ny7. O resultado

de (a) implica que, de cada cinco deles, podemos selecionar trés nimeros cuja soma
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é divisivel por 3. Assim, organizando esses 17 niimeros nas seguintes quintuplas

(n17n2, .. ,n5); (714,”57 e 7718); <n77n87 e 77111); <n107n11> e ,n14), (7113,”147 e 77117).

Em cada uma dessas quintuplas existe uma terna de nimeros cuja soma é miltiplo
de 3. Essas cinco ternas sao distintas pois a intersecao entre duas quintuplas tem no
méaximo dois termos. Podemos supor , sem perda de generalidade, que as cinco ter-
nas sao: (ny,ng,n3); (ng, ns,ng); - . 5 (13, N1, n15). Assim, suas somas i, Sa, . . ., Sp
sdo todas divisiveis por 3. Seja s; = 3m; para i = 1,2,...,5 (onde m; sdo inteiros
positivos). Entdo, novamente pelo resultado de (a), podemos selecionar trés nime-
ros my, my, ms dentre os cinco mis tais que my + my + m3 = 3k para algum inteiro

positivo k. Portanto,
ny+ng+ -+ ng =81 + S2+ s3 = 3(my + mg + mg3) = 9k,

que é divisivel por 9.
|

Exemplo 3.17. Prove que em um conjunto contendo n inteiros positivos, deve existir
um subconjunto cuja soma de seus elementos é divisivel por n.

Solucgao: Sejam os n inteiros positivos aq, as, . . ., a,. Considere n novos inteiros positivos:
b1 = daq, b2:a1+a2, ey bn:al—f—ag—l—n-—i—an.

Todos os n valores b; sao distintos. Se algum b; for divisivel por n, a conclusao
estd provada. Caso contrario, se nenhum b; for divisivel por n, entdao seus restos na
divisao por n sao todos nao nulos, podendo assumir no maximo n — 1 valores distintos.
Pelo principio da casa dos pombos, devem existir b; e b; com i < j tais que b; —b; # 0 é
divisivel por n. Como

bj—bi:aiﬂ—i—ai“—l—---—i—aj

é a soma de alguns dos ntumeros dados, a conclusao esta provada. [ |
Exemplo 3.18. (CHINA/1993) Se cinco pontos sao escolhidos aleatoriamente no interior

de um quadrado de lado 1, prove que existem pelo menos dois pontos cuja distancia entre

N . V2
eles nao é maior que 5

Solugao: Dividimos o quadrado unitario em quatro quadrados menores congruentes de
1

lado 2 tracando linhas que conectam os pontos médios de lados opostos. Pelo principio

da casa dos pombos, pelo menos um desses quatro quadrados menores deve conter pelo

menos dois dos cinco pontos. A diagonal do quadrado unitario mede v/2. Portanto, a

diagonal de cada um dos quatro quadrados menores mede \/75 e essa € a maior distancia

possivel entre dois pontos dentro de um mesmo quadrado de lado % [ |
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Para leitores interessados em aprofundar seus conhecimentos sobre os princi-
pios estudados, recomenda-se a consulta as seguintes obras Carvalho(2015), Neto(2012),
Neto(2016), Lima (1981) e Oliveira(1998)) que serviram de referéncias para o texto apre-

sentados neste capitulo.
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4 O PRINCIPIO DA INVARIANCIA

Uma das melhores estratégias para resolver problemas de olimpiadas é encon-
trar os invariantes. O Principio da Invariancia é basicamente sobre descobrir o que nao
muda, mesmo quando a gente faz operacoes ou transformagoes permitidas no problema.
Ele nao segue uma féormula pronta, mas depende mais de argumentos logicos e matema-
ticos, usando conceitos de aritmética, algebra, geometria e outros. A ideia é usar esses
conceitos para chegar numa solucao clara e que faga sentido. O Principio da Invariancia é
aplicavel a algoritmod'} como jogos ou transformagdes, nos quais uma tarefa é executada
repetidamente. A questdo central é: o que permanece constante? O que se mantém inva-
riante ao longo dessas operagoes? Devemos analisar a seguinte situacao: “Se ha repeticao,
procure pelo que nao muda!”

Em algoritmos, temos um estado inicial S e uma sequéncia de passos permitidos
(movimentos ou transformagoes). O objetivo é responder as seguintes perguntas:

e Um determinado estado final pode ser alcancado?

e Quais sao todos os estados finais possiveis de serem alcancados?

e O processo converge para um estado final?

e Quais sao os periodos existentes, com ou sem pré-periodos, caso existam?

Por se tratar de um principio heuristicoE], o Principio da Invaridncia demanda
investigacao e analise cuidadosa para sua plena compreensao. Sua aplicacao eficaz evo-
lui principalmente através da prética sisteméatica, sendo a resolucao de problemas sele-
cionados, especialmente aqueles provenientes de obras de referéncia consagradas como
Problem-Solving Strategies (1998) e The Art and Craft of Problem Solving (2016) um
método mais eficiente para domina-lo. Esta abordagem tem como objetivo desenvolver
no leitor uma compreensao solida da aplicacao eficiente do conceito nos problemas tipicos
das olimpiadas nacionais de matemaética.

Exemplo 4.1. Sete moedas estao sobre uma mesa mostrando a cara. Podemos escolher
quaisquer quatro delas e vird-las ao mesmo tempo. Podemos obter todas as moedas
mostrando a coroa?
Solugao: Em um instante qualquer da dinamica do jogo, quando escolhemos quatro moe-
das para virar, observando as faces viradas para cima, sempre teremos uma das seguintes
possibilidades:

e (Quatro caras

e Trés caras e uma coroa;

1Um algoritmo é um conjunto finito de instru¢des bem definidas e ordenadas que, quando executadas
passo a passo, resolvem um problema especifico ou realizam uma tarefa. Ele deve ser deterministico
(produzir o mesmo resultado para a mesma entrada), eficiente (usar recursos de forma otimizada) e
genérico (funcionar para uma classe de problemas, ndo apenas para um caso especifico).

2Na educacdo matematica, estratégias cognitivas que facilitam a descoberta de solucoes através de
analogias, experimentacao e padroes reconheciveis.
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e Duas caras e duas coroas;

e Uma cara e trés coroas;

e (Quatro coroas.
Em cada uma dessas situacoes, vamos analisar como varia a quantidade de moedas com
a coroa virada para cima. Na primeira possibilidade, ao virarmos as quatro moedas,
passamos a ter quatro coroas a mais na configuracdo. Na segunda, passamos a ter duas
coroas a mais. Na terceira, a quantidade de coroas nao se altera. Na quarta, perdemos
duas coroas. E na quinta, perdemos quatro. Veja que o nimero de coroas sempre varia
por uma quantidade par. A observacao crucial aqui é que a propriedade de um nimero
ser par ou impar (isso é o que chamamos de paridade) nao se altera quando adicionamos
a ele uma quantidade par. Ou seja, um nimero par adicionado de uma quantidade par,
continua par. Do mesmo modo, um nimero impar adicionado de uma quantidade par,
continua impar. Portanto, a quantidade de coroas, que ¢ inicialmente zero (par), sempre
serd par. Logo, é impossivel obter todas as sete moedas com a coroa virada para cima.
Neste caso, a paridade da quantidade de coroas é invariante. [ |
Exemplo 4.2. Em cada um dos dez degraus de uma escada existe uma ra. Cada ra pode,
dando um pulo, ir para outro degrau. Porém, quando uma ra faz isso, ao mesmo tempo,
uma outra ra deve pular a mesma quantidade de degraus em sentido contrario: uma sobe
e outra desce. Conseguirao as ras colocar-se todas juntas no mesmo degrau? Justifique.
Solucgao: Para entender se as ras podem se reunir em um mesmo degrau, vamos criar uma
maneira de acompanhar suas posicoes. Para isso, vamos enumerar os degraus da escada
usando os nimeros de 1 até 10 de baixo para cima, de modo que o degrau mais baixo
recebe o niimero 1 e o mais alto recebe o 10. A ideia é atribuir a cada ra um nimero igual
ao nimero do degrau onde ela ocupa. Vamos entao considerar a soma dos dez nimeros
atribuidos as dez ras. No inicio, como temos ras nos degraus de 1 a 10, a referida soma é
dada por

14+243+---410 = 55.

O ponto crucial é perceber que, pelas condi¢cbes do problema, essa soma é invariante.
Nao importa quantos pulos as ras deem. Por exemplo, se uma ra que estava no degrau 9
pula para o degrau 6, a soma total diminuird de 3 unidades. Porém, pelas condicoes do
problema, uma outra ra devera subir 3 degraus, o que fara a soma aumentar também de
3 unidades, uma subindo e outra descendo o mesmo nimero de degraus, os aumentos e
diminuicOes se cancelam, perfeitamente mantendo a soma total constante. Agora, imagine
que em algum momento todas as ras conseguissem ficar em um mesmo degrau. Se esse
degrau fosse o nimero x, entdo a soma total dos niimeros atribuidos as ras seria 10 vezes
x (pois sdo 10 ras no degrau z). Mas sabemos que a soma total deve permanecer 55,
entao terfamos 10x = 55. Isso levaria a z = %, o que nao faz sentido porque os degraus

sao numerados com numeros inteiros. Portanto, concluimos que é impossivel que todas
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as ras se reinam em um mesmo degrau. [ |
Observagao 4.1. Podemos generalizar o problema acima considerando uma escada com n
degraus na qual h& uma ra posicionada em cada degrau e a dinamica de movimentos é
a mesma descrita antes. Seguindo a mesma ideia da resolucao acima, temos que a soma

dos ntmeros associados as ras é:

n(n+1).

L2434+ 4n=——

Portanto, se em algum momento todas as ras estiverem em um mesmo degrau, digamos

correspondente ao namero d, entao

n(n—l—l).

d =
" 2

Portanto, devemos ter d = ”T“

. Logo, para que seja possivel concentrar todas as ras em
um mesmo degrau, n deve ser impar e a Unica possibilidade é concentra-las no degrau do
meio da escada. Isso mostra que o principio da invariancia pode ser usado nao apenas
para responder negativamente a um questionamento, mas também para analisar em quais
condicoes a situacao almejada é possivel.

Exemplo 4.3. Cada um dos nimeros ay,as,...,a, ¢ 1 ou —1, e temos que:
S = ayasasay + asasagas + - - - + apaiagsas = 0.

Prove que 4 | n.

Solugao: Consideremos a sequéncia de produtos consecutivos de quatro elementos como

Py, = apap4101420543,

com k=1,2,3,...,n e convencionamos que G, 1 = G, ap12 = Ao € A3 = a3. A soma S
de todos esses produtos P, ¢ dada por S = > | P, = 0. Observe que cada a; aparece
exatamente em quatro das parcelas dessa soma. Assim, quando multiplicamos todos os

produtos Py, cada termo a; aparece com expoente igual a quatro, isto é,

n n 4

P = H P, = H(akak+1ak+2ak+3) = H a; | =1
k=1

k=1 i=1

Por outro lado, como Py, € {—1, 1}, para que tenhamos S = 0, é necessario que o nimero
de termos P, = 1 seja igual ao niimero de termos P, = —1. Dai, sendo m o nimero de
termos P, = 1, entao m = n — m, pois a soma S tem n parcelas. Portanto, n = 2m.
Finalmente, como P = 1 e também, P = (—1)""™ = (—1)™, concluimos que m deve ser
par. Logo, n = 2m é divisivel por 4. [ |

Exemplo 4.4. Considere um ntmero inteiro positivo impar n. Em um quadro, sao



39

escritos inicialmente todos os nimeros inteiros 1,2,...,2n . A seguir, realiza-se repetida-
mente a seguinte operacao: escolhem-se dois nimeros quaisquer a e b presentes no quadro,
apagam-se esses nimeros e escreve-se, em seu lugar, o valor absoluto da diferenca |a — b|.
Demonstre que, ao final deste processo, restard necessariamente um ntmero impar no
quadro.

Solucao: Seja S a soma de todos os nimeros no quadro-negro. Inicialmente:
S=1+2+---4+2n=n(2n+1).

Como n é impar e 2n + 1 também é impar (pois 2n é par e somando 1 fica impar), seu
produto n(2n + 1) é impar. Em cada passo, quando substituimos a e b por |a — b, a
mudanca na soma é:

AS =|a—0b] — (a+Db).

Podemos analisar dois casos:
1. Sea>b: la—b=a—>b,entdo AS = (a—0b) —a—b= —2b.
2. Seb>a:la—b=b—a,entdo AS=(b—a)—a—b= —2a.
Em ambos os casos, a soma ¢ subtraida de um ndmero par, a saber: o dobro
do menor dos nimeros. Assim, como a soma inicial é impar, ao final de cada operacao a
soma resultante continua fmpar e o total de niimeros escritos no quadro diminui de uma
unidade. Logo, ap6s um certo nimero de repeticoes restara apenas um niimero escrito no
quadro e esse niimero sera impar. [ |
Exemplo 4.5. Um circulo ¢ dividido em seis setores. Em seguida, os ntimeros 1, 0, 1, 0,
0, 0 sdo escritos nos setores (no sentido anti-horério, por exemplo). Vocé pode aumentar
dois niimeros vizinhos em 1. E possivel igualar todos os niimeros através de uma sequéncia
de tais operagoes?
Solucao: Suponha que aq, . .., ag 80 0os nimeros atualmente nos setores conforme a figura

[l Consideremos a soma alternada:
I=a;—ay+as— a4+ as— ag.
Com valor inicial dado por
I=1-04+1-04+0-0=2.

Temos que cada movimento adiciona 1 a dois nimeros vizinhos. Além disso,
quaisquer dois termos vizinhos tém sinais contrarios. Portanto, uma parcela contribui
para aumentar o numero I em uma unidade, mas a outra o faz diminuir em uma unidade.
Logo, o valor de I é um invariante do problema. Como o valor inicial é [ = 2 e o valor

almejado para nimeros iguais seria I = 0 (pois todos os a; seriam iguais), concluimos que
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é impossivel equalizar todos os niimeros com as operacoes permitidas.

Figura 1 — Circulo dividido em 6 setores
a2

as
Fonte: Proprio autor (2025).

4.1 APLICACOES GEOMETRICAS

Invariantes geométricos sao propriedades ou caracteristicas que permanecem
inalteradas sob determinadas transformacoes, como rotacoes, translagoes, reflexdes ou
homotetias. Eles desempenham um papel fundamental na geometria e em suas aplicacoes,
pois permitem identificar e classificar objetos independentemente de sua posi¢ao ou escala.

Por exemplo, a razdo entre segmentos (razao simples) é um invariante proje-
tivo, enquanto distancias e angulos sao invariantes em transformacoes rigidas (isometrias).
Apresentaremos alguns invariantes geométricos relevantes para a resolucao de problemas
olimpicos.

Exemplo 4.6. Dado um ponto fixo P dentro do circulo fixo, trace uma linha que passa
por P e intersecta o circulo nos pontos X e Y. A poténcia do ponto P em relacao a esse
circulo é definida como o produto PX - PY. Qual a relacao do conceito de poténcia de
ponto com o conceito de invariantes?

Solucao: A poténcia do ponto é um invariante geométrico, pois seu valor nao depende da
reta especifica tragada por P. Para qualquer outra reta passando por P e intersectando

o circulo em X’ e Y, tem-se que:
PX.-PY = PX'.PY'.

Esse valor constante ¢ dado por |[PO? — 72|, onde O ¢ o centro do circulo e r seu raio.
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Figura 2 — Poténcia de um ponto

Y/

X/

Pot(P) = PX-PY = PX'-PY' = OP*—r?
Fonte: Proprio autor (2025).
|
Exemplo 4.7. Considere n pontos dispostos sobre uma circunferéncia. Trace todas as
cordas que ligam esses pontos dois a dois, de modo que nao existam trés cordas se in-
tersectando no mesmo ponto dentro do circulo. Nessas condigoes, em quantas regioes o
interior do circulo fica dividido?
Solugao: Para cada n, temos L = (g) é o niimero total de segmentos de reta que podemos
tracar ligando os n pontos. Denotemos por P o numero de pontos de intersecao interiores
ao circulo que esses L segmentos determinam e seja R o niimero de regidoes em que o
circulo fica dividido. Assim, paran =2 temos L =1, P =0 e R = 2. Para n = 3, temos
L=3,P=0eR=4 Paran=4, temos L= (}) =6,P=1e R=8.

Figura 3 — Regioes de um circulo delimitada por 1, 3 e 6 cordas

Fonte: Proprio autor (2025).

Esses casos nos sugerem que a quantidade R — L — P é um invariante, pois em
todos esses casos analisados temos R — P — L = 1. Suponha que as cordas sao adicionadas
a figura uma de cada vez. Uma nova corda ao ser adicionada, corta varias regioes ja
existentes, aumentando o nimero de secoes. O nimero de regioes extras é o ntumero de
segmentos em que a nova corda fica dividida pelas cordas que ela cruza, pois cada segmento
divide uma regiao ja existente em dois pedacos, fazendo o total de regidoes aumentar de

uma unidade. Portanto, o acréscimo no nimero de regioes é uma unidade a mais que o
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ntimero de pontos de interse¢ao que ocorrem ao longo da nova corda.

Figura 4 — Regioes de um circulo delimitada por 4 cordas

Fonte: Proprio autor (2025).

Em outras palavras, sempre que adicionamos uma nova corda, a diferenca R — P aumenta
em uma unidade. Como L também aumenta de uma unidade, concluimos que (R—P)—L
permanece constante. Assim, vemos que R — P — L é um invariante do problema, que

tem valor igual a 1, como vimos nos casos iniciais. Portanto,
R=P+L+1

Ja vimos que L = (72‘) Por outro lado, observe que cada ponto de intersecao
interior ao circulo é determinado por um Wnico par de cordas. Esse par de cordas,
por sua vez, é determinado por quatro dos n pontos que foram dados sobre o circulo.
Reciprocamente, quaisquer quatro dos n pontos determinam um quadrildtero inscrito no
circulo e, consequentemente, um par de diagonais que determinam um Unico ponto de
intersecao no interior do circulo. Desse modo, temos uma correspondéncia biunivoca

entre pontos de intersecao e quadruplas de pontos escolhidos dentre os n pontos dados.

Figura 5 — Representacao biunivoca dos pares de pontos que determinam as regioes
p3
/ |
P1 o\\.

