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RESUMO

Este trabalho apresenta o uso de invariantes matemáticos e dos elementos extremos na re-

solução de problemas de olimpíadas nacionais de nível básico OBM (Olimpíada Brasileira

de Matemática), OBMEP (Olimpíada Brasileira de Matemática das Escolas Públicas e

Privadas) e OCM (Olimpíada Cearense de Matemática). Os invariantes são propriedades

que se mantêm inalteradas sob transformações e mostram-se ferramentas poderosas em

combinatória, teoria dos números, teoria dos grafos, álgebra e geometria. O princípio

do extremo é uma estratégia e�caz para problemas com múltiplos elementos e de�nidos

em conjuntos �nitos. O método consiste em identi�car elementos extremos (máximos

ou mínimos) em conjuntos ordenados, explorando suas restrições naturais. Esta disserta-

ção ressalta como esses conceitos fundamentam demonstrações por indução e contradição,

revelando estruturas essenciais em problemas olímpicos. Os problemas envolvendo o Prin-

cípio da Invariância e do Elemento Extremo exigem não apenas raciocínio combinatório,

mas também criatividade e conhecimentos de diversas áreas da Matemática. Como es-

ses princípios não possuem fórmulas prontas, sua aplicação requer a combinação com

argumentos aritméticos, algébricos, geométricos e outros. Os problemas olímpicos apre-

sentados nesta pesquisa ilustram a variedade de situações em que esses conceitos podem

ser aplicados. Contudo, por se tratarem de questões clássicas, com soluções claras e

acessíveis, facilitam o aprendizado e a compreensão do leitor.

Palavras-chave: Invariantes Matemáticos. Princípio do Extremo. Resolução de Proble-

mas. Olimpíadas de Matemática.



ABSTRACT

This work presents the use of mathematical invariants and extremal elements in solving

problems from basic-level national olympiads: OBM (Brazilian Mathematics Olympiad),

OBMEP (Brazilian Public and Private Schools Mathematics Olympiad), and OCM (Ceará

Mathematics Olympiad). Invariants are properties that remain unchanged under trans-

formations and prove to be powerful tools in combinatorics, number theory, graph theory,

algebra, and geometry. The extremal principle is an e�ective strategy for problems with

multiple elements de�ned on �nite sets. This method involves identifying extremal ele-

ments (maximum or minimum) in ordered sets while exploiting their natural constraints.

This dissertation emphasizes how these concepts underpin proofs by induction and con-

tradiction, revealing essential structures in olympiad problems. Problems involving the

Invariance Principle and Extremal Principle require not only combinatorial reasoning but

also creativity and knowledge from various areas of Mathematics. Since these principles

don't have ready-made formulas, their application requires combination with arithmetic,

algebraic, geometric, and other types of arguments. The olympiad problems presented

in this research illustrate the variety of situations where these concepts can be applied.

Moreover, being classical problems with clear and accessible solutions, they facilitate the

reader's learning and understanding..

Keywords: Mathematical Invariants. Extremal Principle. Problem Solving. Mathema-

tics Olympiads.
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1 INTRODUÇÃO

Com quase 18 anos de experiência como professor de matemática e tendo viven-

ciado diversas situações em sala de aula, pude observar o crescente papel das olimpíadas

de matemática no cenário educacional. Motivado por essa relevância, decidi dedicar esta

dissertação ao estudo de técnicas para resolução de problemas olímpicos, com foco em

dois princípios matemáticos pouco difundidos, porém de grande importância: o Princípio

da Invariância e o Princípio do Elemento Extremo.

Embora, como aluno, eu não tenha participado de nenhuma olimpíada na

escola, como professor pude ver os efeitos e as conquistas na vida dos alunos que se

destacam nessas competições. Tive a oportunidade de trabalhar como corretor regional

da OBMEP e, com isso, acompanhar a rotina de alunos medalhistas de escolas particulares

e públicas do Ceará. Foi incrível testemunhar a transformação em suas vidas: muitos se

tornaram mais focados nos estudos, conquistaram bolsas integrais em colégios particulares

e ingressaram em turmas olímpicas, cursos de medicina ou direito, ao lado de alunos que já

dispunham de mais oportunidades e recursos para desenvolver seu potencial desde cedo. É

inegável que programas como a OBMEP abrem portas para estudantes de escolas públicas,

permitindo que desenvolvam suas habilidades intelectuais e conquistem condições mais

igualitárias de competir por vagas nas melhores universidades, tanto no Brasil quanto no

exterior, inclusive em cursos altamente concorridos. Essa oportunidade não só eleva seu

desempenho acadêmico, mas também promove uma transformação signi�cativa em suas

trajetórias de vida.

Para a elaboração desta dissertação, conduzi uma pesquisa abrangente em

obras especializadas em olimpíadas de Matemática, complementada pela consulta aos

portais o�ciais da OBM, OBMEP e OCM. O objetivo consistiu em analisar materiais

pedagógicos e compilar um extenso repertório de problemas nos quais a aplicação dos

princípios em estudo demonstra e�cácia comprovada. Paralelamente, realizei um levanta-

mento histórico sobre as olimpíadas brasileiras de matemática, com ênfase particular na

OBM, OBMEP e OCM, incluindo uma síntese de seus impactos na formação acadêmica

de estudantes cearenses.

O objetivo desta dissertação é apresentar técnicas de resolução de problemas

olímpicos que, apesar de facilmente aplicáveis, ainda são pouco conhecidas tanto por

alunos quanto por professores que estudam matemática e preparam estudantes para olim-

píadas. Nesse contexto, este trabalho vai abordar dois princípios básicos e relevantes para

resolver problemas olímpicos: o Princípio da Invariância e o Princípio do Elemento Ex-

tremo. Como dito antes eles não são tão explorados quanto o Princípio de Indução, da

Boa Ordenação ou de Dirichlet, mas são ferramentas valiosas para resolver certos tipos

de problemas.

Esses conteúdos foram selecionados justamente por dispensarem fórmulas com-
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plexas ou conceitos avançados, sendo, ao mesmo tempo, muito e�cazes em problemas

olímpicos. Além disso, são acessíveis e podem ser aplicados de forma intuitiva, o que os

torna ótimos para quem está começando nesse universo.

Esta dissertação tem como objetivo explorar o Princípio da Invariância (PI)

e o Princípio do Elemento Extremo (PE), oferecendo um material de apoio robusto para

professores e estudantes envolvidos com competições olímpicas de matemática. Nosso

trabalho busca preencher uma lacuna importante na literatura acadêmica, já que pou-

cos textos abordam sistematicamente esses temas. Além de apresentar os fundamentos

teóricos, propomos técnicas e métodos de treinamento especializados, desenvolvidos para

atender às particularidades do raciocínio olímpico, que exige não apenas conhecimento

teórico aprofundado, mas também a capacidade de reconhecer padrões e aplicar estra-

tégias criativas de forma sistemática. Preparar-se para olimpíadas de matemática não

é só sobre saber fórmulas e conceitos, é sobre desenvolver habilidades que só aparecem

com muita prática. Essa constatação remete à profunda re�exão do �lósofo Aristóteles:

�Nós somos o que repetidamente fazemos. A excelência, portanto, não é um ato, mas um

hábito.�

O Princípio da Invariância é essencial na matemática olímpica por revelar pro-

priedades que permanecem inalteradas mesmo sob transformações, sendo aplicável em

áreas como combinatória (para analisar con�gurações dinâmicas), teoria dos números

(identi�cando padrões invariantes), teoria dos grafos (estudando características preser-

vadas), álgebra (simpli�cando estruturas) e geometria (detectando relações constantes).