\pQ

Ps
Fonte: Proprio autor (2025).



43

Portanto, P = (7). Logo,

R(n) = (Z) + (Z) Y

Observagao 4.2. Observe que o nimero de regides pode ser derivado de forma muito ele-
gante acompanhando o nimero de regioes que sao perdidas quando as linhas sao deletadas
uma a uma. Cada secao de uma linha separa duas regioes que se unem em uma tnica
parte quando a linha é removida. O nimero de regides perdidas, entdo, é um a mais
que o numero de pontos de intersecao na linha. Agora, cada ponto de intersecdao esté
em duas linhas, e com a remocao de qualquer uma delas, ele desaparece da outra tam-
bém. Portanto, cada ponto de intersecao figura exatamente uma vez na operacao total

de desmontagem, e para cada linha o nimero de regioes perdidas é:
(nimero de pontos de interse¢ao restantes na linha) + 1.

Somando sobre a remocao de todas as L linhas, vemos que nosso total conterd todos os
P pontos de intersecao mais um 1 para cada linha, implicando que um total de P + L
regioes sao perdidas. Como no final permanece apenas uma regiao, concluimos que no

inicio tinhamos P + L + 1 regides.

4.2 APLICACOES ARITMETICAS

Em aritmética, os invariantes sao ferramentas fundamentais que revelam pro-
priedades essenciais dos niimeros, mantendo-se constantes mesmo sob operacoes matema-
ticas. Um dos exemplos mais simples e poderosos ¢ o conceito de paridade (a classificagao
de um namero como par ou impar), que funciona como um invariante crucial em diversos
problemas. Por exemplo, em somas ou multiplicagoes, a paridade do resultado depende
apenas da paridade dos operandos (par + par = par, impar + impar = par, etc.), permi-
tindo resolver problemas de divisibilidade e demonstrar resultados como a impossibilidade
de escrever um ntimero impar como soma de dois ntimeros impares consecutivos. Outro
invariante fundamental é o resto modulo n, que generaliza a paridade e permite analisar
congruéncias e ciclos em sequéncias numéricas.

Além disso, invariantes como o maximo divisor comum (MDC) e a fatoracao
em primos sao essenciais para simplificar problemas complexos. O algoritmo de Fuclides,
por exemplo, se baseia no invariante mdc(a,b) = mdc(b, @ mod b) para calcular eficien-
temente o MDC. Ja o Teorema Fundamental da Aritmética, que garante a fatoracao
unica de ntmeros inteiros em primos, depende da invariancia dessa decomposicao. Es-
ses conceitos nao apenas facilitam a resolucao de equacoes diofantinas e problemas de
competicoes matematicas, mas também tém aplicacoes praticas em criptografia e ciéncia

da computacao. Em suma, invariantes como paridade, restos moédulo n e propriedades
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de divisibilidade sao pilares da aritmética, oferecendo métodos elegantes e eficazes para
explorar a estrutura dos nimeros.

Os ntmeros inteiros sao classificados em duas categorias fundamentais quanto
a paridade: pares e impares. Um namero é par se é divisivel por 2, caso contrario, é
impar. Vale destacar que o zero ¢ considerado par, seguindo essa definicao. Embora
a paridade pareca um conceito bésico, ela possui propriedades fundamentais que sao
amplamente utilizadas na matematica, especialmente em problemas de olimpiadas e teoria
dos nimeros. Temos como propriedades da paridade:

e Paridade da Soma:
A soma de um conjunto de niimeros inteiros tera paridade impar se, e somente se,
a quantidade de ntimeros fmpares no conjunto for impar. Caso contrario, a soma
sera par.

e Paridade do Produto:
O produto de um conjunto de niimeros inteiros serd impar apenas se nenhum dos
fatores for par. Se pelo menos um ntmero no conjunto for par, o produto seré par.

Essas propriedades, embora simples, sao ferramentas poderosas na resolugao
de problemas matematicos. Os exemplos a seguir ilustrarao isso.

Exemplo 4.8. Em um torneio de ténis individual com 127 participantes, prove que, ao
final do torneio, o nimero de pessoas que jogaram um niimero impar de partidas ¢ par.
Solucido: E comum pensar que para resolver esse problema devemos supor que o torneio
seja disputado, como eliminatoria dupla (Mata-mata) ou rodizio. Porém, o problema nao
especifica a estrutura do torneio! Logo, s6 podemos considerar que, independentemente
de como o torneio é organizado, o nimero de pessoas que jogaram um nimero fmpar de
partidas deve ser par. Por exemplo, em um cenario extremo, se ninguém jogar nenhuma
partida, o nimero de pessoas que jogaram um ntumero impar de partidas é zero, que ¢ um
numero par, satisfazendo a condicao.

Parece haver poucas restricoes, mas ha uma crucial: cada partida envolve
exatamente dois jogadores. Em outras palavras, se o jogador A joga contra o jogador
B, essa partida é contabilizada duas vezes: uma vez na contagem de partidas de A e
uma vez na contagem de partidas de B. Formalmente, se denotarmos por g; o niimero de

partidas jogadas pelo i-ésimo jogador ao final do torneio, entao a soma

g1+ 92+ 93+ -+ gior,

deve ser par, pois essa soma conta cada partida jogada exatamente duas vezes! Note
que essa soma € sempre par, nao apenas ao final do torneio, mas em qualquer momento
durante sua realizacao.

Agora, a conclusao é imediata: a soma acima é par e consiste na adicao de um
niumero impar de termos (127). Se um ntimero impar desses termos fosse impar, a soma

nao poderia ser par. Portanto, o nimero de g; que sao impares deve ser par. [ |
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Exemplo 4.9. Seja aq,ao, ..., a, uma permutacao arbitraria dos nimeros 1,2,3,...,n.

Prove que, se n é impar, o produto
(ay — 1)(ag —2)(az3 —3) -+ (a, — n)

é um numero par.
Solucgao: E til comecar analisando o caso com n = 11. Recordando o que ja sabemos

sobre paridade, perguntamos: o que garante que o produto
(a1 —1)(a2 — 2)(as — 3) -+ (a1 — 11)

seja par? Claramente, basta mostrar que pelo menos um dos termos (a; — 1), (as —
2),...,(a;; — 11) é par. Como podemos fazer isso? Uma estratégia eficaz é tentar uma
prova por contradicao, pois precisamos mostrar que apenas um desses termos é par, e nao
sabemos qual deles. Se assumirmos que todos os termos sao impares, teremos informacoes

especificas para trabalhar. Assim, suponha que cada um dos termos
(al - 1)7 <a2 - 2)7 ) (all - 11)

seja impar. Podemos entao determinar a paridade dos a; originais. Observe que:
e Se (a; —1) é impar, entdo a; e i tém paridades opostas. Ou seja:
— Se 1 é par, a; ¢ impar.
— Se i é impar, a; é par.

Aplicando essa logica ao caso n = 11:

e Os indices impares sao 1,3,5,7,9,11. Portanto, ay, as, as, ar, ag, ay; Sao pares.
e Os indices pares sao 2,4,6,8,10. Portanto, as, a4, ag, as, ajp Sao fmpares.

No entanto, isso leva a uma contradicao, pois os a; sao uma permutacao dos
nameros 1,2,3,...,11, que contém exatamente cinco ntimeros pares (2,4,6,8,10) e seis
niumeros impares (1,3,5,7,9,11). Pela nossa suposicao, teriamos seis nimeros pares
(a1, a3, as,az, ag,asy) e cinco nimeros impares (as, a4, ag, as, ajp), 0 que é impossivel, pois
a contagem de niimeros pares e impares nao coincide com a do conjunto original.

Portanto, nossa suposi¢ao inicial (de que todos os termos (a; — i) sdo impares)
é falsa. Concluimos que pelo menos um dos termos (a; — i) deve ser par, o que implica

que o produto
(ay — 1)(ag —2)---(a, —n)

é par. Esse argumento se estende ao caso geral, pois a Unica propriedade especial de 11

que utilizamos foi o fato de ser impar. Assim, para qualquer n impar, o produto é par. B

Observagao 4.3. Agora iremos considerar como ideia central a soma dos termos. Logo:
(ay — 1)+ (ag—2)+ -+ (a, — n)

pode ser reescrita como:
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(a1 +as+--+a,) —(14+24---+n).

Lembre que aq, as, . . ., a, ¢ uma permutacao dos nimeros 1,2, ...,n. Portanto,
a soma a; +as + -+ + a, € igual 4 soma 1+ 2+ --- 4+ n. Assim, a expressdo acima se
simplifica para:

(1+2+---4+n)—(1+2+---4+n)=0,

ou seja, a soma dos termos (a; — 1), (ay — 2),...,(a, —n) é sempre igual a zero, inde-
pendentemente da permutacao escolhida. Isso significa que essa soma é um invariante:
seu valor nao muda, nao importa como os nimeros 1,2,...,n sejam rearranjados.

Agora, note que estamos somando um ntmero impar de termos (pois n é
impar) e o resultado dessa soma é zero, que é um niumero par. Sabemos que a soma de
um numero impar de inteiros s6 pode ser par se pelo menos um desses inteiros for par.
Caso contrario, a soma seria fmpar. Portanto, pelo menos um dos termos (a; — i) deve

ser par e assim concluimos que o produto
(ay — 1)(ag —2)---(a, —n)

deve ser par, pois pelo menos um de seus fatores é par.

Nessa nova abordagem do problema de maneira geral e criativa, mostramos que
a soma dos termos (a;—1) é sempre zero (invariante), independentemente da permutagao.
Foi um caminho importante que pode ser aplicado em muitos outros problemas.
Exemplo 4.10. Sejam Py, P, ..., Pyo5 pontos distintos no plano. Conecte os pontos
com os segmentos de reta PP, PoPs, P3Py, ..., PogosPogos, PogasPi- E possivel tracar
uma reta que passe pelo interior de cada um desses segmentos?

Solugao: De inicio nao da pra saber se a paridade importa nesse caso, mas ¢ bom nao
esquecer dessa possibilidade. Pois quando um problema envolve ntimeros inteiros, observar
a paridade pode fazer a diferenca.

Este problema envolve 2025 pontos. Alguns testes com um nimero bem menor
de pontos vao te convencer facilmente (faca isso!) de que é possivel tracar a reta se, e
somente se, o nimero de pontos for par. Entao, a paridade parece ser importante. Vamos
encontrar um argumento rigoroso para um caso especifico, digamos, sete pontos. Mais
uma vez, usaremos um raciocinio por contradicao, porque assumir que podemos tracar a
reta nos da varias informagoes concretas para trabalhar.

Entao, suponha que exista uma reta L que passa pelo interior de cada seg-
mento. Essa reta divide o plano em duas regioes (semiplanos), que chamaremos de lado
“esquerdo” e “direito” de L. Sem perda de generalidade, P, esti no lado esquerdo de L.
Isso forca P, a ficar no lado direito, o que, por sua vez, obriga P; a ficar no esquerdo, P,
no direito, e assim por diante como mostrado na figura [f] O detalhe importante ¢ que
P; acaba no lado esquerdo, junto com P;. Portanto, L nao pode passar pelo interior do

segmento P P7, logo uma contradicao.
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Figura 6 — 7 pontos em zigzag

1?1\
¥

Fonte: Préprio autor.
Esse argumento se generaliza facilmente sempre que n for impar, P, e P, ficarao
do mesmo lado de L.

|
Exemplo 4.11. (IMO 1985) Dado um conjunto de 1.985 nimeros inteiros positivos (ndo

necessariamente distintos), em que nenhum deles tem fatores primos maiores que 23, prove

que sempre existem quatro ntmeros desse conjunto cujo produto é um inteiro elevado a
quarta poténcia.

Solucgao: Este é um problema bastante complexo, que exige analise de paridade junto

com aplicagoes criativas e sucessivas do principio das gavetas de Dirichlet. Cada namero
deste conjunto pode ser expresso na forma:
2N 3l255 71117551300 17/719/523 7,

onde os expoentes fi, fa,..., fo sdo inteiros nao negativos. O produto de dois nimeros
desse tipo,

(2f1 . 23f9) X (291 . 23y9)’
serd um quadrado perfeito se, e somente se, os expoentes correspondentes tiverem a mesma,
paridade (ambos pares ou ambos impares). Em outras palavras,
(2f1 .. 23f9) % (291 . 2399)
serd um quadrado perfeito se e somente se:

e fi e g tiverem a mesma paridade,

e fy e go tiverem a mesma paridade,

e fy e gg tiverem a mesma paridade.

A cada nimero desse conjunto, associamos uma 9-upla ordenada (lista orde-
nada com 9 termos) que representa a paridade dos expoentes. Por exemplo, o nimero
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2103517123111

corresponde & 9-upla:
(par, impar, par, par, par, par, impar, par, impar).

Como cada coordenada admite duas possibilidades: par ou impar, o principio
fundamental da contagem nos diz que existem 2° = 512 (9-uplas possiveis). Usando
repetidamente o principio da casa dos pombos, concluimos que 1472 dos inteiros do

conjunto podem ser organizados em 736 pares

{Ch, b1}7 {CL2, 52}7 ceey {a736> b736}7

onde cada par contém dois nimeros com a mesma 9-upla de paridade dos expoentes.

Assim, o produto dos nimeros em cada par é um quadrado perfeito. Ou seja, se definirmos

Ci = a;b,

entao cada termo da lista

Cla 027 ey C736

é um quadrado perfeito. Consequentemente, cada uma das raizes

\/517\/?27"'7\/0736

¢ um numero inteiro cujos fatores primos nao excedem 23.
Aplicando novamente o principio da casa dos pombos, concluimos que pelo
menos dois nimeros na lista acima compartilham a mesma 9-upla de paridade dos expo-

entes. Sem perda de generalidade, sejam esses nimeros v/Cj, e 1/C;. Entao, /Ci x /C}
¢ um quadrado perfeito, ou seja, v/Cy x /C; =n? para algum inteiro n. Logo,

Cij = n4.
Como CyC; = aibra;bj, encontramos quatro nimeros do conjunto original de 1.985
inteiros cujo produto é uma quarta poténcia de um inteiro. |

Exemplo 4.12. Seja s(/N) a soma dos digitos da representac¢io decimal de um nimero
inteiro positivo N. Mostre que N — s(N) é sempre divisivel por 9. Por exemplo, se
N = 237, entao

N—s(N)=237T—(2+3+7)=225=9-25.

Solugao: Considere um ntimero inteiro positivo N com k algarismos, representado por:
N =ag-10F +ap_q - 10 + - 4+ a5 - 10 + ao,

onde ay,ag_1,...,ay sao os algarismos de N, com 0 < a; < 9 para todo i € {1,2,3...,9}.
Agora note que:
10=9+1,



49

10°=100=99+1=9-11 +1,
10° = 1000 = 999 +1 =9 111 + 1,

e, em geral:
10" =9-111...1+1.
——

m digitos
Portanto, podemos escrever:
10" =9.-C,, + 1,
onde C,, é um namero inteiro que consiste em m digitos 1 (por exemplo, Cy = 11,
C3 = 111, etc.). Substituindo 10™ =9 - C,,, + 1 na expressdo de N, obtemos:

N=a, - (9-Co+1)4+ap1-9-Cr1+1)+--4a;-(9-C1+ 1)+ ao.
Expandindo os termos, temos:
N=9 (ar - Cr+ap—1-Cro1+--+ar-C)+ (ar + ag_1+ -+ a1 + aop).
Simplificando, podemos escrever:
N=9-Q+s(N)=N—-5s(N)=9-0Q,

onde temos:
Q=ay, Cp+ag-Ch1+---+a-C) €L
Isso nos permite estabelecer o critério de divisibilidade por 9. De fato, se S =
s(N) (a soma dos algarismos de N) for divisivel por 9, entdo S = 9- T, onde T é um

numero inteiro. Substituindo na expressao de N, temos:
N=9-Q+9-T=9-(Q+T).

Portanto, NV é divisivel por 9. Reciprocamente, se N for divisivel por 9, entao N =9 - R,

onde R é um numero inteiro. Substituindo na expressao de N, temos:
9-R=9-Q+S.
Isolando S, obtemos:
S=9-(R—Q).
Logo, S ¢ divisivel por 9. [ |

Observacgao 4.4. Os critérios de divisibilidade representam alguns dos invariantes aritmé-
ticos mais fundamentais e praticos, pois revelam propriedades intrinsecas dos nimeros
que se mantém inalteradas mesmo sob diversas operacoes e transformacgoes. Esses invari-
antes nao apenas oferecem métodos eficientes para testar divisibilidade sem a necessidade
de calculos trabalhosos, como a conhecida regra da soma dos digitos para divisibilidade
por 9 que acabamos de ver a prova, mas também desvendam relagoes profundas entre

a representagao posicional dos niimeros e suas caracteristicas algébricas subjacentes. O
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caso da divisibilidade por 9 é particularmente ilustrativo: como o critério depende apenas
da soma dos digitos, ele permanece valido mesmo quando estes sao permutados, demons-
trando que se trata de uma propriedade combinatéria inerente ao conjunto de digitos,
independentemente de sua disposicao especifica.

Essencialmente, os critérios de divisibilidade sintetizam a utilidade da arit-
mética modular, convertendo problemas aparentemente complexos de divisibilidade em
verificacdes simples e elegantes, fundamentadas em propriedades invariantes robustas e
matematicamente consistentes.

Exemplo 4.13. No inicio, uma sala estd vazia. A cada minuto, ou uma pessoa entra
ou duas pessoas saem. Apoés exatamente 3'%% minutos, a sala poderia conter 3190 4 2
pessoas?
Solucao: Se ha n pessoas na sala, ap6s um minuto, havera n+1 ou n — 2 pessoas. A dife-
renca entre esses dois resultados possiveis é 3. Continuando por mais tempo, observamos
que:

e Em qualquer momento fixo ¢, todos os valores possiveis para a populacao da sala

diferem entre si por miltiplos de 3.

31999 pessoas (assu-

Em 3% minutos, uma possivel populacdo da sala seria
mindo que uma pessoa entrou a cada minuto). Esse nimero ¢ um miltiplo de 3, entao
todos os valores possiveis para a populacao da sala também devem ser multiplos de 3.

Portanto, 3'°°° 4- 2 nio serd uma populacio valida. |

4.3 APLICACOES VARIADAS

A seguir, exploraremos o uso de invariantes em diversas aplica¢oes, ampliando
o escopo de problemas em que eles se aplicam.
Exemplo 4.14. Comegando com o conjunto {3,4,12}, é permitido apagar dois nimeros
a e b e escrever em seus lugares 0,6a — 0,8b e 0,8a + 0,6b, respectivamente. E possivel
chegar ao conjunto {4,6,12}7
Solugao: Note que (0,6a — 0,8b)2 + (0,8a + 0,6b)? = a? + b2, implicando que a soma dos
quadrados dos ntimeros dos conjuntos obtidos é invariante. Como 32442+122 = 169 = 132
e 42 + 62 4 122 = 196 = 14? entao nao ¢ possivel chegar ao conjunto {4,6,12}. [ |

Exemplo 4.15. Encontre a solucao da equacao z* + 23 + 2> + 2 +1 = 0.
Solugao: Usaremos a simetria dos coeficientes como ponto de partida para impor ainda

mais simetria nos graus dos termos. Basta dividir por 2 e obteremos:

) 11
l‘+l’+1+—+—2:0.
X xz

O problema pode nao ter ficado mais facil de resolver, porém agora ha mais
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simetria, pois podemos agrupar termos semelhantes da seguinte forma:
1 1
?+ S +r+-+1=0. (1)
x x

Tomando v = = + % = ul=2+2+ ;12, substituindo em H teremos:
wW4u—1=0,

com solucoes

Resolvendo z + 1 = u, obtemos z? —uz +1 =0, ou

uwtVuz—4
5 )

Tr =

Substituindo para os valores de u obtemos:

A2 -4 115+iV10+2V5

Tr = .

2 4

Quando aumentamos a simetria do problema e fazemos a substituicao conveniente de wu

por x 4+ 1

0s passos seguintes sao meramente técnicos, pois s6 resta trabalhar com a
equacao para chegar a solucao desejada. [ |
Observacao 4.5. A simetria é uma propriedade relacionada ao conceito de invariantes.
Pois dado um objeto (geométrico ou ndo) simétrico, € um invariante em relagio a alguma,

transformacao ou conjunto de transformacoes. No caso do exemplo acima, a equacao

11
P?+r4+l+-—+—5=0
T T

¢ invariante por meio da transformacao

1
xr — —.
x

1
x
Exemplo 4.16. As seguintes operacoes sao permitidas com a equacdo quadratica az? +
bx + c:

Isso nos diz que se x for uma raiz, entao > também sera.

(i) Trocar as posicoes de a e ¢;

(ii) Trocar x por = + t, onde t é um niimero real;
Repetindo estas transformacoes é possivel transformar 22 — 2 — 2 em 22 — 2 — 17
Solugao: Veremos que o discriminante serd invariante nas equacoes executando as ope-

racoes desejadas.
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(i) Temos que pela equagao az? + bz + ¢; Ag = b* — 4ac. Trocando a e ¢ na equagao
quadratica temos:
az? 4+ bx + ¢ — cx? + bx + a.

E para esta nova equacao teremos A; = b — 4ca = A,.

(ii) Agora fazendo a troca de x por x +t teremos:
alx +t)* +b(x + 1) +c = ax® + (b + 2at)x + at® + bt + c.
Calculando o novo discriminante:

Ay = (b+2at)*—4a(at* +bt+c) = b*+4abt+4a*t* —4a*t* —dabt—4ac = b* —4dac = A,.

2 —1.

Agora vamos verificar que se ¢ possivel transformar 22 —z — 2 em z
Temos que:

— O discriminante de 22 — 2z —2é A= (-1)2—-4-1-(-2)=1+8=9

— O discriminante de 22 —z —1é A* = (=1)2—4-1-(=1)=1+4=5
Como as transformagoes mantém o discriminante invariante (A = Ag = Ay = Ay)

e 9 # 5, a transformacao é impossivel. -

Exemplo 4.17. (Lenigrado 1990) O namero 123 esté na tela do computador de Teddy.
A cada minuto, o nimero escrito na tela é somado com 102. Teddy pode trocar a ordem
dos digitos do nimero escrito na tela quando ele quiser. Ele pode fazer com que o numero
escrito na tela seja sempre um nimero de trés digitos?

Solucao: Como 123 e 102 sao ambos miltiplos de 3, e além disso, permutar os digitos
de um ntimero nao modifica o resto da divisao por 3, vemos que os numeros na tela do
computador sempre serao miltiplos de 3. Assim, como podemos realizar as operacoes
muitas vezes (infinitas), se for possivel sempre permanecer com um nimero de trés digitos
na tela, em algum momento esse niimero deve se repetir. Como veremos que é possivel
montar uma sequéncia de operacoes em que o 123 volta a aparecer. Para isso, seja S a
operacao de somar 102 e seja P a operagao de permutar algarismos. Assim, é possivel

manter sempre 3 digitos com a seguinte sequéncia estratégica:

123 55 9295 5 397 2, 499 5 531 5 633 £ 336 25 438 55 540

2405 25 507 2 609 25 711 B 117 55 219 55 321 & 193.
[ |

Observagao 4.6. Note que a maioria dos problemas de invariancia tem enunciados muito
semelhantes. Basicamente, todos perguntam se, dada uma determinada configuragao
inicial, é possivel alcancar outra configuracao especifica. Como vocé ja deve ter percebido,
na maioria dos casos, a resposta é nao. No entanto, cuidado! Existem problemas com

enunciados parecidos em que a resposta é sim. Nesses casos, além de afirmar que a
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transformacao é possivel, devemos demonstrar como alcangar a configuracao desejada.
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5 O PRINCIPIO DO ELEMENTO EXTREMO

O ensino da matematica transcende a mera aplicacao de féormulas e procedi-
mentos algoritmicos, trata-se de desenvolver o pensamento critico e estimular a curiosidade
intelectual. Para estudantes dedicados e com aptidao na matéria, o desafio consiste em
apresentar a disciplina como um campo de exploracao criativa e de inovacao. Uma estra-
tégia que funciona muito bem é propor problemas que provoque nos alunos um impulso
de curiosidade.

Nesse contexto, o Principio do Elemento Extremo surge como uma ferramenta
pedagogica eficaz. Trata-se de um principio que assim como o da invariancia, também nao
é tao conhecido. Mas é uma 6tima ferramenta na resolucao de problemas, principalmente
os que sao ligados as olimpiadas de mateméatica. A ideia é simples: em um problema
com varios elementos, focamos no “mator”, no “menor” ou em algum extremo que pode
revelar um caminho para a solugao. Pense, por exemplo, em problemas de geometria ou
algebra em que parece nao haver uma saida clara. Ao identificar o elemento mais distante,
o menor angulo ou um nimero que assume um papel maximo ou minimo, ajudando a
solucao aparecer como um quebra-cabeca: cada ideia é uma peca que, quando encaixada,
revela parte do todo. O Principio do Elemento Extremo pode nos fornecer essa peca-chave
que completa o quadro logico.

Inicialmente, temos que é fundamental observar trés condigoes basicas, porém
importantes para a aplicacao correta do algoritmo, elas sao:

e Todo conjunto finito de reais tem um minimo e um maximo, que nNao sao necessa-
riamente nicos.

e Todo conjunto nao vazio de inteiros positivos tem um minimo (esse é o principio da
boa ordem, que é equivalente ao principio da inducao finita.

e Se um conjunto infinito A de reais pode ter ou nao um elemento maximo ou minimo
(por exemplo, o intervalo real | — oo, 1[ ndo possui nenhum dos dois). Se A é
limitado superiormente, entao admite um limitante superior minimo, denotado por
sup A (supremo de A); Se A é limitado inferiormente, entao admite um limitante
inferior méximo, denotado por inf A (infimo de A).

Vale ressaltar que conjuntos finitos de niimeros reais sempre possuem elementos
extremos (maximo e minimo), enquanto conjuntos infinitos podem nao té-los (como no
exemplo {1,2,3,22, 5,23 ...}). No caso de conjuntos de inteiros positivos, podemos
recorrer ao Principio da Boa Ordenacao, que se tornara essencial na resolucao de diversos
problemas quando aplicamos a técnica do elemento extremo. Sugiro ao leitor visitar o
apéndice desse trabalho se preciso para rever a construcao dos reais como um corpo.

Temos que este principio tem natureza heuristica, assim como o principio da
invariancia. Portanto a sua estrutura de aplicagao segue um padrao caracteristico:

e Assume-se o contrario do que se quer provar.
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e Identifica-se o elemento extremo (minimo/maximo).

e Constroi-se uma contradi¢ao criando um elemento mais extremo.

Novamente, nosso estudo sera fundamentado em um conjunto variado de pro-
blemas selecionados das obras de referéncia The Art and Craft of Problem Solving (2016),
Problem-Solving Strategies (1998), Notas Olimpicas: Principio Extremal (2021)) e comple-
mentado com problemas classicos de olimpiadas internacionais. Com isso, vamos conseguir
absorver com mais naturalidade as técnicas de aplicacao do elemento extremo, explorando
suas diferentes nuances e variacoes.
Exemplo 5.1. (Leningrado 1988). Alguns pinos estdo em um tabuleiro de xadrez. A
cada segundo, um dos pinos move para uma casa vizinha (lado em comum). Apo6s muito
tempo verificou-se que cada pino havia passado todas as casas do tabuleiro exatamente
uma vez e tinha voltado para a sua casa inicial. Prove que existiu um momento em que
todos os pinos estavam fora de sua casa inicial.
Solucao: Suponha que P seja o primeiro pino a retornar a sua posi¢ao original de fato,
percorrendo todas as casas possiveis. E definimos ¢ como esse momento em que P retorna
a sua casa inicial. Imediatamente antes desse instante, no tempo ¢ — 1, teremos que:

e P estd necessariamente em uma posicao adjacente a sua origem, pois no proximo
movimento ele retornara.

e Todos os outros pinos nao podem estar em suas posi¢coes iniciais nesse momento,
pois P foi definido como o primeiro a retornar. Entao se algum outro pino jé tivesse
retornado antes, isso contradiria nossa escolha de P.

e Além disso, como cada pino precisa passar por todas as casas, incluindo a posicao
inicial de P, e P esta prestes a retornar, os demais pinos ja devem ter visitado a casa

inicial de P em algum momento anterior, mas nao podem estar 14 agora. -

Observacdo 5.1. O bom desta solugao estd em como a simples tomada de P como "o
primeiro a retornar"(nosso elemento extremo) contém toda a informagao necessaria. Essa
escolha inteligente nos permite deduzir o comportamento de todo o sistema em um mo-
mento critico, sem necessidade de analisar cada caso individualmente. O elemento extremo
age de forma a revelar a propriedade global que queremos demonstrar.
Exemplo 5.2. Responda:

(a) Em quantas partes, no maximo, um plano é dividido por n retas?

(b) Em quantas partes o espaco é dividido por n planos em posicao geral?
Solugao: Denotaremos P, o niimero de partes que o plano é dividido por n retas e S,, o
numero de partes que o espago é dividido por n planos. Ficaria facil observar que esses
problemas seriam melhor solucionados recursivamente, encontrando P, ; em funcgado de
P, e S,.1 em fungdo de S,. De fato, ao adicionar uma nova reta (ou plano) a n retas
(planos) ja existentes, obtemos facilmente P,.; = P, +n+1e S,;1 = S, + P,. Nao
ha nada errado nessa abordagem, pois a recursao é uma ferramenta de amplo alcance e

serventia.
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e Em (a) temos um problema de contagem. Um principio fundamental de contagem é
a correspondéncia biunivoca. A primeira pergunta é: podemos mapear as P, partes
do plano bijetivamente em um conjunto mais facil de contar? Os (g) pontos de
intersecao das n retas sao faceis de contar. Cada ponto de intersecao é o ponto mais
profundo de exatamente uma parte do plano (principio extremal). Portanto, ha
(g) partes com um ponto mais profundo. As partes sem ponto mais profundo nao
sdo limitadas inferiormente e cortam uma reta horizontal h (que introduzimos) em
n + 1 segmentos. Essas partes podem ser associadas unicamente a esses segmentos.
Assim, ha n + 1 (ou (") + (T)) partes sem ponto mais profundo. Logo, o numero

0
total de partes do plano é P, = (8) + (le) + (72‘)
e Em (b), trés planos formam um vértice no espago. Ha (g) vértices, e cada um
¢ o ponto mais profundo de exatamente uma parte do espaco. Portanto, existem
(g) partes com um ponto mais profundo. Cada parte sem ponto mais profundo
intersecta um plano horizontal A em uma das p, partes do plano. Assim, o nimero

total de partes no espaco ¢ S, = (7) + (1) + (5) + (5)- =

Exemplo 5.3. Sao dados 2n pontos no plano, com nenhum trés colineares. Exatamente
n desses pontos sao fazendas F' = {Fy, Fy,...,F,} e os n pontos restantes sao pogos
W = {Wy,Wy,...,W,}. Deseja-se construir uma estrada reta de cada fazenda a um
poco. Mostre que os pocos podem ser atribuidos bijetivamente as fazendas de modo que
nenhuma das estradas se intercepte.

Solugao: Considere qualquer bijecao f: F' — W. Se tragarmos uma reta de cada F; até
f(F;), obtemos um sistema de estradas. Dentre todos os n! sistemas possiveis, escolhemos
aquele com comprimento total minimo. Suponha que neste sistema existam segmentos

que se cruzam, digamos F;W,, e Fi,W,, como na figura [7]

Figura 7 — Segmentos que se cruzam F,W,, e F;W,
Fy,

W
Fonte: Proprio autor (2025).

Quando substituimos esses segmentos por FpW,, e F;W,,, o comprimento total
das estradas diminui devido a desigualdade triangular, o que contraria a minimalidade da
escolha. Portanto, o sistema minimal nao pode ter estradas que se intersectam. [ |
Exemplo 5.4. Cada equipe de um torneio de vélei joga com cada uma das outras exa-

tamente uma vez. Ao fim do torneio, cada jogador faz uma lista com os nomes de todos
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os jogadores vencidos por ele e de todos os que foram vencidos pelos jogadores que ele
venceu. Sabendo que nao houve empates, prove que existe um jogador cuja lista possui o
nome de todos os outros jogadores.

Solucao: Tome A como equipe com o maior nimero de vitérias no torneio. Iremos
demonstrar que a lista de A contém todos os outros jogadores. Agora considere B como
uma equipe qualquer do torneio. Teremos duas situacoes a analisar:

e A primeira é se B perder para A, entao B estd imediatamente na lista de A por
derrota direta, entao um jogador da equipe A tem o nome de todos os outros na sua
lista.

e A segunda, seria quando B vence A, e af temos que mostrar que B também esté na
lista de A, porém indiretamente.

Como A tem o maior nimero de vitérias, ou seja, nosso elemento extremo da
escolha, B nao pode ter vencido todas as equipes que A venceu caso contrario, B teria
pelo menos tantas vitorias quanto A (todas que A venceu) mais a vitoria sobre A, o que
faria B ter mais vitérias que A, contradizendo a maximalidade de A. Portanto, existe
pelo menos uma equipe C' tal que A venceu C, mas B perdeu para C'. Isso implica que B
estd na lista de A por transicao: A venceu C e C venceu B, logo B esté incluso na lista
de A através de C'. E assim concluimos que todas as equipes estao na lista de A portanto

existe um jogador com o nome de todos os derrotados. [ |

5.1 APLICACOES ALGEBRICAS

A seguir, exploraremos exemplos concretos em que a busca por valores ex-
tremos (maximos ou minimos) surge naturalmente em contextos algébricos delimitados
por restricoes. Essas situacoes como: Encontrar méximos e minimos de funcoes sujei-
tas a equagoes ou inequagoes algébricas ou espago de solugoes ¢ limitado por condigoes
polinomiais ou racionais.

Exemplo 5.5. Cada ponto reticulado do plano é rotulado com um ntmero inteiro po-
sitivo. Cada um desses niimeros é a média aritmética de seus quatro vizinhos (acima,
abaixo, esquerda, direita). Demonstre que todos os rotulos sao iguais.
Solugao: Supomos que m seja o menor rétulo de um ponto reticulado L. Os pontos
vizinhos de L sao rotulados por a, b, ¢, d. Entao:

a+b+c+d

m=———— ©atbtctd=dm. (2)

Como m é o menor rétulo, temos a > m, b > m, ¢ > m, d > m. Se qualquer

uma dessas desigualdades fosse estrita, teriamos
a+b+c+d>4m

o que contradiz a equagao (2). Portanto, concluimos que a =b=c=d =m. [ |
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Observacao 5.2. Este é um problema bastante simples quando consideramos inteiros po-
sitivos. Entretanto, se substituirmos os inteiros positivos por niimeros reais positivos, o
problema se torna significativamente mais dificil. A dificuldade surge porque o conjunto
dos niimeros reais positivos ndo possui um elemento minimo (ao contrario dos inteiros
positivos, onde o Principio da Boa Ordenagao garante a existéncia de tal elemento).
Exemplo 5.6. (Sao Petersburgo 1998) Em cada uma de dez folhas de papel sdo escritas
diversas poténcias de 2. A soma dos ntimeros em cada uma das folhas é a mesma. Mostre
que algum nimero aparece pelo menos 6 vezes.

Solugao: Seja N a soma comum, e n o maior inteiro tal que 2" < N. Suponha que cada

poténcia s6 ocorra no maximo 5 vezes. Dai,
51+2+---42") =52"" —1) < 10N.

E isso gera uma contradicao. [
Exemplo 5.7. O nimero ny/2 ndo é um namero inteiro para nenhum inteiro positivo n.
Solucao: Usaremos uma abordagem de demonstragao de ampla aplicacao, fundamentada
no Principio do Elemento Extremo. Suponha que exista um conjunto S nao vazio de n
inteiros positivos tais que ny/2 é também um inteiro. Se S nao for vazio, entio pelo P.B.O

ele tem um elemento minimo k. Considere o inteiro (v/2 — 1)k. Entao
(V2 = 1)kV2 = 2k — kV2,

como k € S, tanto (\/§ — 1)k quanto 2k — kv/2 também sdo inteiros positivos. Portanto,
por definicdo, (v2 — 1)k € S. Porém temos (v/2 — 1)k < k, absurdo! Pois k é o menor

elemento de S. Logo, S é vazio, o que significa que v/2 é irracional. [ |

5.2 APLICACOES GEOMETRICAS

Exploraremos agora, exemplos em que a identificacao de elementos extremos,
como o maior lado, o menor angulo ou a distancia méxima entre figuras, desempenha um
forte recurso na resolucao de problemas geométricos.