Sua força está na capacidade de extrair regularidades ocultas, transformando problemas

aparentemente complexos em abordagens mais sistemáticas e elegantes. Podemos citar

como exemplo básico, a paridade de um número (ser par ou ímpar) é um invariante: se

um número é par, ele continuará par mesmo quando multiplicado por outro inteiro, como

em 6× 3 = 18. Outro exemplo comum seria o valor absoluto de um número real, que não

muda independente do sinal (| 5 |=| −5 |= 5). Já na geometria podemos citar, a soma

dos ângulos internos de um triângulo sempre será igual a 180◦ ou a área de uma �gura

geométrica, que não se altera mesmo que a �gura seja movida ou girada no plano. Embora

simples, esses exemplos revelam o poder dos invariantes matemáticos e como eles atuam

mesmo nas situações mais básicas. Temos que muitas provas por indução ou contradição

se baseiam em invariantes. Por isso reconhecer invariantes exige um olhar atento, e o

domínio do uso de invariantes não apenas amplia o repertório de técnicas matemáticas,

mas também fortalece a nossa capacidade de abstração na resolução de problemas.

Em geral quando tentamos resolver um problema, uma das principais di�-

culdades é lidar com uma grande quantidade de elementos a serem compreendidos e

acompanhados. Um problema pode envolver uma sequência com vários (talvez in�nitos)

elementos, ou um problema de geometria pode incluir diversas linhas e formas. Assim

precisamos de um bom método para resolver problemas desse tipo que busque organizar
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essa complexidade de maneira e�caz. Uma ótima estratégia para isso é o princípio do

extremo : A ideia central é supor que os elementos do seu problema estejam ordenados.

Foque nos elementos �maior� e �menor�, pois eles frequentemente podem estar sujeitos a

restrições interessantes.

O princípio do elemento extremo é uma técnica matemática que consiste em

selecionar um objeto que atinja um valor extremo (máximo ou mínimo) em relação a

uma determinada função ou situação problema. A prova da propriedade desejada para

esse objeto segue ao demonstrar que qualquer pequena perturbação (ou variação) em

sua estrutura levaria a um aumento ou diminuição no valor da função, con�rmando sua

e�ciência. Além disso, o princípio do elemento extremo é principalmente construtivo,

fornecendo um algoritmo para construir o objeto de resolução. Por exemplo, em pro-

blemas de combinatória ou geometria, escolher o ponto mais distante, o número maior

ou a con�guração mais simétrica pode fornecer um ponto de partida claro. O princípio

funciona porque elementos extremos geralmente têm características especiais que limitam

as possibilidades, ajudando a encontrar padrões ou contradições que levam à solução.

O Capítulo 1 desta dissertação apresenta uma breve exposição sobre as motiva-

ções que levaram à elaboração do trabalho, bem como uma introdução ao tema proposto

para investigação.

O capítulo 2 dessa dissertação é dedicado a uma breve análise histórica das

olimpíadas de matemática, destacando sua evolução, relevância ao longo dos anos e suas

contribuições para a sociedade. O texto aborda especi�camente as competições nacionais

OBM, OBMEP e OCM, explorando suas origens, reformulações e impactos no cenário

educacional brasileiro.

O capítulo 3 apresenta uma fundamentação teórica sobre os Princípios de In-

dução, Boa Ordenação e Dirichlet, essenciais para a compreensão adequada do tema

proposto. Esses princípios são extremamente necessários na abordagem de problemas

de natureza combinatória e discreta, fornecendo bases sólidas para as demonstrações e

técnicas discutidas posteriormente.

Os capítulos 4 e 5 focam na aplicação prática do Princípio da Indução (PI) e do

Princípio do Elemento Extremo (PE), por meio de um conjunto selecionado de problemas.

Esses exemplos ilustram de maneira detalhada a utilização desses métodos, permitindo

ao leitor não apenas observar, mas também assimilar as estratégias empregadas.

Por �m, o capítulo 6 consolida o estudo, aplicando as técnicas assimiladas na

resolução de problemas provenientes das olimpíadas mencionadas. Essa análise prática

visa demonstrar a e�cácia dos princípios discutidos e sua relevância em competições ma-

temáticas. Este capítulo também se consolida como o produto educacional central desta

dissertação, oferecendo uma abordagem didática e aplicada dos princípios matemáticos

discutidos ao longo do trabalho, para servir como um recurso valioso (material formativo)

tanto para professores, que podem utiliza-lo em sala de aula, quanto para estudantes, que
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encontrarão nele um guia claro e estimulante para o desenvolvimento do raciocínio lógico

e da criatividade matemática.
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2 PANORAMA DA OBM, OBMEP E OCM: SÍNTESE HISTÓRICA E CON-

TRIBUIÇÕES

Desde sua criação as olimpíadas de matemática apresentam como valores, a

capacidade de identi�car e aprimorar, nos participantes, o pensamento estratégico e a

criatividade na resolução de problemas desa�adores. Elas atuam como laboratórios de

desenvolvimento intelectual, onde estudantes aprendem a enfrentar questões complexas

por meio de raciocínio lógico, persistência e abordagens inovadoras. Assim essas com-

petições abrangem tanto questões estritamente matemáticas quanto problemas de outras

naturezas que demandem abordagens matemáticas para sua solução. Constituem um am-

biente privilegiado para o exercício dessa habilidade, uma vez que os desa�os propostos

geralmente requerem apenas conhecimentos fundamentais da disciplina.

Na verdade, a maioria das questões pode ser resolvida com base no conhe-

cimentos do ensino básico, sem necessidade de tópicos avançados como trigonometria

avançada, cálculo diferencial ou geometria analítica. A essência do desa�o reside não

no domínio de conceitos so�sticados, mas sim na capacidade do estudante de articular,

aplicar e sintetizar esses conhecimentos básicos de maneira criativa e e�caz para alcançar

a solução.

Uma observação pertinente é que os problemas iniciais das olimpíadas guardam

semelhanças com aqueles presentes em avaliações educacionais internacionais, como o

PISA (Programa Internacional de Avaliação de Estudantes). Desse modo, a participação

em competições olímpicas de matemática representa uma valiosa preparação para exames

padronizados, pois desenvolve habilidades de raciocínio lógico e resolução de problemas.

Considere os seguintes exemplos:

� (PISA-2012) Uma escada de 5 metros está apoiada em uma parede. Se a base da

escada é afastada 1 metro da parede, quanto o topo da escada desce?

� (OBMEP 2023 - Nível 1) Um retângulo tem lados de 6 cm e 8 cm. Se diminuirmos

seu maior lado em 2 cm e aumentarmos o menor lado em x cm para que a área

permaneça a mesma, qual é o valor de x?