Exemplo 5.8. Seja (2 um conjunto de pontos no plano. Cada ponto em {2 é um ponto
médio de dois pontos em ). Mostre que {2 é um conjunto infinito.

Solugao: Suponha que €2 seja um conjunto finito. Entao 2 contém dois pontos A, B com
distancia maxima |AB|. B é um ponto médio de algum segmento C'D com C,D € (.
A figura abaixo mostra pela desigualdade triangular que |AC| > |AB| ou |AD| > |AB)|
contrariando a hipdtese de |AB| ser a maior distancia devido a escolha dos dois pontos

extremais A e B .
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Figura 8 — Conjunto de pontos 2
A/

A
Fonte: Proprio autor (2025).

|
Exemplo 5.9. Em cada pentagono convexo, podemos escolher trés diagonais a partir das
quais um triangulo pode ser construido.
Solucao: A figura abaixo mostra um pentagono convexo ABC'DE. Seja BE a mais longa

das diagonais.

Figura 9 — Pentigono convexo com BFE destacada como a diagonal mais longa.

Fonte: Proprio autor (2025).

A desigualdade triangular implica
|BD|+ |CE| > |BE|+ |CD| > |BE|,

ou seja, podemos construir um triangulo a partir de BE, BD, C'E. [ |

Exemplo 5.10. (Coreia 1995) Considere um ntmero finito de pontos no plano com a
propriedade de que, para quaisquer trés pontos A, B, C' escolhidos dentre eles, a area do
triangulo ABC' é sempre menor que 1. Mostre que todos esses pontos estao contidos no
interior ou na fronteira de um tridngulo com area menor que 4.

Solucao: Seja AABC o triangulo de maior area possivel formado por pontos do conjunto
dado, onde S denota a area de AABC. Por hipotese, S < 1. Considere agora ALMN,
o triangulo cujos pontos médios dos lados sao exatamente A, B e C' (ou seja, AABC é o
triangulo medial de ALMN). Neste caso, a area de ALMN = 45 < 4.
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Figura 10 — Triangulo LMN com pontos médios A,B e C.

Fonte: Proprio autor (2025).

Afirmamos que todos os pontos do conjunto devem estar dentro ou sobre
ALMN. Suponha, por contradi¢cao, que exista um ponto P fora de ALMN. Neste
caso, ¢ possivel conectar P a dois dos vértices de AABC formando um novo triangulo

cuja area seria maior que S, o que contradiria a maximalidade da area de AABC. [ |

Observacdo 5.3. Em qualquer problema, priorize identificar os elementos de ordem, mé-
ximo e minimo. Sempre que possivel, assuma uma disposicao ordenada dos elementos

(técnica conhecida como monotonizagao).

Exemplo 5.11. Sejam B e W conjuntos finitos de pontos pretos e brancos, respectiva-
mente, no plano, com a propriedade especial de que todo segmento de reta conectando
dois pontos da mesma cor contém pelo menos um ponto da outra cor. Vamos provar que
todos os pontos devem estar alinhados em uma tnica reta usando o principio do extremo.

Solugao:

Figura 11 — Triangulo ABC com menor area possivel.

C

A D B
Fonte: Proprio autor (2025).

Suponha, por contradicao, que os pontos nao sao todos colineares. Entao
existem pelo menos trés pontos formando um triangulo, conforme a figura Entre

todos os triangulos possiveis formados por esses pontos, considere AABC aquele com
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menor area possivel (principio do extremo). Sem perda de generalidade, assuma que A e
B sao ambos pretos. Pela propriedade do problema, deve existir um ponto branco D no
segmento AB. Agora, observe que pelo menos um dos novos triangulos formados (AADC
ou ABDC') tem area estritamente menor que AABC, o que contradiz a minimalidade de
AABC'. Portanto, nossa suposicao inicial é falsa, e todos os pontos devem estar em uma

anica reta. [ |

Exemplo 5.12. Em todo poligono convexo de n lados com n > 3, existem trés vértices
consecutivos A, B, C' tais que o circuncirculo do tridngulo AABC cobre todo o poligono.
Solucao: Entre as finitas circunferéncias definidas por trés vértices do poligono, existe
uma circunferéncia maxima. Vamos dividir o problema em duas partes:

(1) A circunferéncia maxima cobre todo o poligono, e

(2) A circunferéncia maxima passa por trés vértices consecutivos.

Provaremos (1) por contradigdo. Suponha que exista um ponto A’ fora da
circunferéncia méxima definida por AABC, onde A, B, C, A’ s&o vértices de um qua-
drilatero convexo. Entao, o circuncirculo de AA’BC' teria raio maior que o de AABC, o
que é uma contradicao com a maximalidade.

Também provamos (2) por contradi¢ao. Sejam A, B, C vértices na circunfe-
réncia maxima, e seja A’ um vértice entre B e C' que nao esté na circunferéncia maxima.
Por (1), A’ deve estar dentro dessa circunferéncia, mas entdo o circuncirculo de AA’BC

seria maior que a circunferéncia méaxima, novamente uma contradicao. [ |

Exemplo 5.13. (Teorema de Sylvester) Um conjunto finito S de pontos no plano possui a
seguinte propriedade: qualquer reta que passa por dois pontos de S passa por um terceiro
ponto de S. Prove que todos os pontos de S estao sobre uma mesma reta.
Solugao: Suponha, por contradicao, que nem todos os pontos de S estejam alinhados.
Considere:

e L o conjunto de todas as retas determinadas por pares de pontos de S.

e Escolha Py € Sely € L tais que a distancia d(Fy, ly) seja a menor distancia ndo-nula

possivel entre pontos de S e retas de L.
e Seja (Q o pé da perpendicular de F, sobre (.
Por hipotese, [y deve conter pelo menos trés pontos de S. Pelo menos dois

desses pontos, digamos M e N, estao do mesmo lado em relacao a (). Sem perda de

generalidade, assuma que N esta entre ) e M.
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Figura 12 — Teorema de Sylvester

S

Fonte: Proprio autor (2025).

Considere agora a reta PyM e calculemos a distancia de NV a esta reta:

e A &rea do triangulo PyM N pode ser calculada de duas formas:
; 1 1
Area = id(N,PUM) : ‘P()M’ = éd(P[th) . ’MN‘

e Como |MN| < |PyM| (pois N esta entre @) e M), segue que:

[MN|

d(N, PoM) = d(Py, o) - o]
0

< d(Py,ly).

Isto contradiz a minimalidade de d(Pp, ly), pois encontramos um ponto N € S
e uma reta FyM € L com distancia menor. Portanto, nossa suposicao inicial é falsa, e
todos os pontos de S devem estar sobre uma tinica reta. [ |
Observagao 5.4. A validade do Teorema de Sylvester, vem da ideia da relagao de ordem
entre pontos e a distancia entre eles. Isso acontece porque o teorema depende de definicoes
e axiomas da geometria euclidiana. Em outras geometrias, o teorema pode nao valer. Um
exemplo de tal invalidez seria em geometrias projetivas, que surgem em areas como a
algebra e a combinatéria. Nessas geometrias, existem apenas um ntmero finito de pontos
e de retas, e os arranjos possiveis entre eles sao diferentes dos que conhecemos no plano.
Em certos casos, pode acontecer que todas as retas passem por trés ou mais pontos do
conjunto ou seja, nenhuma reta passa por exatamente dois deles, o que contraria o que
o Teorema de Sylvester garante no plano euclidiano. Também cabe citar geometrias
elipticas, onde as “retas” sdo curvas fechadas (como grandes circulos numa esfera), e dois
pontos distintos sempre estao sobre alguma dessas curvas. Fora que, também pode acorrer
de uma reta(curva) conter varios pontos do conjunto, sem que exista uma reta que passe

por apenas dois.
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5.3 APLICACOES VARIADAS

Os proximos exemplos ilustrarao estratégias eficientes para explorar extremos
na algebra e na aritmética. Teremos desde: Encontrar os valores maximo e minimo de
funcoes polinomiais, racionais ou exponenciais, sujeitas a certas condigoes algébricas, o uso
de médias (aritmética, geométrica, harmonica) para determinar extremos em expressoes
simétricas ou limitar o comportamento de sequéncias, identificar termos maximos ou
minimos em progressoes aritméticas e geométricas, ou em somas condicionadas.
Exemplo 5.14. Existird uma fungao f : N* — N* onde N* é o conjunto dos inteiros

positivos, tal que se cumpra a seguinte igualdade para cada niimero natural n > 1:
f) = f(fln=1)+ f(f(n+1))7
Solucao: Inicialmente devemos nos atentar que entre os valores
f(2),f3),.... f(n), ...,
deve haver um elemento minimo, digamos que seja f(ng), onde ng > 1. Observe que
fno+1) = f(no) = f(f(no — 1)) + f(f(no+1)) =21+ 1> 1.

Como

f(ng+1)>1, entao f(f(no+1))€{f(2),f(3),...}.
f(f(no+1)) = f(no),

Portanto,

o que implica que

f(no) = f(f(no = 1)) + f(f(ro+1)) 2 1+ f(no),

o que torna impossivel existir tal funcao. [ |

Exemplo 5.15. A soma de 17 inteiros positivos distintos é igual a 1000. Prove que podem
ser escolhidos 8 destes inteiros de tal forma que a sua soma é maior ou igual a 500.

Solugao: Ordene os inteiros em ordem crescente:

ar < ag < --- < ayy.

Seja ag o elemento central. O valor médio da soma é L%J = 58. Consideramos dois
Casos:
® a9 > H8

Neste caso, consideremos:
aio Z 59, a1y Z 60, N Z 66.
Somando as desigualdades temos

a10+a11++a17259+60++66:500
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® ay < 58 Entao, temos:

ag < 57, ag <56, ..., a3 <49.
Portanto:
Segue que:
ay+ay +---+ay; > 1000 — 477 = 523 > 500.
Em ambos os casos, encontramos 8 inteiros cuja soma é pelo menos 500. |

Exemplo 5.16. (Leningrado 1989) Dado um ntimero natural k& > 1, prove que é impos-
sivel colocar os nimeros 1,2, ..., k? em um tabuleiro k x k de forma que todas as somas
dos niimeros em cada linha e coluna sejam poténcias de 2.

Solugao: Suponha que tal disposicao seja possivel para algum natural maior que 1. Por

sua vez seja 2" a menor dentre todas as somas das linhas e colunas. Logo,

k(k+1)

V21424 k= —

Como 2™ é a menor poténcia de 2 entre as somas, ela deve dividir todas as outras somas
(pois sao poténcias de 2 maiores ou iguais a 2"). Portanto, 2" divide a soma total de

todos os numeros no tabuleiro. Assim

2(1.2
1
o | M
2
Como k? e k? + 1 tem paridades diferente. Absurdo! |

Exemplo 5.17. Encontre todas as solucoes positivas do sistema:

(
2
$1+$2:ﬂ'}3

xz—i-l'g:.fi
— 2
£L‘3+ZL’4—JZ5

T4+ 15 =23

| 75 + 21 = 23

Solucao: Consideremos x e y 0 maior e o menor de x1, T, ..., T5, respectivamente, ou seja
r = max{xy, Te, T3, Ty, T5} € y = min{xy, T9, T3, 24, x5 }. Como z é maximo, entdo existe

uma equacao onde x aparece no lado esquerdo:
T; + T :xi com zxp <.

Assim
T +x; <2r = xz§2x — r <2

E tomando y minimo, entao temos uma equacao onde y aparece no lado direito:
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xi—i-xj:yQ com  x;,T; > Y.
Dai
it >2 = Y >2 = y>2 (y>0).

Assim
2<y<x <2

Portanto a tinica solucao seria quando

T = X9 =T33 =Ty = Ts = 2.

5.4 VERSAO FUNCIONAL DO PRINCIPIO DO ELEMENTO EXTREMO

Agora apresentaremos o principio do elemento extremo em uma versao funcio-
nal denotada por Principio Fxtremal, ela nos permite explorar objetos com propriedades
maximais ou minimais e assim, construir demonstracoes elegantes.

A aplicacao eficaz do Principio Extremal depende da escolha adequada da fun-
¢ao. Essa escolha exige um profundo insight, pois a funcgao ideal deve traduzir propriedades
abstratas em quantidades mensuréaveis, capturar a esséncia do problema, preservando a
finitude do conjunto estudado e por fim estabelecer uma correspondéncia biunivoca entre
os extremos da funcao e as solucoes desejadas. Funcoes bem escolhidas costumam ser
aplicaveis a grupos inteiros de problemas. Exemplos comuns incluem dimensao, cardina-
lidade, energia, entropia, entre outras.

Agora podemos apresentar a versao mais simples do Principio Extremal porém,
a que provavelmente é bastante relevante em aplicacoes. Ela também é conhecida como
Principio Minimal (ou Principio Mazimal).

Teorema 5.1. (Principio Minimal) Seja S um conjunto finito e nao vazio. Considere

f S — R uma funcao qualquer. Entao existe m € S que minimiza o valor de f, ou seja,

flm) < f(s) Vses.

Demonstra¢ao. Como S é um conjunto finito e nao vazio, podemos escrever:
52{81,82,...,8n}, 7121
Temos que a funcao f associa a cada elemento de S um nimero real:

f(s1), f(s2),..., f(sn) € R.

Como o conjunto de valores {f(s1),..., f(s,)} C R ¢ finito e ndo vazio, entdo pelo PBO
garantimos que f possui um menor elemento. Logo, existe algum indice i € {1,...,n}
tal que:

f(si) < f(s;), paratodo j€ {1,...,n}.

Definimos m := s; € S. Entao:
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f(m) < f(s), paratodo s € S.

Portanto, existe m € S tal que f(m) < f(s), Vse€S. O]

Observagao 5.5. Por outro lado, o principio maximal nos garante que também existe um
elemento que maximiza o valor de f. Observe que ambos principios sao equivalentes, pois
podemos deduzir um a partir do outro substituindo f por — f. Usamos o principio quando
queremos provar a existéncia de algum elemento de um conjunto finito com certas propri-
edades especiais ou quando queremos mostrar que nao existem elementos com uma certa
propriedade em um conjunto finito, ou seja, quando se quer provar que um subconjunto
de um conjunto finito é vazio.

Geralmente, aplicamos o principio sobre um conjunto finito muito grande,
provavelmente de tamanho desconhecido, e onde nao sabemos exatamente quais sao seus
elementos. Os passos mais importantes para aplicar o principio consistem, na identificacao
do conjunto e verificacao da sua finitude. E construir uma funcao que possamos minimizar
(ou maximizar), este sim é o passo mais engenhoso na nossa demonstragao.

Exemplo 5.18. (ONM 2004) Em um certo pais, existe uma conexao ferroviaria direta,
entre qualquer par de cidades, mas os trens viajam apenas em uma direcao. Prove que
existe uma cidade da qual é possivel chegar a qualquer outra, passando por no maximo
uma cidade intermediaria.

Solugao: Considere uma cidade A que maximize o nimero de cidades alcancaveis direta-
mente a partir dela (sem passar por outras cidades). Afirmamos que esta cidade satisfaz
a condicao requerida. De fato, se supormos o contrario, deve existir uma cidade B para a
qual nao é possivel viajar diretamente de A nem viajando de A passando por exatamente
uma cidade intermediaria conforme a figura Sejam Aq, A, ..., A, as cidades alcan-
caveis diretamente a partir de A (indicadas por setas cinzas). Como nao se pode viajar
diretamente de nenhuma A; para B (para ¢ = 1,2,...,n), necessariamente deve existir
uma ligacao de B para cada A; (setas amarelas). Além disso, como nao existe ligagao

direta de A para B, deve existir a ligagao B — A (seta verde).

Figura 13 — Conexoes ferroviarias entre A e B.

oA,

Fonte: Proprio autor (2025).
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Concluimos entao que a partir de B pode-se viajar diretamente para pelo
menos n + 1 cidades (as n cidades A; mais a cidade A), o que excede o nimero n de
cidades alcancaveis diretamente a partir de A. Esta contradi¢do com a maximalidade de
A prova que nao pode existir tal cidade B, e portanto a cidade A realmente satisfaz a
propriedade desejada. [ |

Veremos agora outra variacao do Principio Fxtremal para conjuntos infinitos.
Podemos dizer que ele é equivalente ao P.B.O.

Teorema 5.2. (Principio Minimal Infinito) Seja S um conjunto ndo vazio (de qualquer

cardinalidade, inclusive infinito). Considere
f:9S—=Z
e suponha que existe algum c € Z tal que
c< f(s) Vselb.
Entao existe algum m € S que minimiza o valor de f, ou seja,
f(m) < f(s) VseS.

Demonstra¢ao. Como f(s) € Z para todo s € S e existe um nimero inteiro ¢ tal que

f(s) > ¢ para todo s € S, temos que o conjunto de valores da imagem de f,

f(8):={f(s)|s €5} CZ

é um subconjunto nao vazio e inferiormente limitado de Z. Como qualquer subconjunto
de Z podemos garantir pelo Principio do Boa Ordenacao a existéncia de um elemento
minimo. Logo o conjunto f(S) possui um menor elemento. Seja my € Z esse menor
elemento , ou seja,

mo = min f(.5).
Como myg € f(S), existe algum m € S tal que f(m) = my. Logo, para todo s € S,

f(m) =mo < f(s),
ou seja, f atinge seu valor minimo em m € S, como queriamos demonstrar. L]

Observagao 5.6. Por exemplo, se considerarmos uma funcao f: S — N, podemos aplicar
o principio minimal pois 0 < n para todo n € N. Assim como na versao finita do principio
minimal, utilizamos este principio para construir elementos especiais de um conjunto e

mostrar que nao existem elementos com certa propriedade em um conjunto.

Observacdo 5.7. Observe que se 3 | a>+0*> = 3 | a e 3 | b. De fato, pois podemos escrever

a=3k+r,eb=3m+r, comr,,r € {0,1,2}. Desenvolvendo a? + b? temos:
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a’ + b = Bk +14)” + (3m + 1)
= Ok* + 6kry + 72 + 9m? + 6mry, + 7}
= 3(3k% + 3m? + 2kry + 2mry) + (r2 4+ 17).

Como 3 divide a® + b%, deve dividir 72 + r#. Calculando todas as possibilidades para

(Ta,7p):
e (0,0) — 0+ 0 =0 (divisivel por 3).
e (0,1),(1,00 >0+1=1o0ul+0=1 (nao divisivel por 3).
e (0,2),(2,0) >0+4=4o0u4+0=4 (ndo divisivel por 3).
e (1,1) > 1+ 1 =2 (nao divisivel por 3).
e (1,2), (2,1) = 1+4=50ud+1=>5 (nao divisivel por 3).
e (2,2) —» 4+ 4 = 8 (nao divisivel por 3).

A tunica possibilidade onde r2 + 72 ¢ divisivel por 3 ¢ quando 7, = 7, = 0, ou
seja, quando ambos a e b sao multiplos de 3.
FEzemplo 5.19. Mostre que ndo existe quadrupla de inteiros positivos (z,y, z,u) que satis-
faca
2?4y = 3(2% +u?).
Solucgao: Suponha que exista tal quadrupla. Escolhemos a solu¢do com o menor valor

de 2% + y%. Seja (a,b, c,d) essa solugao escolhida. Entao

a?+bv = 3(E+d%
= 3|a®+ 1
= 3lae3|b
=a = 3a;, b=3b;y com ay,b €7Z,
a®+b* = 9(al+b]) =3(c*+d*)
= A +d*=3(a] + 7).
O que mostra que (¢, d, a;,b;) onde ¢ + d* < a® + b* é solugao, absurdo pois
(a,b,c,d) ¢ a menor solucdo para quadrupla. Logo a minimalidade da solugao nao é
satisfeita. [ |
O método anterior é conhecido como descenso infinito, pois o que fazemos é
mostrar que, a partir de uma solugao, sempre podemos produzir outra estritamente menor,
ou seja, produzimos infinitas solucoes cada vez menores. Como no caso dos nimeros
naturais é impossivel descender infinitamente, conclui-se que nao pode existir nenhuma
solucao.
Este método ganhou fama depois que Fermat o utilizou para resolver de forma
elementar alguns exemplos do chamado Ultimo Teorema de Fermat, que afirma nio exis-
tirem solugoes inteiras nao triviais para " + y" = 2" com n > 3, foi demonstrado por

Andrew Wiles em 1994. A prova utilizou técnicas avancadas da teoria dos numeros e
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geometria algébrica, particularmente a conexao entre curvas elipticas e formas modulares
(via Teorema de Taniyama-Shimura). Wiles provou que toda curva eliptica semiestavel
¢ modular, implicando a impossibilidade das solucoes propostas por Fermat. Esse resul-
tado, que dependeu de contribuicoes acumuladas por séculos, resolveu um dos problemas
mais famosos da matematica, permanecendo em aberto por mais de 350 anos.
Exemplo 5.20. (IMO 2020). Considere um baralho de n > 1 cartas. Cada carta tem
um inteiro positivo escrito. O baralho tem a propriedade de que a média aritmética de
cada par de cartas ¢ a média geométrica de alguma colegao de cartas. Para quais valores
de n o baralho s6 tem cartas iguais?
Solucao: Afirmamos que para todo n > 1 o baralho sempre deve ter todas suas cartas
iguais. Em outras palavras, afirmamos que nao existe tal baralho com um par de cartas
diferentes. Suponhamos por contradicao que isto nao seja verdade, e aplicando o principio
minimal consideremos um baralho que cumpre a propriedade do enunciado, que além
disso nao tem todas suas cartas iguais, e que além disso minimiza a soma total das cartas.
Ordenemos as cartas

ar < ag <---<a,.

Por nossa suposicao sabemos que a, > a1. Seja p | a,, um divisor primo. Afirmamos que
pla; Yi=1,...,n.

De fato, suponhamos que p | a;41, p | airo, ..., p | a,. Como

a; + a,
2

— kail...aik

para algum conjunto de indices 1 <14y < iy < --- < i; < n, segue que se a;, < a; entao

a; + an
TS k/ail...aik Sai
e Consequentemente Qp, S Q;. LOgO COHClui—Se que a; = ay, € assim P | a; neste caso. NO

caso que a;, > a;, segue que i > i e entao p | a;,. Como
k k
(ai +an)” = 2%y, -+~ a;,

vemos que a igualdade anterior implica que p | a; neste caso também. Isto termina a prova
de nossa afirmacao. Finalmente, se tomarmos o baralho e dividirmos o ntimero de todas
as cartas por p obtemos um novo baralho com as mesmas propriedades do problema, que
nao tem todas suas cartas iguais e com um valor menor da soma total de suas cartas. Isto
contradiz nossa escolha original e termina o problema. [ |

Finalmente veremos uma versao do principio extremal em conjuntos ordenados.

Tanto esta versao, como as duas que vimos anteriormente, sao casos particulares de um



70

principio extremal geral que vale em conjuntos infinitos de tamanhos tao grandes quanto
se queira, dotados de uma ordem especial (chamada ordem indutiva). Nos referimos ao
chamado Lema de Zorn, o qual é sumamente importante em matemaéatica. Nos somente
mencionaremos sua versao em conjuntos finitos, a qual é totalmente trivial. Primeiro
vamos com os preliminares.
Definigao 5.1. Um conjunto ordenado é um par (S, <) formado por um conjunto S e
uma relacdo de ordem < entre seus elementos. Uma relacdo < entre elementos de S é
uma ordem quando se cumpre as seguintes propriedades:

(1) Reflexiva, isto é, Va € S : a < a,

(2) Antissimétrica, isto é, Va,b € S:sea <beb < a, entdo a = b,

(3) Transitiva, isto é, Va,b,c € S:sea <beb<c, entdo a < c.

Exemplo 5.21. Seja S o conjunto dos subconjuntos de {1,2,3}, ou seja,

S={0.{1} {2}, {3}.{1,2},{1,3},{2,3},{1,2,3}}.

Se para A, B € S definirmos A < B <& A C B, entao temos uma ordem em S. Um
modo de vizualizar esta ordem em S é pelo diagrama de Hasse, representado na figura

abaixo:

Figura 14 — Diagrama Hasse
{1,2,3}

AN

{1,2} {1,3} {2,3}

0

Fonte: Proprio autor 2025.

Podemos notar facilmente pelo diagrama que o () é o elemento minimo e {1,2,3} é o
elemento maximo de S.

Exemplo 5.22. Os nimeros reais com a ordem usual (R, <) onde
a<beb—acRYU{0}

¢ um conjunto ordenado. Esta ordem tem a seguinte propriedade que nos permite repre-
sentar R em uma reta: E uma ordem total, isto é, Va,b € R:a < bou b < a.
Exemplo 5.23. O subconjunto dos ntimeros naturais N C R goza da seguinte propriedade

que é equivalente ao principio de inducao: E um bom ordenamento, isto é,
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VO #SCN, Is5 € S: sp = min(9).

Exemplo 5.24. A ordem mais importante em N é dada pela relacao de divisibilidade. O
par (N,|) é um conjunto ordenado, mas nao possui uma ordem total. Por exemplo, 2t 3
e 312. O minimo de (N,]|) é o 1. Por outro lado, nem todo subconjunto de N possui um
minimo, por exemplo N\ {1} ndo tem minimo.

Definicao 5.2. Seja (S5, <) um conjunto ordenado. Dizemos que sy € S é minimal se

Exemplo 5.25. No exemplo anterior, (N\ {1},|) tem infinitos elementos minimais, que
correspondem exatamente aos nimeros primos.
Teorema 5.3. Seja S um conjunto ordenado, finito e nao vazio. Entao S possui algum

elemento minimal e algum elemento mazrimal.
Demonstracao. A demonstracao é andloga a apresentada no teorema 5.1 O

Exemplo 5.26. (IMO 1988) Sejam a e b inteiros positivos tais que ab + 1 divide a? + b%.

a?+b?
ab+1

Solugao: Iremos provar por absurdo. Se ab + 1 divide a? + b%, entdo existe um inteiro

Demonstre que é o quadrado de um perfeito.

positivo k tal que: a2 L b2 B

k.
ab+1

Entao teremos:

a® — kab+b* = k. (3)

Suponhamos agora que k nao seja um quadrado perfeito. Consideremos o conjunto de
todos os pares (a,b) que satisfazem com a > b > 0, e tomemos o par com a minimo.
e Se a = b, a equacgao se torna:
(2 — k)a® = k.
Como o lado esquerdo é nao positivo, teriamos k£ < 0, contradizendo k positivo.

e Se a > b, considerando a equacao como quadratica em a:
a® —kba+ (b* — k) = 0.
Sejam a e a; as raizes. Pelas relacoes de Vieta:

a+a =kb e aa =b—k.

Assim, a; = biT_k #‘?1 < a (pela minimalidade de a). O par (a;,b) também satisfaz a
equacao original com 0 < a; < a, contradizendo a minimalidade de a. Portanto, & é um

quadrado perfeito. [ |
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6 RESOLUCAO DE PROBLEMAS DAS OLIMPiADAS NACIONAIS COM
O PRINCIPIO DA INVARIANCIA E DO ELEMENTO EXTREMO

Neste capitulo, aprofundaremos nossa andlise, aplicando esses principios a pro-
blemas selecionados de competicoes como a OBM, OBMEP e OCM. Veremos como es-
tratégias baseadas em invariantes e extremos nao apenas resolvem questoes desafiadoras,
mas também revelam padroes ocultos, transformando problemas dindmicos em anéalises
estaticas de propriedades preservadas ou condigoes criticas.

Sendo assim, destacaremos técnicas estudadas de resolucao, como:

e Identificagao de invariantes criativos (paridade, divisibilidade, somas simétri-
cas, entre outros).

e Uso estratégico de elementos extremos (maior/menor valor, primeiro/altimo
elemento, configuragoes limites).

Essas metodologias permitem a identificacao precoce de solugoes nao viaveis,
otimizando assim o processo de resolucao de problemas. O dominio dessas técnicas nos
dao uma vantagem competitiva significativa, propiciando maior clareza e eficiéncia na
execucao da solugoes. As resolugoes buscam explicitar como e por que cada principio é
aplicado, destacando estratégias heuristicas, armadilhas comuns e conexoes com outros
conceitos (como o Principio da Casa dos Pombos ou indugao).

As questoes foram cuidadosamente selecionadas para ilustrar a versatilidade
desses principios em diferentes contextos. Assim, este trabalho reflete o compromisso de
unir teoria e pratica. As questoes servem nao apenas para consolidar o conhecimento,
mas também para estimular a criatividade e o raciocinio l6gico desenvolvido durante a
leitura dos capitulos anteriores.

Este capitulo se destaca como resultado educacional esperado, que por sua
vez, visa a atender as necessidades tanto de professores quanto de alunos em busca de
exceléncia matematica. Para os educadores, oferece um repertorio valioso de problemas
desafiadores que podem enriquecer suas aulas, servindo como ferramenta pedagbgica para
estimular o raciocinio critico e a criatividade dos estudantes. Para os alunos, especialmente
aqueles que aspiram aprofundar seu conhecimento, apresenta técnicas de prova refinadas
e elegantes, organizadas de maneira progressiva para facilitar a aprendizagem.

O resultado é um material que nao apenas transmite conhecimento matemaé-
tico, mas também cultiva a capacidade de resolver problemas de forma criativa e sistema-
tica, habilidades essenciais tanto para competicoes matematicas quanto para a formagao
académica em geral.

Problema 6.1. (OBM 2007-N2Q3) Em 1949 o matemaético indiano D. R. Kaprekar in-
ventou um processo conhecido como Operacao de Kaprekar. Primeiramente escolha um
namero de quatro digitos (nao todos iguais), em seguida escreva a diferenca entre o maior

e o menor niimero que podem ser formados a partir de uma permutacao dos digitos do ni-
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mero inicial. Repetindo o processo com cada niimero assim obtido, obtemos uma sequén-
cia. Por exemplo, se o primeiro nimero for 2007, o segundo sera 7200 — 0027 = 7173. O
terceiro sera 7731 — 1377 = 6354. Comecando com o numero 1998, qual sera o 2007-ésimo
termo da sequéncia?

Solugao: A sequéncia é 1998 — 9981 — 1899 = 8082 — 8820 — 0288 = 8532 — 8532 —
2358 = 6174 — 7641 — 1467 = 6174. Note que, depois de 6174, todos os termos serao
iguais a 6174, pois este ¢ um ponto fixo da operacao. Logo, a resposta é 6174. Na
verdade, comecando com qualquer nimero de 4 digitos, obtemos este ntimero, 6174, ap6s
executarmos um nimero finito de vezes a operacao de Kaprekar. [ |
Observacgao 6.1. O ntimero 6174 é um invariante porque, ao aplicarmos a Operacao de
Kaprekar, ele se mantém inalterado. Esse comportamento ¢ andlogo a um ponto de
equilibrio no qual o processo converge independentemente do niimero inicial de 4 digitos
(desde que nao sejam todos iguais).

Problema 6.2. (OBM 2012-N2Q)3) Quando duas amebas vermelhas se juntam, se trans-
formam em uma tnica ameba azul; quando uma ameba vermelha se junta com uma
ameba azul, as duas se transformam em trés amebas vermelhas; quando duas amebas
azuis se juntam, elas se transformam em quatro amebas vermelhas. Um tubo de ensaio
tem inicialmente 201 amebas azuis e 112 amebas vermelhas.

(a) E possivel que ap6s algumas transformacoes o tubo contenha 100 amebas azuis e
314 amebas vermelhas?

(b) E possivel que apés algumas transformacoes o tubo contenha 99 amebas azuis e 314
amebas vermelhas?

Solucao:

(a) Vamos analisar as transformagoes considerando apenas as cores. Temos duas regras:
(1) podemos converter vermelhas em azuis e vice-versa individualmente; (2) quando
temos azuis e vermelhas juntas, podemos transforma-las apenas em vermelhas (1
azul + 1 vermelha — 3 vermelhas). Isso mostra que é mais facil obter vermelhas
do que azuis. Uma estratégia eficaz é: primeiro, isolar as 100 azuis iniciais; depois,
trabalhar com as 101 azuis e 112 vermelhas restantes. A questdo é se podemos
transformar essas 101 azuis e 112 vermelhas em 314 vermelhas. Sabemos que cada
par (azul + vermelha) produz 3 vermelhas. Com 101 azuis: usamos 101 azuis +
101 vermelhas — 3 x 101 = 303 vermelhas. Sobram 112 — 101 = 11 vermelhas nao
transformadas. O total final serd 303 + 11 = 314 vermelhas, mantendo as 100 azuis
iniciais, como querfamos.

(b) Vamos encontrar um invariante para este problema. Mostraremos que a quanti-
dade V' + 2A (vermelhas mais o dobro das azuis) permanece constante em todas as

transformacdes. Analisemos cada caso:

1. Duas vermelhas — uma azul:
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(V,A) - (V—-2,A41)
V424 (V-2)+2(A+1) =V +2A
2. Uma vermelha + uma azul — trés vermelhas:
(V;A) - (V—-143,A-1)=(V+2,A-1)
V4+24—-(V+2)+2(A-1)=V+2A
3. Duas azuis — quatro vermelhas:
(V,A) = (V+4,A-2)
V424 = (V+4)+2(A-2)=V+2A
Em todos os casos, V' + 2A é invariante. Na configuragao inicial (V = 212, A = 151):

212+ 2 x 151 = 514.
Enquanto na configuragao desejada (V' = 314, A = 100):
314 + 2 x 100 = 514.

Portanto, a transformacao é possivel, pois o invariante é preservado. [ |
Problema 6.3. (OBMEP 2005-N2Q1) Numa aula de Matemaética, a professora inicia
uma brincadeira, escrevendo no quadro-negro um nimero. Para continuar a brincadeira,
os alunos devem escrever outro nimero, seguindo as regras abaixo:

1. Se o ntimero escrito s6 tiver um algarismo, ele deve ser multiplicado por 2.

2. Se o ntimero escrito tiver mais de um algarismo, os alunos podem escolher entre

apagar o algarismo das unidades ou multiplicar esse nimero por 2.
Depois que os alunos escrevem um novo niimero, a brincadeira continua com este ni-
mero, sempre com as mesmas regras. Veja a seguir dois exemplos desta brincadeira, um
comecando com 203 e o outro com 4197:
203 1012, 4o L 4o 2 4
4197 apaga 419 dobra\ 338 apaga/ 83

a) Comece a brincadeira com o ntimero 45 e mostre uma maneira de prosseguir até

chegar ao nimero 1.
b) Comece agora a brincadeira com o nimero 345 e mostre uma maneira de prosseguir
até chegar ao nimero 1.
¢) Explique como chegar ao niimero 1 comegando a brincadeira com qualquer nimero
natural diferente de zero.
Solucao:

(a) Ha varias solugbes, como por exemplo:

apaga dobra dobra, apaga
45 2% 4 > 8 16 2255
ou
dobra, apaga dobra apaga
45 90 2% 9 > 18 224 .
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(b) Aqui também ha varias solugées, como por exemplo:

345 apaga} 34 apaga, 3 dobra\ 6 dobra/ 19 apaga, 1
ou
345 apaga/ 34 dobra/ 68 apaga, 6 dobra, 19 apaga, 1.

(c) Aplicamos a regra “apaga” até sobrar apenas um algarismo, e temos entao trés casos:
1. Este algarismo ¢é igual a 1 e a brincadeira acaba.
2. Este algarismo é 2, 3 ou 4: neste caso aplicamos a regra “dobra” algumas vezes
até obter um nimero de dois algarismos cujo algarismo das dezenas seja 1 (16,
12 ou 16, respectivamente), e aplica-se a regra “apaga” obtendo o nimero 1.
3. Este algarismo é 5, 6, 7, 8 ou 9: neste caso aplica-se a regra “dobra” uma vez,
obtendo respectivamente 10, 12, 14, 16 ou 18; entao aplica-se a regra “apaga’
para obter o niamero 1.
Observagao 6.2. O invariante aqui é que, independentemente do nimero inicial, aplicando-
se as regras de apagar ou dobrar, sempre se chegard a 1 apds um nimero finito de passos.
Isso ocorre porque o processo reduz sistematicamente a magnitude do niimero (seja dimi-
nuindo seus digitos, seja forgando-o a entrar em um ciclo que leva a 1). Podemos modelar
esse problema como um algoritmo de redugao, onde:
e Se n tem mais de um digito, n é reduzido para Ll—’BJ (apagar o tltimo digito) ou 2n
(dobrar).
e Sen tem um tnico digito, s6 podemos dobra-lo até que tenha dois digitos novamente.