Ambos os problemas exigem a aplicação de conceitos matemáticos básicos

(como o Teorema de Pitágoras e o cálculo de área), envolvem a análise de como uma mu-

dança afeta o sistema como um todo, e desenvolvem a capacidade de modelagem matemá-

tica, demonstrando como competições olímpicas e avaliações padronizadas compartilham

objetivos pedagógicos similares no desenvolvimento do raciocínio lógico-matemático.

Entrando no contexto histórico as Olimpíadas de Matemática, no formato

atual, tiveram origem em 1894 na Hungria, com competições organizadas em âmbito

nacional. Progressivamente, países do Leste Europeu adotaram iniciativas semelhantes,

culminando na primeira Olimpíada Internacional de Matemática (IMO) em 1959, reali-

zada na Romênia.
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Já no Brasil, a trajetória olímpica teve início em 1979, quando a Sociedade

Brasileira de Matemática (SBM) criou a Olimpíada Brasileira de Matemática (OBM). Sua

trajetória, construída graças ao esforço coletivo de professores universitários, educadores

da educação básica e entusiastas da matemática, incluindo pioneiros como os matemáticos

Angelo Barone Netto, Augusto César Morgado e João Bosco Pitombeira de Carvalho,

transformou-se em referência para o desenvolvimento cientí�co brasileiro.

Inicialmente voltada para preparação de equipes para a Olimpíada Interna-

cional de Matemática (IMO), a OBM evoluiu de um formato único para um sistema

abrangente, incorporando em 1998 uma signi�cativa reformulação liderada pelo matemá-

tico Jacob Palis. A reestruturação conduzida pelo IMPA com apoio do CNPq estabeleceu

uma arquitetura competitiva inédita, organizada em três eixos principais: primeiro, a

formação de uma rede nacional de Coordenadores Regionais; segundo, a segmentação em

três faixas educacionais contemplando alunos da 5a e 6a séries, 7a e 8a séries, e ensino

médio; e terceiro, a criação do nível universitário em 2001, alcançando na primeira edição

reformulada a expressiva marca de 500 mil participantes em âmbito nacional. Mesmo com

as diversas atualizações em seu formato, seus objetivos se mantiveram inalterados, como:

� Incentivar o estudo da Matemática entre estudantes;

� Aprimorar a formação de professores;

� Contribuir para a melhoria do ensino da disciplina;

� Identi�car e desenvolver jovens talentos.

E esse sucesso da OBM possibilitou em 2005 a criação da OBMEP, essa expan-

são foi fruto da parceria entre governo federal, SBM e IMPA, que em 2017 se uni�caram

em um sistema integrado.

A conexão entre escolas básicas, universidades e centros de pesquisa, estabelece

a OBM como peça fundamental para a formação de talentos e o fortalecimento da cultura

matemática no Brasil, superando desa�os orçamentários e transformando gerações de

jovens apaixonados pela Matemática.

A Olimpíada Brasileira de Matemática das Escolas Públicas (OBMEP) se trata

hoje de um projeto nacional voltado tanto para escolas públicas quanto privadas, que tem

como fundamentos:

� Estimular e promover o estudo da Matemática;

� Contribuir para a melhoria da educação básica, garantindo acesso a materiais didá-

ticos de qualidade;

� Identi�car jovens talentos e incentivá-los a ingressar em universidades, especialmente

nas áreas cientí�cas e tecnológicas;

� Aperfeiçoar e valorizar professores da rede pública;

� Integrar escolas, universidades públicas, institutos de pesquisa e sociedades cientí�-

cas;

� Promover inclusão social por meio da democratização do conhecimento.
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A importância da OBMEP hoje não se deve só do fortalecimento do ensino de

Matemática no país, mas de uma ponte para oportunidades acadêmicas e pro�ssionais.

Da sua criação voltada para estudantes do 6◦ ano do Ensino Fundamental ao 3◦ ano do

Ensino Médio, a competição cresceu devido a sua magnitude e em 2022 lançou a OBMEP

Mirim, destinada a alunos do 2◦ ao 5◦ ano do Ensino Fundamental. Esta ampliação passa

a re�etir um avanço signi�cativo já que ofertando mais uma modalidade, passa a inserir

mais desenvolvimento ensejando novos talentos mirins as olimpíadas cientí�cas no Brasil,

que hoje passam a englobar, competições para todas as faixas etárias, eventos regionais

e nacionais, provas adaptadas para diferentes níveis de aprendizagem e programas de

preparação e desenvolvimento docente. Assim, nos tornamos um país que demonstra

com o devido esmero as competições matemáticas acompanhando nossos alunos desde os

primeiros anos escolares até o ingresso no ensino superior.

Em 2024 a OBMEP apresenta uma nova conquista, com a criação do IMPA

Tech, iniciativa de destaque signi�cativo no ensino superior brasileiro. O IMPA Tech

oferece uma graduação pioneira em Matemática Aplicada à Tecnologia e Inovação, in-

tegrando conhecimentos avançados de matemática com ciência da computação, análise

de dados e física moderna. O programa foi concebido para atender prioritariamente aos

medalhistas da OBMEP, proporcionando-lhes bolsas de estudo integrais, auxílio moradia

e suporte �nanceiro para manutenção durante o curso.

Esta iniciativa estratégica foi fruto da colaboração entre o Ministério da Edu-

cação, o Ministério da Ciência, Tecnologia e Inovação e a Prefeitura do Rio de Janeiro. O

principal objetivo é formar pro�ssionais quali�cados para liderar a transformação digital

e tecnológica do país, criando pontes entre o talento matemático identi�cado nas olim-

píadas cientí�cas e as demandas do mercado de tecnologia de ponta. O modelo combina

excelência acadêmica com apoio socioeconômico, garantindo que jovens talentos possam

dedicar-se integralmente à sua formação.

Por �m, outro fato marcante nessa cadeia de realizações e transformações

realizadas pelos trunfos de nossas olímpiadas, foi a criação em 17 de outubro de 2018, da

primeira edição do Torneio Meninas na Matemática (TM²). Competição direcionado a

alunas do Ensino Fundamental (a partir do 8º ano) e Médio, tanto de escolas públicas

quanto privadas, em todo o Brasil. Onde foram selecionadas estudantes com base em seu

desempenho na Olimpíada Brasileira de Matemática das Escolas Públicas (OBMEP) e

na Olimpíada Brasileira de Matemática (OBM) em 2018, além de indicações por mérito

acadêmico.

O TM² não apenas reconheceu o talento das jovens matemáticas, mas tam-

bém serviu como etapa seletiva para a European Girls' Mathematical Olympiad (EGMO),

competição internacional exclusiva para meninas. Desde 2017, o IMPA �nancia a partici-

pação brasileira na EGMO, e as melhores competidoras do TM² tiveram a oportunidade

de representar o Brasil na edição de 2019, em Egmond, Holanda. A iniciativa por sua
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vez visou reduzir a disparidade de gênero nas olimpíadas cientí�cas, onde os dados mais

recentes mostram que a participação feminina na OBMEP cresceu 15% entre 2018 e 2023

em níveis avançados.

Agora falaremos de outra competição mas de ordem regional, a OCM (Olím-

piada Cearense de Matemática), realizada todo ano sem interrupções desde a sua criação

em 1981, é uma competição que já revelou centenas de alunos, professores e escolas com

talento especial para aprender e ensinar matemática. Organizada pela Universidade Fe-

deral do Ceará (UFC), por meio do Departamento de Matemática, a OCM é voltada

para estudantes do Ensino Fundamental e Médio, divididos em duas categorias de ensino

(fundamental e médio). Os desa�os propostos nas provas são criados por professores da

Comissão de Olimpíadas da UFC. Muitos deles inéditos, desenvolvidos exclusivamente

para a competição.

Ao longo dos anos, a OCM se tornou uma espécie de trampolim para compe-

tições matemáticas mundo afora, onde estudantes cearenses vêm brilhando regularmente.

Não é à toa que o estado é reconhecido nacionalmente pelos resultados impressionantes

na Olimpíada Brasileira de Matemática (OBM) e em torneios internacionais. Tudo co-

meçou com a iniciativa de professores visionários como Marcondes França, João Marques,

Guilherme Ellery e Raimundo Thompson (1944-1993), que deram os primeiros passos.

Mais tarde, a coordenação passou por Frederico Girão (2014-2017) e, desde 2018, está sob

responsabilidade do professor Romildo José da Silva.

A OCM é uma atividade de extensão da UFC, com objetivos similares aos

das olimpíadas já consolidadas Brasil a fora. Esse propósito visa, descobrir e estimular

talentos matemáticos, incentivar a participação de jovens em competições globais (como

a Olimpíada do Cone Sul e a Internacional), melhorar o ensino da disciplina nas escolas

e fortalecer a conexão entre a universidade e a educação básica. Mais do que uma prova,

é um projeto que une gerações, transformando o �medo� de números em oportunidades

reais e orgulho para o estado.

As Olimpíadas de Matemática Básica, como a OBM, OBMEP e outras com-

petições regionais, são fundamentais para o avanço da educação matemática no Brasil e

portanto para garantir o sucesso contínuo dessas iniciativas, é importante que haja um

suporte institucional sólido e um compromisso com a inclusão e a equidade. Assim, as

olimpíadas podem continuar a desempenhar um papel crucial na educação matemática e

no estímulo ao potencial dos jovens brasileiros.

Para mais informações indico Gomes (2019), o Noticiário SBM (2019) e os sítios

da OBM (2025), OBMEP (2025) e OCM (2025) que nos serviram de base informativa.

Peço também que vejam o documentário OBMEP (2013) a título de conhecer o grande

impacto que ela proporciona relatado em histórias de vida.
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3 PRINCÍPIO DE INDUÇÃO, PRINCÍPIO DA BOAORDENAÇÃO E PRIN-

CÍPIO DE DIRICHLET

Neste capítulo, será apresentado uma exposição das principais propriedades,

axiomas, proposições, lemas, corolários, teoremas e noções fundamentais para o desenvol-

vimento do objetivo principal deste trabalho: a análise do Princípio da Invariância e do

Princípio do Elemento Extremo, bem como suas aplicações.

Dito isto revisitaremos outros princípios matemáticos que são apresentados no

início da jornada acadêmica do aluno de matemática que são importantíssimos métodos

na resolução de problemas. Destes destacaremos os Princípio de Indução, Princípio da

Boa Ordenação e por último o Princípio de Dirichlet. Iremos cita-los brevemente neste

trabalho como título de revisão, já que o bom entendimento desses princípios ensejará na

melhor compreensão do tema dessa dissertação.

3.1 PRINCÍPIO DE INDUÇÃO

O Princípio da Indução é uma ferramenta poderosa para demonstrar proprie-

dades relacionadas aos números naturais. Logo, ele é fundamental na resolução de muito

problemas. Além disso, é igualmente importante compreender seu signi�cado e seu papel

no contexto geral da Matemática. Dominar o Princípio da Indução equivale, em grande

parte, a entender a essência dos números naturais.

Os números naturais formam um modelo matemático, uma escala padrão que

permite realizar a operação de contagem. Ao comparar conjuntos de objetos com essa

escala abstrata e ideal, tornamos mais precisa a noção de quantidade. Esse processo de

contagem pressupõe, portanto, o conhecimento prévio da sequência numérica.

Sabemos que os números naturais são 1, 2, 3, 4, 5, e assim por diante. O

conjunto completo desses números é denominado conjunto dos números naturais, repre-

sentado pelo símbolo N = {1, 2, 3, 4, 5, ...}.
Vale ressaltar que essa noção faça sentindo se já reconhecemos o que é ser

um número natural. Porém, se não dominamos esse conceito? Investigamos o que é

fundamental na sequência dos números 1, 2, 3, 4, 5 . . .

Giuseppe Peano (1858-1932) mostrou que toda a teoria dos números naturais

pode ser construída com base em quatro princípios básicos, conhecidos como os Axiomas

de Peano.

� Todo número natural possui um único sucessor, que também é um número natural.

� Números naturais diferentes possuem sucessores diferentes. (Ou ainda: números

que têm o mesmo sucessor são iguais.)

� Existe um único número natural que não é sucessor de nenhum outro. Este número

é representado pelo símbolo 1 e chamado de "número um".

� Se um conjunto de números naturais contém o número 1 e, além disso, contém o
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sucessor de cada um de seus elementos, então esse conjunto coincide com N, isto é,
contém todos os números naturais.

Para entender melhor como funciona o princípio de indução, consideremos um

conjunto A ⊂ N tal que 1 ∈ A. Suponha, além disso, que sempre que um número natural

k ∈ A, então k + 1 também pertence a A. Nesse caso, 1 ∈ A garante que 2 ∈ A. Da

mesma forma, 2 ∈ A nos permite concluir que 3 ∈ A. Seguindo esse raciocínio, concluímos

que A contém todos os números naturais, ou seja, A = N, ou seja, podemos enunciar da

seguinte forma.

Axioma 3.1. Seja A ⊂ N um conjunto satisfazendo as condições:

i) 1 ∈ A.

ii) Se k ∈ A, então k + 1 ∈ A. Então A = N.
Proposição 3.1. Dada uma propriedade P (n), temos P (n) verdadeira para todo n ∈ N
se e somente se:

i) P (1) é verdadeira.

ii) P (k) verdadeira. ⇒ P (k + 1) verdadeira.

Então, P (n) é válida para todo n ∈ N.

Demonstração. Para mostrar a equivalência, primeiro suponha que P (n) é verdadeira para

todo n ∈ N. Imediatamente obtemos P (1) verdadeira (caso particular para n = 1) e, para

qualquer k ∈ N, como tanto P (k) quanto P (k+1) são verdadeiras por hipótese, a implica-

ção P (k)⇒ P (k+1) segue trivialmente. Reciprocamente, assumindo (i) P (1) verdadeira

e (ii) P (k)⇒ P (k+1) para todo k, considere o conjunto S = {n ∈ N;P (n) é verdadeira}.
Pela condição (i), 1 ∈ S, e pela condição (ii), sempre que k ∈ S temos k + 1 ∈ S. Pelo

Axioma da Indução, segue que S = N, ou seja, P (n) vale para todo número natural n.