O tnico ponto fixo (estado que ndo muda) é 1, pois:

dobra,

dobra, dobra, dobra, apaga
1 2 > 4 > 8 > 16 22255 1

entrando em um ciclo que retorna a 1. Portanto, 1 € um atrator para esse processo, e
qualquer namero natural diferente de zero eventualmente chegaré a ele seguindo as regras

dadas. m
Problema 6.4. (OCM 2023-N2Q2) Dado o conjunto {1,2,3,...,n}, ao remover um

numero x, a média dos elementos restantes ¢ 2023. Sabendo que n é impar, determine o
valor de x.
Solucao: A soma dos elementos do conjunto original é:

n

. o nn+1
Zzz%_

i=1
Se um elemento x é removido, a nova soma dos elementos passa a ser:

n(n+1)
2
Como agora o niimero de elementos é n — 1, a média dos elementos restantes é dada por:
n(n2+1) _r
—— = 2023.
n—1

Multiplicando ambos os lados da equacdo por (n — 1), temos:
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1
@ — = 2023(n — 1).
Isolando x:
1
x:ﬂﬁ%il—zman—1y (1)
Como x deve pertencer ao conjunto S = {1,2,...,n}, devemos garantir que z € N e

1 < x < n. Note que a média do conjunto original é:
1+n
5
Como a média dos elementos restantes é 2023, procuramos um valor de n tal que:

1
T 2023 = 1 A 4045,

Como n é impar, para n = 4045. Substituindo na equagao (1):

4045 - 4046

x — 2023 - 4044.

Calculando:

16370570
T = —s

Observagao 6.3. A soma dos elementos restantes apds a remocao de x ¢é invariavel e igual

— 8181012 = 8185285 — 8181012 = 4273. [

a 2023(n — 1), ja que a média foi fixada. Esse valor determina unicamente o valor de z
pela diferenca em relagdo a soma total do conjunto original.
Problema 6.5. (OBMEP 2020-BQN3Q15) Comegando com um nimero inteiro positivo
n, uma sequéncia ¢ criada satisfazendo a seguinte regra: cada termo se obtém do anterior
subtraindo-se o maior quadrado perfeito que é menor ou igual ao termo anterior, até
chegar ao ntimero zero. Por exemplo, se n = 142, teremos a seguinte sequéncia de 5
termos:
a; = 142, ay =21, a3 =25, ay =1, as = 0, pois 21 = 142 — 112, 5 = 21 — 42,
1=5-22e¢0=1-12
(a) Dé exemplo de uma sequéncia que tenha exatamente 6 termos.
(b) Encontre o menor valor de n para que a sequéncia assim criada tenha exatamente
7 termos.
Solugao:
(a) Um exemplo é a sequéncia, a; =23, ay=7=23—-16, a3=3=7—4, a4 =
2=3—-1, as=1=2-1, ag=0=1-1.

(b) Como a,1 = a, — 2, com 2* < a, < (z + 1), segue que

Unp1 = Qp — 22 < (1 + 1) — 2% =22 + 1.

ap+1—1
2

Dai o inteiro x satisfaz = > . Para obter o valor minimo, a sequéncia seré

construida de tras para frente e em cada etapa serd utilizado a estimativa minima
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do incremento 22 obtida anteriormente. Temos a; = 0 e ag > 12. Dai

a5:a6+x221—|—12,
a4:a5—|—:v222—|—12,
as = as +2* > 3+ 2%
as = as + x° > 7+ 42,
a; = as + 2 > 23 + 144.

Assim, o menor valor de n é 23 + 144 = 167 e a sequéncia de 7 termos que sera

criada é

ay = 167, g = 23, as = 7, Ay = 3, a5 = 2, ag = 1, Ay = 0. H

Observagao 6.4. Comecar com o elemento minimo (zero) e ir adicionando os menores
quadrados possiveis permitiu, garantir que n fosse o menor possivel e controlar o niimero
exato de termos na sequéncia, evitando solucoes redundantes ou ineficientes. Essa abor-
dagem ¢ um exemplo cléssico de construgao gulosa em matematica, onde escolhas locais
Otimas (usar o menor quadrado possivel em cada etapa) levam a uma solugao global 6tima,
(o menor n que gera uma sequéncia com 7 termos). O método de comecar do minimo
funcionou porque garantiu que cada passo fosse necessario e suficiente, levando ao menor
n — 167 possivel.

Problema 6.6. (OBM 2012-N2Q3) Zoroastro escreveu os nimeros 1, 2, ...,100 em um
quadro negro. Ele ird executar algumas operacoes que reduzirao a quantidade de niimeros
até que reste apenas um tdnico nimero no quadro. A primeira operacao consiste em
escolher dois nimeros quaisquer a e b e trocé-los por a + b — 1. A segunda operagao
consiste em novamente escolher dois nimeros quaisquer a e b e troca-los por a + b — 2.
Em geral, depois de executar k operacoes, a nova operacao serd escolher dois nimeros
quaisquer a e b e substitui-los por a + b — (k + 1). Determine qual o niimero que restara
no final.

Solugao: Observe que, a cada passo 7, a soma dos numeros escritos no quadro diminui

de i. No total, serao realizados 99 passos. A soma dos niimeros no quadro inicial é
1+2+ -+ 4100,
e ap6s 99 passos sera
(I14+2+---4+100) — (1 +2+---+99) = 100,

e portanto o nimero que sobra é 100. |
Problema 6.7. (OBM 1998- N2Q1) Prove que em qualquer pentagono convexo existem
dois angulos internos consecutivos cuja soma é maior ou igual a 216°.

Solucao: Seja ABCDE este pentagono. Suponha, por absurdo, que nao existam dois

angulos consecutivos cuja soma seja maior ou igual a 216°.
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Figura 15 — Pentagono
D

B

A
Fonte: Proprio autor (2025).

Entao a soma de dois angulos consecutivos é menor que que 216° logo teremos que

LA+ /B < 216°

/B + /C < 216°
LC+ /D < 216°
/D + /FE < 216°

LE+ LA < 216°

ao somarmos as desigualdades chegamos em
20£LA+ 4B+ ZC+ 4D+ ZFE) < 1080° < LA+ LB+ ZC + 4D + ZE < 540°.

Porém a soma dos angulos internos de um pentagono é 180°(5 —2) = 540°. Logo, existem
dois angulos internos consecutivos cuja soma é maior ou igual a 216. |
Problema 6.8. (OCM 2024-N2Q2) Romildo distribui os nimeros {1,2,...,200} em duas
caixas A e B, de modo que cada nimero aparece em exatamente uma caixa. E possivel
que Romildo realize a distribui¢ao de modo que o produto dos nimeros da caixa A seja
igual ao produto dos niimeros da caixa B? Justifique sua resposta.

Solugao: Suponhamos que seja possivel tal distribuicao de modo que o produto dos
elementos da caixa A, denotado por P, seja igual ao produto dos elementos da caixa B,

denotado por Pg. Entao:
Py = Pg.

Considere o nimero P, tal que P seja o maior nimero primo menor que 200. Assim temos
que 100 < P < 199, consequentemente nao existe nenhum outro multiplo de P menor que
200. Como cada nimero deve estar em exatamente uma das caixas, o nimero P estard
em uma tnica caixa: ou em A, ou em B, mas nao em ambas. Suponha, sem perda de
generalidade, que P € A. Logo P | P4 mas P { Pg, absurdo! Pois consideramos P4 = Pg.

Portanto nao é possivel que Romildo distribua os nimeros de 1 a 200 em duas caixas de
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forma que os produtos sejam iguais. |
Problema 6.9. (OBMEP 2020-BQN2) Em uma loja de chocolates, existem caixas com
8, 9 e 10 chocolates. Observe que algumas quantidades de chocolates nao podem ser
compradas exatamente como, por exemplo, 12 chocolates.
(a) Encontre outra quantidade de chocolates que nao pode ser comprada.
(b) Verifique que todo ntimero maior que 56 pode ser escrito na forma 8z + 9y com = e
y inteiros nao negativos.
(¢) Qual é a maior quantidade de unidades de chocolates que ndo podemos comprar
exatamente nessa loja?
Solucao:
(a) Nao é possivel comprarmos 11, 12, 13, 14 e 15 chocolates, pois 15 > 10 e a soma
das quantidades de quaisquer duas caixas ¢ maior que 15.
(b) Observe a tabela (1| e veja que podemos escrever qualquer nimero de 56 a 63 com

inteiros nao negativos na forma 8z + 9y:

Tabela 1 — Resultados da equacao 8x + 9y para diferentes pares ordenados

x|y 8x + 9y

710 8xX7+9x0=56
6 |1|8xXx6+9x1=57
512 8%xXx54+9%x2=258
413[8x44+9x3=059
314 |18x3+9x%x4=60
215 |8x249x5=61
18] 8x14+9%x6=062
0[7|8x0+9%xT7=63

Fonte: Elaborada pelo autor (2025).

Somando 8 unidades a cada uma dessas representacoes, podemos escrever todos
os numeros inteiros do intervalo [64,71] na forma 8z + 9y. Por exemplo, como
63 = 8x 049 x 7, segue que 71 = 8 x 1 +9 x 7. Somando sucessivamente 8§,

podemos concluir que todos os inteiros dos intervalos
[72,79],[80,87],[88,95], ...

podem ser escritos na forma 8z + 9y, com z e y inteiros nao negativos. Assim, todos
os inteiros maiores que 56 podem ser escritos na forma 8z + 9y com x e y inteiros
nao negativos.

(c¢) As quantidades de chocolates que podem ser compradas sao os numeros da forma
8r 4+ 9y 4+ 10z, com z, y e z inteiros nao negativos representando as quantidades
de cada tipo de caixa. Um ntmero que pode ser escrito na forma 8z + 9y em
particular também pode ser escrito na forma 8x + 9y + 10z. Assim, em virtude do
item anterior, basta analisarmos os niimeros menores que 56 para sabermos qual é o

maior deles que nao pode ser uma quantidade admissivel de chocolates comprados
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na loja. A tabela a seguir indica como escrever todos os nimeros de 32 até 40 na
forma 8z + 92 + 10z:
Tabela 2 — Resultados da equagao 8x + 9y + 10z para diferentes ternos ordenados

x|y |z 8z + 9y + 10z

41010 |8x44+9x04+10x0=232
31 1]10]8x34+9x1+10x0=33
3101 ]8x34+9x0+10x1=234
2|11 |1]8x249x1+10x1=35
21012]8x249x0+10x2=236
11112 ]8x1+9x1+4+10x2=237
11013 ]8x1+9x04+10x3=238
0]1]3]8x04+9x1+10x3=39
310|108 x54+9x0+10x0=40

Fonte: Elaborada pelo autor (2025).

Somando 8 unidades a cada uma dessas representacoes, podemos escrever todos os
numeros de 40 a 48. Repetindo esse processo, podemos escrever todos os nimeros
inteiros de 48 a 56 na forma 8x + 9y + 10z, com z,y e z inteiros ndo negativos. Para
concluir que 31 é a maior quantidade de chocolate que nao podemos comprar na

loja, precisamos verificar que nao existem x,y e z nao negativos tais que
8xr + 9y + 10z = 31.

Se existissem tais inteiros, como 31 é impar e 8 e 10 sao pares, devemos ter y # 0.
Assim y = 3 ouy = 1. No primeiro caso, teriamos 8x + 10z = 4, que claramente nao
possui solugao em inteiros nao negativos. No segundo caso, teriamos 8x 4+ 10z = 22,
ou seja, 4r + 5z = 11. Para 2z =0,z = 1 e 2 = 2, deveriamos ter 4z = 11,42 = 6
e 4r = 1. Como nenhuma dessas equagoes possui solugoes em inteiros, podemos
concluir que a equacao 8r + 9y + 10z = 31 nao possui solucao em inteiros nao
negativos. u
Observagdo 6.5. A solugdo do item (c) utiliza implicitamente o conceito de elemento
extremo (ou maior nimero nao representdvel) em problemas de combinagdes lineares
de inteiros. Esse conceito é formalizado pelo Teorema do Nimero de Frobenius, que
afirma que, para dois inteiros coprimos a e b, 0 maior niimero que nao pode ser expresso
como ax + by (com z,y > 0) é ab— a — b. No caso da equagao 8z + 9y (item b), como
mdc(8,9) = 1, o maior ntimero nao representavel ¢ 8 x 9 — 8 — 9 = 55. Contudo, a
introdugdo da terceira variavel (10z) modifica o problema. Para trés nimeros a, b, ¢
coprimos dois a dois, nao existe uma férmula geral fechada para o maior ntimero nao
representavel, mas a estratégia adotada na solucao, de verificar exaustivamente os valores
abaixo de um limite (56) — ¢é tradicional. O ntimero 31, identificado como o maior nao

representavel para 8x + 9y + 10z, ¢ um elemento extremo desse sistema.

Problema 6.10. (OBMEP 2016-BQN3) Seja n um niimero inteiro positivo maior ou
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igual a 5. Para nimeros a; escolhidos no conjunto {—1, 1}, calcula-se o nimero
Sn = a1a2a3a4 + -+ + apQA1G203

que soma os produtos de cada quatro termos a; de indices consecutivos, inclusive os que

comecam em a,_s, d,_1 € G, € terminam em ai, as e as, respectivamente.

(a) Considerando n = 8, comecemos com a; = ay = -+ = ay = ag = 1. Qual o valor
de Sg? Se trocarmos agy = 1 por ay = —1 quanto passa a ser a soma Sg? Apos a
primeira troca, trocamos as = 1 por as = —1. Ap0s esta segunda troca, quanto vale
Sg?

(b) Para cada troca de 1 por —1, quantas parcelas mudam de valor? Quais sdo as
possiveis variacoes no valor de Sg quando se faz uma troca?

(c) Mostre que para quaisquer oito valores de ay, as,...,ar € ag no conjunto {—1,1} a
soma Sg resulta sempre em um nimero miltiplo de 4.

(d) Para certo valor de n e certa escolha dos nimeros a; no conjunto {—1,1} a soma
Sn = a1G20304 + -+ + G,A10203

resultou em zero. Prove que n é necessariamente um nimero multiplo de 4.
Solucao:

(a) Com os valores dados, tem-se: Para n = 8, a soma Sg é dada por:

Ss = a1a2a3a4 + A2a3aA405 + - -+ + ara8G1 A2 + AgG1A203
=1-1-1-1+1-1-1-14+---+1-1-1-1
=8.
E a soma de oito parcelas iguais a 1. Veja que ao trocar o a4 de 1 para —1, os quatro

produtos em que ele aparece mudam de sinal. Entao a soma perde quatro parcelas

1 que passam a ser quatro parcelas —1. Deste modo, a soma passa a ser
Sg=8—4+(—4)=0.

Se trocarmos agora o as de 1 para —1, ha quatro parcelas afetadas, mas algumas
passam de 1 para —1 e outras passam de —1 para 1. Mais especificamente, as
parcelas com o as que ja mudaram de sinal com o a4 voltarao a ser 1. A parcela
asagarag passa de 1 a —1 e as outras trés passam de —1 a 1. Apds a segunda troca

a soma sera

Sg=S8—(1+(-D+(-1)+ 1)+ ((-1)+1+1+1)
=Sg—(—2)+2
= Sg+4
=4.
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(b) Como vimos no item anterior, as quatro parcelas em que o produto possui certo a;
mudam de valor quando trocamos este nimero de 1 para —1. Para saber as possiveis

variacoes, considere z, y, z e w as parcelas que possuem o a; no produto.

Si=S—(z+y+z+w)+(—z—y—z—w)
=Sy —2(x+y+z+w).

Como x, y, z e w sao produtos de nimeros 1 ou —1, eles mesmos sao iguais a 1
ou —1. Entao ao somar os quatro, os resultados possiveis sao 1 + 1+ 1+ 1 = 4,
1+1+1+(-1)=2,1+14+(-1)+(-1)=0,1+(-1)+(-1)+ (—-1) = =2 ou
(=1)+(=1)+(—=1)+(—=1) = —4. Finalmente, concluimos que as varia¢oes possiveis
sao +8, +4, 0, —4 ou —8.

(¢) Primeiro faga todos os nimeros iguais a 1, entdo a soma é 8. Agora, para cada
nimero da sequéncia, podemos trocd-lo para —1 e analisar a soma. Deste jeito,
todas as possibilidades de ntimeros a; sao analisadas. Pelo item anterior, cada troca
gera uma variacao que ¢ um multiplo de 4. Como no inicio a soma é um miultiplo de
4 e esta propriedade nao se altera em cada troca, concluimos que a soma Sy resulta
sempre em um miltiplo de 4.

(d) Novamente, comece com todos os niumeros iguais a 1 resultando em soma n. Para
uma dada escolha dos elementos da sequéncia, trocamos cada a; igual a —1 por 1,
um por vez. Em cada troca, nao altera-se o resto de S,, na divisao por 4 e, ao final,
chegamos no nimero 0 que é miltiplo de 4. Portanto, o ntimero inicial n também é

um multiplo de 4. u

Observagao 6.6. No item (c), o invariante é a propriedade "Sg é miltiplo de 4". Mesmo
apos trocas sucessivas de a; = 1 para a; = —1, como cada troca altera Sy por um miltiplo
de 4 (como demonstrado no item (b)), a propriedade é preservada. Ja no item (d), o
invariante é o "resto da divisao de S, por 4". O processo de trocar —1’s por 1’s um a um
mantém este resto inalterado, o que permite concluir que se S,, = 0 (que é =0 mod 4),
entao o valor inicial n também deve satisfazer n =0 mod 4.
Problema 6.11. (OCM 2015-N1Q2) Duas mil e quatorze pessoas estdo sentadas ao redor
de uma mesa redonda. Sabe-se que a altura de cada uma das pessoas sentadas ao redor da
mesa é a média aritmética das alturas de suas duas vizinhas. Prove que todas as pessoas
sentadas ao redor da mesa tém uma mesma altura.
Solugao: Seja P = { Py, P, ..., Py14} 0 conjunto das pessoas, organizadas circularmente.
Definimos:

e h; — altura da pessoa P;.