Exemplo 3.1. Prove por indução que para cada n ∈ N a soma dos n primeiros quadrados

perfeitos é igual a:
1

6
n(n+ 1)(2n+ 1).

Solução: Devemos mostrar a validade da igualdade:

P (n) :
n∑

j=1

j2 =
n(n+ 1)(2n+ 1)

6
.

i) Para n = 1; temos P (1) = 1
6
1(1 + 1)(2 · 1 + 1) = 1 = 12

ii) Então supomos que P (k) é verdade para algum k ∈ N, precisamos mostrar que vale

também para k + 1, ou seja,
k+1∑
j=1

j2 =
(k + 1)[(k + 1) + 1][2(k + 1) + 1]

6
. Usando a
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hipótese de indução temos que:

k+1∑
j=1

j2 =
k∑

j=1

j2 + (k + 1)2

=
k(k + 1)(2k + 1)

6
+ (k + 1)2

=
(k + 1)[k(2k + 1) + 6(k + 1)]

6
=

(k + 1)(k + 2)(2k + 3)

6
.

Portanto por indução P (n) é verdadeira para todo n ∈ N.
Exemplo 3.2. Mostre que para todo n ∈ N, 4n + 6n− 1 é divisível por 9.

Solução:

i) Note que P (1) = 41 + 6 · 1− 1 = 9, então P (1) é verdade, pois 9/9.

ii) Suponhamos que P (k) seja verdade para algum k ∈ N, ou seja, 4k+6k−1 é divisível
por 9, é equivalente dizer que existe um s inteiro tal que P (k) = 9s. Logo teremos

4k = 9s − 6k + 1. Se multiplicarmos ambos os lados da expressão por 4, obtemos

4k+1 = 36s− 24k + 4. Assim 4k+1 + 6(k + 1)− 1= 36s− 24k + 4 + 6(k + 1)− 1 =

36s− 18k + 9 = 9(4s− 2k + 1). Concluindo que, 4k+1 + 6(k + 1)− 1 é divisível por

9, deste modo P (k+1) é verdadeira. Assim mostramos que P (k) implica P (k+1),

para todo k natural. Logo pelo Princípio da Indução Finita, P (n) é verdade para

todo n ∈ N.

Axioma 3.2. Seja a ∈ N e A ⊂ {a, a+ 1, a+ 2, ...} um conjunto tal que:

i) a ∈ A.

ii) Se k ∈ A, então k + 1 ∈ A.

Logo teremos A = {a, a+ 1, a+ 2, . . .}.
Essa próxima variação do princípio de indução oferece maior uso como método

de prova. Suponha, novamente, que temos uma propriedade P (n) associada a um número

natural n, e desejamos demonstrar que ela é verdadeira para todos os números naturais

a partir de um certo valor a (ou seja, para todo n ≥ a). Então de�nido o conjunto

A = {k ∈ N;P (k) é verdadeira} e visto que A = {a, a + 1, a + 2, . . .}, tem-se P (n)

verdadeira para todo n ≥ a natural.

Proposição 3.2. Dado a ∈ N e uma propriedade P (n) do natural n, temos P(n) verda-

deira paro todo n ≥ a, se e somente se as duas condições a seguir forem satisfeitas:

i) P (a) é verdadeira.

ii) P (k) verdadeira ⇒ P (k + 1) verdadeira.

Exemplo 3.3. (ENQ PROFMAT 2024.1) Considere a sequência de Fibonacci (un) de�-

nida recursivamente por un+1 = un + un−1, para n ≥ 2, com u1 = u2 = 1. Sabendo que

o número real q é raiz da equação x2 = x + 1, mostre que: qn = unq + un−1, para todo

n ≥ 2.

Solução: Usaremos indução sobre n.
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i) Para n igual a 2 temos que q2 = u2q + u1, logo a a�rmação é verdade pois, q é raiz

da equação x2 = x+ 1.

ii) Agora supomos que qn = unq+un−1, para um certo n ≥ 2. Multiplicando a equação

por q obtemos qn+1 = q2un + qun−1. Substituindo q2 = q + 1, temos que:

qn+1 = (q + 1)un + qun−1 = qun+1 + un.

Logo, a a�rmação é válida para n + 1. Portanto qn = unq + un−1, é verdade para todo

n ≥ 2.

Exemplo 3.4. Mostre que existem inteiros não negativos x e y tais que 7x+8y = n para

todo n ≥ 42. Seria possível tomar um número menor que 42 na a�rmativa acima?

Solução: Iremos primeiro responder se é possível encontrar um par (x, y) de inteiros não

negativos que sejam solução, quando n < 42. A resposta é não! Basta veri�car que se

tomarmos y ∈ {0, 1, 2, 3, 4, 5, 6} na equação 7x + 8y = 41 não encontramos um x inteiro

não nulo como solução.

Agora demonstraremos por indução que sempre é possível encontrar um par

(x, y) de inteiros não negativos que sejam solução, quando n ≥ 42.

i) Para n = 42, temos que a equação 7x + 8y = 42 possui solução para o par (6, 0),

pois 7 · 6 + 8 · 0 = 42.

ii) Então suponha que a equação 7x+8y = 42 tenha solução (a, b) para algum n ≥ 42;

isto é, 7a + 8b = n. Note que, para qualquer solução (a, b), devemos ter a ≥ 1 ou

b ≥ 1. Se a ≥ 1, observando que 7 · (−1)+ 8 · 1 = 1, segue que 7(a− 1)+ 8(b+1) =

7a− 7 + 8b+ 8 = 7a+ 8b+ 1 = n+ 1, o que mostra que a equação 7x+ 8y = n+ 1

admite solução para (a − 1, b + 1). Se a = 0, então b ≥ 6. Usando a igualdade

7·7+8·(−6) = 1, segue que 7(a+7)+8(b−6) = 7a+49+8b−48 = 7a+8b+1 = n+1,

o que prova que mostra que 7x + 8y = n + 1 admite solução para (a + 7, b − 6).

Logo concluímos que, em qualquer caso a equação 7x+ 8y = n+ 1 admite solução,

sempre que a equação 7x+ 8y = n, para algum n ≥ 42, tenha solução.

Exemplo 3.5. (OBM 1998) Para cada inteiro n ≥ 3, mostre que existem n números

naturais dois a dois distintos tais que a soma de seus inversos é igual a 1.

Solução: Vamos proceder por indução sobre k ≥ 3. Basta observar que no caso base

n = 3 temos:
1

2
+

1

3
+

1

6
= 1.

Agora suponha que para um número natural k ≥ 3 existam números naturais x1 < x2 <

· · · < xk, tais que:
1

x1

+
1

x2

+ · · ·+ 1

xk

= 1.
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Multiplicando ambos os lados da igualdade por 1
2
e somando 1

2
a ambos os lados, obtemos:

1

2
+

1

2x1

+
1

2x2

+ · · ·+ 1

2xk

= 1.

Como 2 < 2x1 < 2x2 < · · · < 2xk, obtivemos k + 1 números naturais distintos dois a dois

cuja soma dos inversos é igual a 1, completando assim o passo de indução.