® hmax = max{hy, ha, ..., hao14}. (existente pois o conjunto é finito)
Suponha que existe pelo menos uma pessoa P, com altura hy = hpay. Sabemos que:

_ P14 hys1

D 5



83

Como hj € maximo, temos hi_1, hyr1 < hi. Contudo, pela desigualdade das médias:
hi_1+h hi + h
e e e Absurdo! =
2 2
Problema 6.12. (OBMEP 2020-BQN1Q12) Sobre uma mesa estdo 10 moedas, todas

com “cara” voltada para cima. Uma jogada consiste em virar exatamente 4 moedas.

a) Qual a quantidade minima de jogadas para que todas estejam com “coroa” voltada
para cima?
b) Se fossem 11 moedas, seria possivel deixar todas com coroa voltada para cima?
Solucao:
(a) Com 2 jogadas nao é possivel, pois podemos mudar no maximo 2x = 8 moedas,
mas precisamos alterar todas as 10. E possivel com 3 jogadas, conforme a sequéncia

abaixo na figura [16}

Figura 16 - Jogo das moedas

Posicio Inicial e°e°®°®°°°
Jogada 1 COXCXCXC> k °°°°e
ENHO000000000
Jogada 3 WCCDWCCXCXC)

Fonte: Proprio autor (2025).

(b) Viramos sempre 4 moedas (quantidade par) a cada jogada. Inicialmente, o niimero
de caras (10) e o de coroas (0) é par. Sempre que viramos 4 moedas, a quantidade
é par em cara e coroa ou impar em ambas, pois a soma das quantidades viradas é
par (4). Assim, apos cada jogada, a quantidade de caras e de coroas tém mesma
paridade (ambas par ou ambas impar). Dessa forma, concluimos que nao é possivel
deixar as 11 moedas com “coroa” voltada para cima, pois o nimero de coroas (11)

seria impar e o de caras (0) seria par. u

Observagao 6.7. A impossibilidade de transformar todas as moedas em coroas quando
temos uma quantidade impar no total estd diretamente relacionada a preservacao da
paridade. Quando comegamos com um niimero impar de moedas (digamos, 11) e todas
estao com cara, qualquer jogada que vire um ntmero par de moedas (como 4) mantera a
paridade do ntimero de caras. Isso ocorre porque virar um nimero par de moedas pode
apenas: (1) virar um ntimero par de caras para coroas e um numero par de coroas para
caras (nao alterando a paridade do total de caras), ou (2) virar um ntimero impar de caras

para coroas e um numero impar de coroas para caras (0 que também mantém a paridade,
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pois impar - impar = par). Portanto, como comegamos com um nimero impar de caras
(11), nunca poderemos alcancar 0 caras (par), ja que todas as operagoes preservam a
paridade impar inicial.

Problema 6.13. (OCM 2015-N2Q3) Tem-se 2015 niimeros reais e sabe-se que a soma de
quaisquer 100 desses niimeros é positiva. Mostre que a soma de todos os 2015 ntimeros é
positiva.

Solucao: O que temos a observar aqui é que quaisquer que sejam 0S cem nimeros
escolhidos, a soma deles sempre serd um valor positivo (invariante). Entdo considere
ai,as, as, ..., ool NUMeEros reais tais que a soma de quaisquer cem deles é positiva. Logo

podemos formar a soma de cem deles dos seguintes modos

ay+ as +as + ... + agg + ajgg > 0

az + as + aq + ... + ajoo + a101 > 0

1916 + Q1916 + Q1915 + ... + Q2014 + G015 > 0
1917 + Q1918 + A1919 + ... + 2015 + a1 >0

1918 + Q1919 + Q1920 + ... + a1 +az >0

Qo015 + a1 + Qg + ... + agg + agg > 0.

Somando todas as equagoes acima, obtemos a expressao
100(&1, 2,03, ..., a2015) > 0.

E assim concluimos que a soma dos 2015 niimeros reais em questao é positiva. |
Problema 6.14. (OBM 2004-N2Q3) Esmeralda tem uma pilha com 100 pedras. Ela
divide essa pilha em duas novas pilhas e em seguida multiplica as quantidades de pedras
nessas duas novas pilhas e escreve o produto em um quadro. Ela entao escolhe uma
pilha com mais de uma pedra e repete esse procedimento: a pilha é dividida em duas,
as quantidades de pedras nessas duas pilhas sao multiplicadas e o produto escrito no
quadro. Esta operacao é realizada até se obter apenas pilhas com 1 pedra cada. Quais
sao os possiveis valores da soma de todos os produtos escritos no quadro?

Solugao: Vamos analisar o problema considerando o processo de divisao das pilhas. Para
qualquer divisdo de uma pilha com a pedras em duas pilhas de b e ¢ pedras (a = b+ ¢),
o produto registrado é bc, que pode ser expresso como:

a? - v -2

2

be =
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No caso geral com miltiplas divisoes, sejam by, b, . . ., ba, 11 as quantidades de pedras apos

cada divisao. A soma total S dos produtos registrados é:

- 100 — b3 — 03 b3 — b3 — 13 01— B3 — B3
S:szkqbzk: 21 24 1 23 44 ... 4 2not 22+1 2nt2
k=1

Observamos que todos os termos b? onde b; > 1 se cancelam, pois aparecem uma vez
positiva e uma vez negativa. Como o processo termina com 100 pilhas de 1 pedra cada,
permanecem apenas 100 termos unitarios:
100 termos
~ 1002 -1 —17—... — 1> 100> —100 x 12 10000 — 100
2 2 2

Portanto, a soma S é invariante e independe da ordem das divisoes, tendo como tnico

S = 4950.

valor possivel 4950. [ |
Problema 6.15 (OBM 2007-N2Q6). Em um torneio de ténis de mesa (no qual nenhum
jogador termina empatado), cada um dos n participantes jogou uma tdnica vez contra
cada um dos outros. Sabe-se que, para todo k£ > 2, nao existem k jogadores Ji, Jo, -+ J
tais que J; ganhou de Js, Jy ganhou de J3, J3 ganhou de Jy,--- , Jp_1 ganhou de J; e Jj
ganhou de J;. Prove que existe um jogador que venceu todos os outros e um que perdeu
para todos.

Solucao: O problema em questao é mais geral. Poderia ser enunciado como “se um
jogador A vencer B e B vencer C, é impossivel C' vencer A. Entao, ha um jogador que
venca todos os demais”. Ele se torna até intuitivo se o enunciarmos assim: “quando um
jogador vence outro, que vence um terceiro, o primeiro vencera o terceiro”.

Para indicar o vencedor de uma disputa, vamos utilizar uma seta: J, — J, (isso
significa que J, perdeu para J,). A seta aponta para o vencedor. Vamos supor que nenhum
jogador perdeu todas as partidas. Assim, J; ganhou pelo menos 1 partida. O esquema
dele serd assim: J; < J,. Como Jy também nao perdeu todas, o esquema ficara assim:
Ji < Jy < J3 < --- Observe que nenhum jogador pode aparecer 2 vezes nessa sequéncia.
Vejamos o porqué: supondo que Jo apareca de novo no esquema: Jy <— Jo < J3 < Jy
Jo. Isso criaria um ciclo: J, — J3 — Jy — Jo, 0 que é proibido pelo enunciado. Portanto,
nao podemos repetir jogadores na sequéncia. Como o nimero de jogadores n é finito, a
sequéncia deve terminar. A nica maneira de terminar é quando encontramos um jogador
invicto (que nao perdeu para ninguém), pois nao podemos adicionar ninguém apos ele na
sequéncia. Logo, deve existir um jogador que venceu todos os outros. Analogamente, se
construirmos a sequéncia na dire¢do oposta (dos perdedores), chegaremos a um jogador
que perdeu para todos os outros. Portanto:

e Existe um jogador que venceu todos os outros (o melhor jogador).

e Existe um jogador que perdeu para todos os outros (o pior jogador).
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Esses dois jogadores podem ser o mesmo (no caso de haver apenas um jogador)
ou diferentes (no caso geral). |
Problema 6.16. (OBMEP 2005-N3Q2) A sequéncia 0,3,7,10,14,17,21, ... é formada a
partir do nimero 0 somando-se alternadamente 3 ou 4 ao termo anterior, isto é: o primeiro
termo é 0, o segundo é 3 a mais que o primeiro, o terceiro é 4 a mais que o segundo, o

quarto é 3 a mais que o terceiro, o quinto é 4 a mais que o quarto e assim sucessivamente.

+3 +4 +3 +4
/N —~ _ —

0 3 7 10 14
(a) Escreva os 20 primeiros termos desta seqiiéncia.
(b) Qual é o 1000° termo desta sequéncia?
(c) Algum termo desta sequéncia é igual a 20007 Por qué?
Solucao:
(a) A sequéncia inicia com 0 e segue o padrao de somar alternadamente 3 e 4, gerando

os 20 primeiros termos:
0,3, 7,10, 14, 17, 21, 24, 28, 31, 35, 38, 42, 45, 49, 52, 56, 59, 63, 66.

(b) Analisando sua estrutura, podemos decompo-la em duas progressoes aritméticas:
i) Para termos impares (as,_1), temos a sequéncia 0, 7, 14, 21, ... com termo
geral 7(n — 1) para n > 1;
ii) Para termos pares (ag,), a sequéncia 3, 10, 17, 24, ... segue a formula 7(n —
1)+ 3 paran > 1.
Essa decomposi¢ao nos permite calcular qualquer termo: o 1000° termo (par) é
a1000 = 7 X 499 4 3 = 3496.
(c) Para verificar se 2000 pertence & sequéncia, analisamos suas duas sub-sequéncias:
— Termos impares: as,_1 = 7k onde k =n —1 > 0.
— Termos pares: as, =7k +3 onde k =n—1>0.

Testando ambas as possibilidades:

2
2000 =Tk =k = g ~ 285.714 ¢ N.

1997
2000=Tk+3=Fk= — ~~ 285.285 ¢ N.

Como nenhum dos casos resulta em £ inteiro nao-negativo, concluimos que 2000 nao

é termo da sequéncia. De outro modo, temos que:
2000 = 7 x 285 + 5,

mostra que 2000 deixa resto 5 na divisao por 7, enquanto nossos termos s6 podem

deixar restos 0 (termos impares) ou 3 (termos pares). u
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Problema 6.17. (OCM 2016- N3Q5) Sao dados 2n-+1 pontos dispostos sobre um circulo,
tais que dois quaisquer deles nao sao extremidades de um mesmo diametro. Prove que,
dentre os triangulos que tém trés desses 2n + 1 pontos por vértices, no maximo
n(n+1)2n+1)
6 7

sao acutangulos. (Nota: por circulo de centro O e raio r entendemos o conjunto formado

pelos pontos do plano que estdo a distancia r do ponto O.)

Solucao: Um triangulo é acutangulo quando todos os seus angulos internos sao menores
que 90°. Em um tridngulo inscrito em uma circunferéncia, um angulo serd obtuso se e
somente se o arco oposto a esse angulo tiver comprimento maior que meio circulo. Assim,
para que um triangulo seja acutangulo, seus trés vértices devem estar contidos em um
arco com menos da metade da circunferéncia. Como temos 2n + 1 pontos uniformemente
distribuidos e nenhum par de pontos é diametralmente oposto, um arco com n pontos
consecutivos representa menos da metade do circulo. Seja Py, P, ..., P, 0s 2n+1 pontos
dispostos ordenadamente no sentido anti-horario sobre a circunferéncia. Fixemos um
ponto P; dentre os 2n+ 1 pontos da circunferéncia. Os tridngulos que tém P; como vértice
serao acutangulos se os outros dois vértices estiverem entre os n pontos imediatamente a
esquerda e os n pontos imediatamente a direita de P; (considerando a ordem circular dos
pontos). Para cada par (P}, Py), onde P; esta entre os n pontos & esquerda e Py, entre os
n pontos a direita de P;, o tridangulo P P; P, serd acutangulo. O nimero de tais pares é
n-n = n?% Como h& 2n + 1 pontos possiveis para P;, temos, no maximo, (2n + 1) - n?
triangulos acutangulos contados dessa forma. Contudo, cada triangulo é contado trés
vezes, uma para cada vértice. Assim, o nimero total de tridngulos acutangulos distintos

é dado por:
2n+1)-n*> nn+1)2n+1)

3 6 ' u

Observagao 6.8. O uso do principio do elemento extremo estd na identificacao de que,
entre todos os triangulos possiveis, apenas os que se formam com vértices concentrados
num arco menor que meio circulo podem ser acutangulos, e o niimero maximo desses casos
ocorre justamente quando essa concentracao ¢ maxima, ou seja, quando os vértices estao
0 mais proximo possivel no contorno do circulo.

Problema 6.18. (OCM 1986-N2Q3) Seja BE'D uma corda de um circulo com centro em
O tal que BE = 3cm e ED = 5cm. A reta determinada por O e E intercepta o circulo

no ponto C. Determine o raio do circulo, sabendo-se que EC = 1 cm.
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Figura 17 — Circulo de centro O,cortado por duas cordas

Fonte: Proprio autor 2025.

Solucao: Sabemos que BD = BE + ED = 3cm + 5cm = 8cm. Logo pelo teorema da

poténcia de pontos (nosso invariante) temos:

BE-ED=CE-(2r — CE)
3-5=1-(2r —1)

15=2r -1
2r =16
r=38cm

Problema 6.19. (OCM 1998-N2Q6) Sejam ay, ag, . . ., a;3 inteiros positivos e py, pa, ..., P13

nimeros primos. Sabe-se que:

ay + az = py
as + a3 = pa

asz + a4 = p3

a13 + a1 = p13-

Encontre o valor do menor elemento dos conjuntos A = {ay, as,...,a13} e B = {p1, pa,
P13}

Solucgao: Se somarmos todos os termos das equacoes acima, obtemos:

. ey

2(a1+a2+...+a13):p1+p2+...+p13.

Temos que pela paridade se todos os p;s fossem impares, a soma p; +ps+. ..+ pi3 também
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seria impar (pois teriamos a soma de uma quantidade impar de impares). Logo algum p;
¢ par, para algum j = 1,2,3...,13. Como p; é primo, segue que p; = 2 que ¢ 0 menor

elemento de B. Para este termo em especifico temos
aj—i-ajH :2:>(1,j = Qjy1 = 1.

Entao 1 & o menor elemento de A e 2 0 de B e dado a essa minimalidade conseguimos con-
jeturar os outros elementos, assim teremos por exemplos A = {1,1,2,3,4,7,10, 13, 16, 21,
22,25,28} e B={2,3,5,7,11,17,23,29,37,43,47,53,29}. [ |
Problema 6.20. (OCM 2014 - N2Q1) Um estudante resolve colar seus selos num album.
Se prega 20 selos em cada folha, o album nao terd folhas suficientes para receber todos
os selos. Se prega 23 selos, sobrard pelo menos uma folha vazia no album. Se o aluno
receber outro album idéntico, com 21 selos em cada folha, ficard com um total de 500
selos. Quantas folhas tem o album?

Solucao: Seja S a quantidade de selos no nosso her6i e n a quantidade de folhas do

album. Entao podemos concluir que:
S>20n, S<23(n-—1) e 2ln+ S =500.
Dai,
20n +21n < S+ 21n < 23(n — 1) 4 21n,

que resulta:
41n < 500 < 44n — 23.

resolvendo as equacoes:

500 > 41n = n<%~12,19

2
500 < 44n — 23 = nZ%%ll,&).

Como n deve ser inteiro, obtemos 11,89 < n < 12,19 = n = 12 que é o ntimero de folhas
no album. u

Problema 6.21. (OCM 1998-N2Q4) Determine todos os inteiros positivos N de trés
digitos tais que N e a soma dos seus digitos sejam divisiveis por 11.
Solugao: Seja N = abc. Sabemos que pra N ser divisivel por 11 entao ¢ — b + a (nosso

invariante) também tem que ser divisivel por 11, ou seja,

¢c—b+a=11k. (4)

Como a soma dos digitos de N também é divisivel por 11, temos

b+ c=11s. (5)

Subtraindo a equacio () da (7)), obtemos

2 = 11(s — k).
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Logo, sabemos que 2b é miltiplo de 11. A tnica possibilidade é b = 0. Assim as equagoes
se reduzem a uma tnica a + ¢ = 11k. Como 0 < a+ ¢ < 9+ 9 = 18, s6 podemos ter

a + ¢ = 11. Portanto, teremos como resultado os niimeros:

209, 308, 407, 506, 605, 704, 803 e 902. -
Problema 6.22. (OBMEP 2017-BQN1Q3) Existem 100 caixas idénticas, todas tampa-

das, dispostas em uma linha. Em uma das caixas, existe um diamante. Cada caixa possui
a seguinte mensagem escrita em sua tampa: “O diamante estd na caixa da esquerda ou
da direita”. Sabemos que exatamente uma das mensagens é verdadeira e todas as demais
sao falsas. Abrindo apenas a tampa de uma delas, é possivel descobrirmos onde esté o
diamante?
Solugao: Supomos que o diamante nao esteja em uma das caixas que ficam nos extremos,
logo, as duas caixas vizinhas, da caixa com o diamente, terao uma mensagem verdadeira
e isso contradiz a informagao dada (absurdo!). Portanto, basta abrir uma das caixas dos
extremos. Se o dimante estiver nela, teremos descoberto a sua posicao. Caso contrério,
certamente ele estard na caixa do outro extremo. |
Problema 6.23. (OBMEP 2014- N3Q5) Fabio gosta de brincar em escadas, subindo ou
descendo seus degraus da seguinte maneira:

e comeca no degrau de nimero 1;

e a cada movimento ele sobe ou desce um ou dois degraus e, ao subir ou descer dois

degraus, nao pisa no degrau intermediério;

e pisa em todos os degraus exatamente uma vez.
Por exemplo, em uma escada com trés degraus ele pode brincar de duas maneiras dife-
rentes: 1-2-3, 1-3-2; com quatro degraus ele pode brincar de quatro maneiras diferentes:
1-2-3-4, 1-2-4-3, 1-3-2-4 e 1-3-4-2.