Observação 3.1. Note que na solução do problema acima encontramos a ideia para deter-

minar os números x1 < x2 < · · · < xk explicitamente. A saber, começamos com a terna

(2, 3, 6) que resolve o caso k = 3. Daí, produzimos a quádrupla (2, 4, 6, 12) que resolve o

caso k = 4. Do mesmo modo, produzimos a quíntupla (2, 4, 8, 12, 24), que resolva o caso

k = 5. Com isso, podemos conjecturar que a k−upla (2, 22, 23, · · · , 2k−2, 3 · 2k−3, 3 · 2k−2)

resolve para um natural k qualquer. A veri�cação dessa conjectura é imediata, por in-

dução, pois como vimos no passo de indução feito acima, para produzir a solução para o

caso k+1 é su�ciente duplicarmos cada número da solução para k e acrescentar o número

2 no início.

Exemplo 3.6. (OBM 2006) Sejam (xk)k≥1 e (yk)k≥1 sequências de números reais tais

que, para todo n natural, temos:

xn+1 = x3
n − 3xn e yn+1 = y3n − 3yn.

Se x2
1 = y1 + 2, mostre que x2

n = yn + 2 para todo n natural.

Solução: Para n = 1, a igualdade vale por hipótese:

x2
1 = y1 + 2.

Agora suponha que para n = k vale:

x2
k = yk + 2 (Hipótese de Indução).

Calculamos x2
k+1:

x2
k+1 = (x3

k − 3xk)
2

= x6
k − 6x4

k + 9x2
k.

Calculamos yk+1 + 2 usando yk = x2
k − 2.

yk+1 + 2 = (y3k − 3yk) + 2

= (x2
k − 2)3 − 3(x2

k − 2) + 2

= x6
k − 6x4

k + 9x2
k.
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Portanto, x2
k+1 = yk+1 + 2. Pelo Princípio de Indução

x2
n = yn + 2 para todo n ∈ N.

3.2 PRINCÍPIO DA BOA ORDENAÇÃO

O Princípio da Boa Ordenação (PBO), também conhecido como Princípio da

Boa Ordem, é um dos alicerces da matemática discreta e da teoria dos números, com impli-

cações profundas em demonstrações, estruturas algébricas e algorítmos. Além de simples-

mente garantir a existência de um menor elemento em conjuntos de números naturais, o

PBO fornece uma estrutura lógica robusta para provas matemáticas, sendo especialmente

importante em situações onde trabalhamos com conjuntos �nitos e discretos.

Para essa dissertação, o PBO será de suma importância, dado que ele possibi-

lita a construção de soluções em conjuntos �nitos, garantindo a existência de elementos

mínimos e permitindo argumentos rigorosos por indução e contradição. Sua aplicação com

os princípios da Invariância e do Elemento Extremo permitirá abordagens: Assegurando

a existência de con�gurações mínimas essenciais para aplicação da invariância, enquanto

valida a escolha de elementos extremos em argumentos de otimização. Antes de tudo para

garantir a compreensão do PBO, é importante primeiro estudarmos a estrutura de ordem

no naturais, que constituem a base sobre a qual o PBO será de�nido.

3.2.1 Ordem

A adição dos números naturais nos permiti incluir uma relação de ordem nos

N. Assim dados m,n ∈ N podemos ter m menor que n e denotaremos m < n, ou seja,

signi�ca que existe p ∈ N tal que n = m+p. A notação m ≤ n representa duas condições,

m < n ou m = n. Por de�nição, tem-se portanto m < m + p para quaisquer m, p ∈ N e

que 1 < n para todo natural n ̸= 1.

Dessa forma, pelo axioma de Peano, n ̸= 1 implica que ele é sucessor de algum

natural m, ou seja, n = m+ 1, assim n > 1. De fato 1 é o menor dos naturais.

Proposição 3.3 (Transitividade). Se m < n e n < p, então m < p.

Demonstração. Se m < n, n < p então existem k,r ∈ N tal que n = m + k, p = n + r,

logo p = (m+ k) + r = m+ (k + r), portanto m < p.

Observação 3.2. Outro fato importante de relação de ordem é que, dados dois números

naturais diferentes m,n dizemos que são comparáveis quando se tem m = n, m < n ou

n < m.

Proposição 3.4 (Comparabilidade). Todo número natural n é comparável com qualquer

número natural m.
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Demonstração. Por indução. Temos que o 1 é comparável com qualquer outro natural

pois vimos que 1 < m qualquer que seja m ̸= 1. Suponhamos agora que o número n seja

comparável com todos os números naturais. Mostremos, a partir daí, que n+ 1 também

tem essa propriedade. Com efeito, seja m ∈ N pego arbitrariamente. Temos que: m < n,

m = n ou n < m.

i) Se m < n. Então m < n+ 1 por transitividade, pois sabemos que n < n+ 1.

ii) Se for m = n, então m < n+ 1.

iii) Se for n < m então existe p ∈ N tal que m = n + p. Neste caso, há duas possibili-

dades. Ou se tem p = 1, donde m = n + 1, ou então p > 1, logo p = 1 + p′, e daí

m = (n+ 1) + p′ e concluímos que n+ 1 < m.

Proposição 3.5 (Tricotomia). Dados m,n ∈ N, qualquer das a�rmações m < n, m = n,

n < m exclui as outras duas.

Demonstração. Se tivéssemos m < n e m = n, então existiria p ∈ N tal que m = m + p,

donde m + 1 = m + (p + 1) e, concluiríamos que 1 = p + 1, um absurdo, pois 1 não é

sucessor de p. Portanto m < n (e analogamente, n < m) é incompatível com m = n. Do

mesmo modo, se tivéssemos m < n e n < m, então existiria p, q ∈ N tais que n = m + p

e m = n+ k, que resultaria n = n+ k + p, logo n+ 1 = n+ (k + p+ 1) e, concluiríamos

que 1 = k + p+ 1, um absurdo.

Proposição 3.6. Não existem números naturais entre n e n+ 1.

Demonstração. Suponha, por absurdo, que exista p ∈ N tal que n < p < n + 1. Como

n < p, existe k ∈ N tal que p = n + k. Analogamente, como p < n + 1, existe r ∈ N
tal que n + 1 = p + r. Substituindo p, obtemos n + 1 = (n + k) + r, o que implica

n + 1 = n + (k + r). Cancelando n, segue que 1 = k + r. No entanto, como k, r ∈ N,
temos k ≥ 1 e r ≥ 1, logo k + r ≥ 2, o que contradiz k + r = 1. Portanto, a suposição

inicial é falsa, e não há números naturais entre n e n+ 1.

Proposição 3.7 (Monotonicidade). Seja m,n ∈ N se m < n, então m + p < n + p e

mp < np.

Demonstração. Usando a de�nição de <, temos que m < n⇒ n = m+k ⇒ n+p = (m+

k)+p⇒ m+p < n+p. Analogamente, m < n⇒ n = m+k ⇒ np = mp+kp⇒ np > mp.

Observação 3.3. A recíproca da monotonicidade é a Lei do Corte para desigualdades:

m+ p < n+ p⇒ m < n e mp < np⇒ m < n.

Dado um subconjunto A ⊂ N diz-se que um número natural a é o menor (ou

primeiro) elemento de a quando a ∈ A e, além disso, a ≤ x, para todos os elementos

x ∈ A. Por exemplo, 1 é o menor elemento de N. A seguir, dado n ∈ N, denotaremos
In o conjunto de todos os naturais p tais que 1 ≤ p ≤ n. Assim, I1 = {1}, I2 = {1, 2},
I3 = {1, 2, 3} etc.
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Proposição 3.8. (Princípio da Boa Ordenação.) Todo subconjunto não-vazio A ⊂ N
possui um menor elemento.

Demonstração. Sem perda de generalidade, podemos admitir que 1 /∈ A, pois caso contrá-

rio o 1 seria o menor elemento de A. O menor elemento de A cuja a existência desejamos

mostrar, será da forma n+1. Pois devemos encontrar um natural n tal que n+1 pertença

a A e, além disso, todos os elementos de A são maiores do que n, logo maiores do que

1, 2, 3, ...n. Em outras palavras, queremos um natural n tal que In ⊂ N−A e n+ 1 ∈ A.

Assim, consideremos o conjunto X = {n ∈ N; In ⊂ N − A}. Portanto X é o conjunto

dos números naturais n tais que todos os elementos de A são maiores do que n. Como

supomos que 1 /∈ A, sabemos que 1 ∈ X. Por outro lado como A não é vazio, nem todos

os naturais pertencem a X, ou seja, X ̸= N. Então temos que X não é um conjunto

indutivo, isto é, deve existe algum n ∈ X tal que n + 1 /∈ X. Isto signi�ca que todos

os elementos de A são maiores que n mas nem todos são maiores que n + 1. Como não

existem naturais entre n e n + 1, concluímos que n + 1 ∈ A e é o menor elemento de

A.

Exemplo 3.7. Mostre que não existe um inteiro m tal que 0 < m < 1.

Solução: Suponha por absurdo que exista um m que satisfaça essa relação. Assim, existe

um conjunto S = {m; 0 < m < 1} não vazio. Pelo princípio da boa ordenação temos que
deve existir m0 pertencente a S tal que m0 = min(S). E como m0 ∈ S então:

0 < m0 < 1,

⇒ 0 ·m0 < m0 ·m0 < 1 ·m0.

⇒ m2
0 < m0 < 1;

o que resulta num absurdo, pois assim teríamos m2
0 pertencente a S (pois m2

0 está entre 0

e 1) sendo menor que m0 contrariando a minimalidade de m0.

3.3 PRINCÍPIO DE DIRICHLET

O Princípio da Casa dos Pombos é um dos métodos de demonstração mais

utilizados em competições de matemática. Em alguns países, como a Rússia, é conhecido

como Princípio de Dirichlet, em homenagem ao matemático Lejeune Dirichlet, que foi o

primeiro a aplicar essa ideia na solução de problemas não triviais. Matemáticos como os

húngaros Paul Erd®s e George Szekeres também se destacaram pelo uso desse princípio

para resolver uma variedade de problemas. Sua forma mais simples pode ser enunciada

da seguinte forma: �Se em n gaiolas são postos n + 1 pombos, então pelo menos uma

das gaiolas terá mais de um pombo�. De fato, essa a�rmação é a tradução alegórica do

seguinte fato matemático.

De�nição 3.1. Seja A um conjunto qualquer. A cardinalidade de A, denotada por |A|
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ou card(A), é uma medida do �tamanho� de A de�nida da seguinte forma:

� Para A �nito: o número de elementos de A.

� Para A in�nito: dizemos que |A| = |B| quando existe uma bijeção f : A→ B.

Proposição 3.9. Se M e N são dois conjuntos �nitos tais que |M | > |N |, então não

existe função injetiva f : M → N .

Demonstração. Inicialmente lembre-se de que para cada y ∈ N, sua imagem inversa é

dada f−1(y) = {x ∈M ; f(x) = y}. Com isso, temos

M =
⋃
y∈N

f−1(y).

Essa é uma união disjunta e, além disso, se f fosse injetiva, teríamos |f−1(y)| ≤ 1. Assim,

seguiria que

|M | =
∑
y∈N

|f−1(y)| ≤
∑
y∈N

1 = |N |.

Isso contradiz a hipótese |M | > |N |. Logo, nas condições do enunciado, não pode existir
função injetiva.

Em termos menos formais, a demonstração acima corresponde ao raciocínio

que se em cada gaiola tivéssemos no máximo um pombo, então o número de pombos seria

menor ou igual ao número de gaiolas.

O Princípio de Dirichlet admite uma generalização natural.

De�nição 3.2. Seja x ∈ Z. A função piso ⌊x⌋ é de�nida como o maior inteiro que não

supera x, ou seja:

⌊x⌋ = max{n ∈ Z | n ≤ x}

A dupla desigualdade n ≤ x < n + 1 caracteriza unicamente a função piso,

fornecendo uma de�nição alternativa equivalente à de�nição por máximo.

Exemplo 3.8. Determine o maior inteiro.

� ⌊π⌋ = 3, pois 3 ≤ π < 4

� ⌊−
√
2⌋ = −2, pois −2 ≤ −

√
2 < −1

� ⌊5⌋ = 5, pois 5 ∈ Z (caso de igualdade)

Proposição 3.10. Se colocarmos n pombos em k gaiolas, então ao menos uma das gaiolas

conterá, no mínimo, ⌊n−1
k
⌋+ 1 pombos.

Demonstração. Por contradição, suponha que, quando dispusemos os n pombos nas k

gaiolas, nenhuma delas �cou com pelo menos ⌊n−1
k
⌋ + 1 pombos. Então cada uma das k

gaiolas terá no máximo ⌊n−1
k
⌋ pombos. Assim, todas as gaiolas terão, no máximo, k⌊n−1

k
⌋

pombos. Daí teremos:

k⌊n− 1

k
⌋ ≤ k(

n− 1

k
) = n− 1 < n.
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Absurdo!

Exemplo 3.9. Prove que, em qualquer grupo de 20 pessoas, há ao menos 3 que nasceram

no mesmo dia da semana.

Solução: Considere no problema os sete dias da semana como gaiolas e as pessoas como

os pombos. O modo de colocar uma pessoa em uma gaiola é determinado pelo dia que a

pessoa nasceu. O princípio da casa dos pombos nos garante que pelo menos uma gaiola

(dia da semana) terá ao menos ⌊20−1
7
⌋+1 = 3 pombos (pessoas). Assim con�rmamos que

pelo menos duas pessoas terão nascido no mesmo dia.

Exemplo 3.10. Em um grupo com 53 pessoas, sempre temos pelo menos 5 delas que

fazem aniversário no mesmo mês do ano.

Solução: Consideremos os meses do ano como sendo as gaiolas. Assim, basta observar

que ⌊53−1
12
⌋+1 = 4+1 = 5. Portanto, a proposição garante que existe pelo menos um mês

do ano em que temos pelo menos 5 aniversariando.

Exemplo 3.11. Se em uma urna contém 3 bolas vermelhas, 8 bolas verdes, 7 bolas azuis

e 5 amarelas, qual é o menor número de bolas que devemos tirar (sem olhar) para que

possamos ter certeza de termos tirado pelo menos 4 de uma mesma cor?