Figura 18 — Fabio

Fonte: Proprio autor (2025).

(a) Féabio pode brincar de seis maneiras diferentes em uma escada com cinco degraus.
Escreva essas seis maneiras.

(b) Explique por que sempre é possivel terminar a brincadeira no degrau de nimero 2
em qualquer escada com dois ou mais degraus.

(c) Ha 31 e 68 maneiras diferentes de se brincar em escadas com nove e onze degraus,
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respectivamente. De quantas maneiras diferentes Fabio pode brincar em uma escada
com doze degraus?
Solugao:
(a)
1-2-3-4-5, 1-2-3-5-4, 1-2-4-3-5,
1-3-2-4-5,  1-3-2-5-4, 1-3-4-2-5.

(b) Basta ele subir pelos degraus impares até o mais alto dos impares e em seguida ir
para o mais alto dos pares e descer pelos degraus pares. Exemplos:

— Para 12 degraus: 1-3-5-7-9-11-12-10-8-6-4-2.

— Para 13 degraus: 1-3-5-7-9-11-13-12-10-8-6-4-2.

(c) Para uma escada de 12 degraus:

— Se ele comecgar com os movimentos 1-2, o problema recaird no caso com 11
degraus e, portanto, serd possivel completéd-lo de 68 maneiras.

— Se ele comecar com 1-3-2, entao ele terd que ir pro degrau 4 e o problema
recaird na mesma situacao com 9 degraus. Portanto ele terd 31 maneiras de
completa-los.

— Se ele comecar com 1-3-4, os degraus 2 e 5 ficarao com um afastamento de 3
degraus, logo nao serd possivel completar o movimento.

— Se ele comecgar com 1-3-5, ele nao podera mais descer ou subir um degrau, até
atingir o ultimo impar para depois voltar pelos pares como descrito no item
(b) e, assim, ele s6 tem uma maneira de completar o movimento. Portanto, o

ntmero de maneiras de realizar a brincadeira com 12 degraus é:

68 + 31 + 1 = 100. -
Problema 6.24. (OCM 2004- N2Q4) Sao dados no plano uma reta r e um ponto A ¢ r e

a distancia de A a r é igual a 3cm. Determine, com prova, o menor comprimento possivel
de um segmento BC, com B,C € r e tais que ZBAC = 120°.

Figura 19 — Triangulo ABC, com altura relativa BC= 3 cm
A

L r
B D 7 C
Fonte: Proprio autor (2025).

Solucao: Temos que pela lei dos cossenos, aplicado no triangulo ABC"
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1
22 = b* 4 — 2bc <—§>

22 =0+ +be
Usando que b% + ¢ > 2bc na equacio acima temos:
2 > 3be. (6)

Seja S a area do triangulo ABC, entao:

3- 1 bev/'3

Tx =5= Ebcsin 120° = Ci/_.
Assim, be = 221/3 e, por @, temos 2 > 3 - 2zv/3, assim teremos z > 6v/3. A igualdade
s6 ocorre se, e somente se, b = c. [ |

Problema 6.25. (OBM 2016-N2Q11) Num pais imaginario vivem somente duas espécies
de pessoas: o0s honestos, que sempre dizem a verdade e os mentirosos, que s6 dizem
mentira. Numa fila de 2016 pessoas da ilha, o primeiro da fila diz que todos atras dele
sao mentirosos e todas as demais pessoas da fila dizem que a pessoa imediatamente a sua
frente é mentirosa. Quantas pessoas mentirosas estao nessa fila?

Solucgao: Supomos que a primeira pessoa da fila seja honesta, assim sua afirmacao de que
todos atras sao mentirosos implicaria um padrao alternado de mentirosos e honestos a
partir do segundo individuo, mas isso levaria a uma contradicao quando a tultima pessoa
(de niimero par) teria que mentir sobre a anterior ser mentirosa (quando na verdade seria
honesta); portanto, a primeira pessoa deve ser mentirosa, o que significa que existe pelo
menos um honesto apés ela. A partir dai, o primeiro honesto na posicao k estabelece um
padrao de pares (H, M) subsequentes, onde cada pessoa diz que a anterior é mentirosa -
como temos 2015 pessoas restantes (um nimero impar), isso resulta em 1007 mentirosos
nesse grupo, somando-se ao primeiro mentiroso, totalizando 1008 mentirosos na fila. H
Problema 6.26. (OBM 2001-N1Q19) Cinco animais A, B, C, D, e E, sao caes ou sao
lobos. Caes sempre contam a verdade e lobos sempre mentem. A diz que B é um cao. B
diz que C é um lobo. C diz que D é um lobo. D diz que B e E sao animais de espécies
diferentes. E diz que A é um cdo. Quantos lobos héa entre os cinco animais?

Solugao: Comecamos analisando as afirmacgoes extremas de E ("A é um cao") e A ("B
¢ um cao"), que estdo interligadas. Se assumirmos que E é um cao (verdadeiro), entao
A seria de fato um cao (por dizer a verdade), o que implicaria que B também é cao (ja
que A estaria falando a verdade). No entanto, essa cadeia leva a uma contradigdo quando
D (um suposto cao nesse cenério) afirmaria que B e E sdo de espécies diferentes, quando
na verdade ambos seriam caes. Portanto, E nao pode ser um cao e deve ser um lobo
(mentiroso), o que significa que A também é um lobo (ja que E mente sobre ele ser co).
Como A é lobo, sua afirmacao sobre B ¢é falsa, tornando B um lobo. B, sendo lobo, mente

ao afirmar que C é lobo, logo C é cao. C, como cao, diz a verdade que D é lobo, e D,
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sendo lobo, mente ao afirmar que B e E sao diferentes, quando na verdade, ambos sao
lobos, mantendo a coeréncia. Assim, concluimos que A, B, D e E sdo lobos (4 no total),
e apenas C como cao. [ |
Problema 6.27. (OBMEP 2013-BQN3Q13) Sergio pediu para Ivan pensar em um nt-
mero inteiro positivo. Depois, pediu para Ivan calcular a soma de seus algarismos e,
finalmente, elevar ao quadrado o resultado. Sem falar o niimero em que pensou inicial-
mente, Ivan contou que obteve como resultado final x. Mostre a Sergio como chegar as
seguintes conclusoes:
(a) Se Ivan tivesse pensado em um nimero com 3 ou menos algarismos, entao x seria
menor do que 730.
(b) Se Ivan tivesse pensado em um ntmero com 4 algarismos, entdo x seria menor do
que o nimero no qual Ivan pensou.
(c) Se Ivan tivesse pensado em um ntimero com 5 ou mais algarismos, entdo x seria
menor do que o nimero que Ivan pensou.
Sergio fez depois o seguinte: Considerou o nimero x que Ivan disse, calculou a soma
dos seus algarismos e elevou ao quadrado o resultado. Quando Sergio falou para Ivan o
nimero que obteve, Ivan disse com surpresa que esse foi o nimero que havia pensado.
Solugao:
(a) Sim! De fato se Ivan tivesse pensado em um ndimero com 3 ou menos algarismos,
terfamos como soma de seus algarismos no maximo 9+ 949 = 27. Entao o nimero
final de Ivan z seria no méaximo 272 = 729 que é menor que 730.
(b) Vamos considerar a possibilidade de Ivan pensar no menor nimero ou o maior
ntiimero com 4 algarismos, digamos que abcd é esse nimero, entdo x = (a+b+c+d)>.
Logo as duas possibilidades sao:

e a=1,b=c=d=0, entao
< (1+0+0+0)*=1<1000.
e a=b=c=d=29, entao
< (94+94+9+9)% =1296 < 9999.

Em qualquer um dos casos temos que, x < abcd. Portanto se esse nimero tiver 4
algarismo entao x é menor que o nimero que Ivan pensou.
(c¢) Suponhamos que Ivan pensou em um nimero com n > 5 algarismos, digamos

@1ay .- a,. Entao, r = (a; +as + -+ + a,)? Logo,
r < (9n)* = 81n?.

Note que o ntimero que Ivan pensou deve ser menor ou igual a 10771, logo:
10" < @ag .

Assim, para mostrar que x < @ias . ..a, SO precisamos provar que
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81n% < 10" !, para todo inteiro n > 5.
Usaremos inducao para provar esse resultado. Para n = 5, temos
81-5% = 1755 < 10000 = 10°~'.

Suponhamos entao que essa desigualdade é valida para algum inteiro k > 5, ou seja,

81k* < 1057t (H.I)

Vamos mostrar que ela é valida para k + 1. Observemos que, por ser k > 5, entao
81(k +1)? < 81(2k)* = 4(81k?).
Usando a hipétese de inducao vemos que
81k%) < 4(10%71). (7)

Como 4 < 10 vemos que a tltima expressao em é menor do que 10 x 10! = 10*.
Dai concluimos que
81(k +1)% < 10-+D-1,

Portanto

81n% < 10" !, para todo inteiro n > 5.

E assim provamos que qualquer que seja o nimero que Ivan pensar de cinco ou mais

algarismos x é menor. u

Problema 6.28. (OCM 2003-N2Q2) No pais da verdade, onde ninguém mente, reuniram-

se OS

amigos Marcondes, Francisco e Fernando. Entre os trés ocorreu a seguinte conversa:
Marcondes: Estou escolhendo dois inteiros positivos e consecutivos e vou dar um
deles ao Francisco e outro ao Fernando, sem que vocés saibam quem recebeu o maior.
Apobs receber cada um o seu numero, Francisco e Fernando continuaram a conversa.
Francisco: Nao sei o niimero que Fernando recebeu;

Fernando: Nao sei o nimero que Francisco recebeu;

Francisco: Nao sei o nimero que Fernando recebeu;

Fernando: Nao sei o niimero que Francisco recebeu;

Francisco: Nao sei o niimero que Fernando recebeu;

Fernando: Nao sei o nimero que Francisco recebeu;

Francisco: Agora eu sei o numero que o Fernando recebeu;

Fernando: Agora eu também sei o niimero que Francisco recebeu;

QQuais os nimeros recebidos por cada um deles?

Solugao: Este problema usa o principio do elemento extremo quando usa o menor natural

(o nimero 1 no caso) como ponto de partida. A partir dai construimos um raciocinio por

eliminacao indutivo: Francisco nao pode ter recebido 1, pois saberia imediatamente que

Fernando teria 2 (j& que os niimeros sao consecutivos e positivos). Fernando, ao ouvir

que Francisco ndo sabe seu nimero, descarta a possibilidade de ter recebido 2 (pois, se
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tivesse 2, deduziria que Francisco tem 1 ou 3; mas como Francisco nao tem 1, Fernando
concluiria que Francisco tem 3). Cada nova negacao (“nao sei”) elimina o proximo nimero
possivel na cadeia:

Francisco nao tem 1 = Fernando nao tem 2

Fernando nao tem 2 = Francisco nao tem 3

Francisco nao tem 3 = Fernando ndo tem 4

Fernando nao tem 6 = Francisco tem 7.

O padrao s6 é interrompido quando Francisco, apds seis rodadas de negacoes,
conclui que s6 pode ter 7 (pois 6 ja foi eliminado para Fernando). A solugao emerge
justamente porque o processo iterativo explora que nao ha ntimero menor que 1 nos

inteiros positivos, o que gera essa uma cadeia dedutiva sem ciclos. [ |

Problema 6.29. (OBMEP 2018-BQN3Q25) Determine o termo minimo da sequéncia

AT AT T T

Solugao: Lembre que (z — y)? > 0 para todos os reais z e y. Assim pela desigualdade
das médias, temos que # > zy. Substituindo r = \/a e y = Vb, com a e b reais no

negativos, temos:

a;bzx/@

Observe que todos os termos sao do tipo:

n [16x6 _ n+4\/ﬁ
6 n  \6 n
com n inteiro e 7 < n < 95. Tomandoa:\/%ebzél\/g, temos:
\/_+4\[ /
:\[+4f>2 2. \/ ﬁ 5_4
6 n

O valor minimo de cada termo é 4 e ocorre quando:

\/7 f —16§:>n2:576:>n:24.
n
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Otermomlmmoew \/ —2—1—2—4 [ ]

Problema 6.30. (OBMEP 2016-BQN3Q16) Sejam a e b ntimeros reais positivos com

43 77

produto diferente de 1, define-se a operacao estrela, representada por “x”, pela equacgao

a+b—2ab

b:
“x 1—ab

Em uma lousa, estdo escritos 2015 niimeros iguais a <. Em cada passo, apagam-se dois

2
numeros r e y escritos na lousa e escreve-se o niimero x * y. Este passo ¢ repetido 2014
vezes até que fique apenas um ntimero na lousa.

(a) Demonstre que a equacao

rxky X Y

1—x*y_1—x+1—y

é verdadeira para quaisquer = e y reais com x # 1, y # 1 e xy # 1.

(b) Se para cada niimero x que é escrito na lousa, calcularmos - e somarmos todos

estes resultados, teremos um certo resultado. Mostre que este resultado é sempre o
mesmo nao importando quantos passos tenham sido feitos até aquele momento.
(¢) Qual o ntimero que estara escrito na lousa ao final dos 2014 passos?
(d) Se além dos 2015 ntumeros iguais a % na situagao inicial, também escrevermos um
ntmero 1, qual serd o nimero final apos a realizacao de 2015 passos?
Solugao:

(a) Desenvolvendo a expressao da operagao estrela, temos:

r+y—2xy

Txy B 1oy r+y—2xy Tty — 2wy
l—xxy 1—”13’_—;2;3’_1—xy—x—y+2xy_1—x—y+xy
T+y— 2 x
_ y—2zy _ LY

l1-2)(1—-y) 1—2 11—y

(b) Seja S a soma dos termos ;- para cada x escrito na lousa. Usando o item anterior,

concluimos que retirando dois termos = e ﬁ e adicionando o termo

THY
—zxy?

a
soma nao se altera. Como isto vale para cada passo, entao continua valendo nao
importando quantos passos tenham sido feitos.

(c) Seja N o numero final. Pelo item anterior, sabe-se que a soma nao sofre alteracao
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com as trocas. Portanto, podemos usa-la para descobrir o ntimero final.
N 1/2 1/2 1/2
1-N 1-1/2 1-1/2 1—-1/2
= N =2015(1 - N)
= 2016N = 2015

2015
2016

=141+ --+1=2015

(d) Para um namero x # 1, fazendo a operagao x * 1, temos:

1—22 1-—
1= T2t g,
1—=x 1—=x

Como x x 1 =1, fazer a troca de x e 1 por z * 1 é 0 mesmo que apagar o x. Assim,

podemos afirmar que ao final dos 2015 passos o inico niimero escrito sera 1. |

Observacao 6.9. Neste problema, a chave para a solugao foi a identificacao do invariante,

isto é, uma quantidade que se manteve constante durante todas as operacoes. Que no

oy

que se manteve inalterada ao longo do processo, conforme demonstrado no item (b).

caso foi especificamente, a soma

A invariancia veio da propriedade:

T *y x Y
= +
l—zxy 1—2 1-—y

que garante a conservacao de S quando substituimos quaisquer dois nimeros x e y por
X .

Este invariante foi necessario para resolver os itens (c) e (d), pois ele permite
determinar o valor final na lousa sem necessidade de rastrear individualmente cada uma
das 2014 (ou 2015) operagoes. Em problemas que envolvem operagdes sucessivas como
este, a identificacao de invariantes é importante, pois pode reduzir um processo complexo
ao acompanhamento de uma quantidade constante.

Vale observar que a expressao ;- sugere uma conexao com transformagoes
fracionarias lineares (transformagoes de Mo6bius), que preservam certas propriedades com-

binatoérias.
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7 CONCLUSAO

Os principios que exploramos aqui exigem anélise e criatividade, nao bastando
somente conhecer as ideias matematicas, mas saber aplicd-las com flexibilidade. Nosso
objetivo foi ajudar o leitor a desenvolver um olhar estratégico para problemas complexos,
mostrando que, mesmo quando os conceitos sao simples no papel, usi-los com eficiéncia
requer pratica e intuicao. Isso é especialmente 1til para estudantes e professores en-
volvidos em olimpiadas de matematica, onde a identificacao de invariantes e a procura
por elementos extremos foram o pilar da nossa metodologia, transformando problemas
aparentemente abstratos em desafios com caminhos claros para a solucao.

A execucgao desses principios embora em algumas situagoes simples, apresen-
tou uma adversidade significativa, pois cada problema exigiu a identificacao de invarian-
tes especificos ou a determinacao de extremos particulares. Essa inconstancia intrinseca
transformou cada questao em um contratempo tinico, reforcando a importancia da pratica
continua na resolucdo de problemas diversificados. E claro que a falta de formulas prontas
ou teoremas milagrosos para esses problemas pode assustar no comeco e chegou até causar
uma certa ansiedade. Mas, no fim das contas, é justamente isso que faz a matematica ser
tao incrivel: ela exige criatividade e nos faz pensar fora dos nosso limites naturais.

Este trabalho buscou evidenciar a relevancia do principio da invariancia e do
elemento extremo na matemaética olimpica, demonstrando sua aplicabilidade em proble-
mas desafiadores. Espero que este trabalho sirva como incentivo para pesquisas futu-
ras, estimulando ainda mais a exploracao criativa desses principios através de novas for-
mulacoes de problemas, abordagens inovadoras e refinamento das técnicas apresentadas.
Sempre pautando o rigor e a precisao que definem a matemaética de alto nivel. Espero
sinceramente que este trabalho tenha proporcionado ao leitor uma experiéncia intelectual
estimulante, capaz de despertar nao apenas o interesse pelo tema aqui explorado, mas
também uma curiosidade renovada por outros campos do conhecimento. Os questiona-
mentos que surgiram tanto da leitura quanto da pesquisa mostram o que faz o trabalho
académico tao valioso: essa capacidade tinica de transformar davidas em descobertas e
desafios em novos caminhos para a investigacao.

Foi nessa jornada de constante aprendizado e superacao que encontrei a mo-
tivacao para desenvolver esta dissertacao. Meu maior desejo é que este trabalho possa
contribuir com a comunidade matemaética ja interessada no tema e, ao mesmo tempo,
despertar o interesse de novos pesquisadores.

A Matemdtica nao conhece racas ou fronteiras geogrdificas; para a matemdtica,

o mundo cultural é um pais. David Hilbert
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