Solução: Tomando as quatro cores diferentes como sendo as gaiolas, segue que se retirar-

mos 5 bolas conseguimos garantir pelo menos duas bolas de uma mesma cor, concordando

com ⌊5−1
4
⌋ + 1 = 1 + 1 = 2. Para garantir pelo menos quatro bolas de uma mesma cor,

observe que queremos o menor valor de n tal que ⌊n−1
4
⌋ + 1 = 4. Ou seja, ⌊n−1

4
⌋ = 3.

Portanto, devemos ter n− 1 = 12 e n = 13. De fato, ao retirarmos 12 bolas, pode ocorrer

que tenhamos três bolas de cada cor. Porém, com a retirada da próxima bola teremos

necessariamente 4 bolas de uma mesma cor.

Observação 3.4. O exemplo 3.11 nos chama a atenção para o fato que a aplicabilidade

da proposição 3.10 está condicionada a informação de que cada gaiola tenha capacidade

pelo menos igual a ⌊n−1
k
⌋. Veja que se no referido exemplo tivéssemos somente duas bo-

las vermelhas (em vez de três), então a retirada de 12 bolas seria su�ciente garantir que

tivéssemos quatro bolas de uma mesma cor. Nesses casos em que há gaiolas com capaci-

dade menor que a esperada, recomendamos que essas sejam desconsideradas, o problema

seja resolvido considerando as gaiolas com capacidade su�cientes e ao �nal somamos as

capacidades das gaiolas que foram desconsideradas.

Exemplo 3.12. Se em uma urna contêm 2 bolas vermelhas, 3 bolas verdes, 7 bolas azuis,

5 amarelas e 6 pretas, qual é o menor número de bolas que devemos tirar (sem olhar)

para que possamos ter certeza de termos tirado pelo menos 6 de uma mesma cor?

Solução: Nesse caso temos 5 gaiolas, que correspondem às cinco cores. Como queremos

pelo menos 6 bolas de uma mesma cor, deveríamos ter ⌊n−1
5
⌋+1 = 6, ou seja, ⌊n−1

5
⌋ = 5.

No entanto, a capacidade das gaiolas com bolas vermelhas e verdes não atinge essa média.

Assim, resolvemos o problema considerando apenas as três gaiolas que têm a capacidade

esperada. Portanto, devemos achar o menor valor de n tal que ⌊n−1
3
⌋+1 = 6. Isso nos dá
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n = 16. Portanto, a resposta para o problema é 16 + 2 + 3 = 21.

Exemplo 3.13. Se escolhermos aleatoriamente 55 elementos do conjunto {1, 2, 3, . . . , 100}
sempre existirão dois desses números cuja diferença é igual a 9.

Solução: Sejam 1 ≤ x1 < x2 < x3 < . . . < x55 ≤ 100 os números escolhidos, escritos

em ordem crescente. Consideremos essa lista de números transladados em 9 unidades,

ou seja, olhemos para a lista 10 ≤ x1 + 9 < x2 + 9 < x3 + 9 < . . . < x55 + 9 ≤ 109.

Ao juntarmos essas duas listas, �caremos com 110 números (pombos) que são elementos

com conjunto {1, 2, 3, . . . , 109}, que tem apenas 109 elementos (gaiolas). Assim, dois

desses números devem coincidir. Mais especi�camente, um elemento da primeira lista

deve coincidir com um elemento da segunda lista, já que em ambas as listas os números

são distintos. Portanto, existem dois índices i, j ∈ {1, 2, 3, . . . , 55} para os quais teremos
xi = xj + 9, ou ainda, xi − xj = 9.

Observação 3.5. Observamos que ao analisarmos a solução do exemplo acima, vemos que

o argumento não funcionaria diretamente se quiséssemos provar que sempre existem dois

números dentre os 55 números escolhidos cuja diferença é 10. De fato, trocando 9 por 10

�caríamos com duas listas de números, totalizando 110 números, cada um deles com valor

entre 1 e 110. Assim, não temos mais como garantir que as listas terão um elemento em

comum. No entanto, se tal elemento comum não existir, a união das duas listas coincide

necessariamente com o conjunto {1, 2, 3, . . . , 110}. Nessas condições teríamos

2 · (x1 + x2 + x3 + . . .+ x55) + 10 · 55 = 1 + 2 + 3 + . . .+ 110

⇒ 2 · (x1 + x2 + x3 + . . .+ x55) = 101 · 55.
Isso é um absurdo, pois o primeiro membro é par enquanto o segundo é ímpar.

Esse absurdo mostra que as duas listas têm elemento em comum e portanto, sempre

existem dois números dentre os 55 escolhidos de modo que a diferença é 10.

Por outro lado, destacamos que é possível fazer a escolha de 55 elementos do conjunto

{1, 2, 3, . . . , 110} de modo que não existam dois deles cuja diferença seja 11. Basta, por

exemplo, tomarmos

{x1, x2, x3, . . . , x11} = {1, 2, 3, . . . , 11}

{x12, x13, x14, . . . , x22} = {23, 24, 25, . . . , 33}

{x23, x24, x25, . . . , x33} = {45, 46, 47, . . . , 55}

{x34, x35, x36, . . . , x44} = {67, 68, 69, . . . , 77}

{x45, x46, x47, . . . , x55} = {89, 90, 91, . . . , 99}.

Nas considerações acima veri�camos que a estratégia usada para resolver a

versão original do problema (diferença igual a 9) não se aplica aos demais casos (diferença

igual a 10 ou 11). É natural perguntarmos se existiria uma estratégia que funcionasse
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para todos os casos. Felizmente, para esse problema uma tal estratégia existe. Começa-

mos observando que se queremos saber se é possível escolher 55 elementos do conjunto

{1, 2, 3, . . . , 100} de modo que a diferença entre quaisquer dois deles nunca seja igual a

um certo natural n, então basta considerarmos classes de congruência módulo n. De fato,

os elementos do conjunto {1, 2, 3, . . . , 100} são distribuídos nas n classes de congruência

0, 1, 2, . . . , , n− 1. Portanto, como os elementos do conjunto são consecutivos, cada uma

dessas classes de congruência deve conter pelo menos ⌊100
n
⌋ e no máximo ⌊100

n
⌋ + 1. Por

outro lado, ao escolhermos 55 números no conjunto, pelo menos uma das classes de con-

gruência deve conter pelo menos ⌊54
n
⌋+1 dos números escolhidos. Dentro de uma mesma

classe de congruência, colocando os números em ordem crescente, temos que dois termos

consecutivos têm diferença igual a n. Assim, em cada classe podemos formar no máximo
1
2
· (⌊100

n
⌋+ 1) pares de termos consecutivos. Daí, se

1

2
· (⌊100

n
⌋+ 1) < ⌊54

n
⌋+ 1,

signi�ca que para escolhermos os ⌊54
n
⌋+1 números dentro de uma mesma classe, seremos

obrigados a escolher dois em um mesmo par, o que implica que teremos dois números cuja

diferença é n.

Por outro lado, se

1

2
· (⌊100

n
⌋+ 1) ≥ ⌊54

n
⌋+ 1,

seremos capazes de escolher os 55 números de modo que não haja dois números com

diferença igual a n.

Exemplo 3.14. Em uma festa há n pessoas. Mostre que podemos encontrar duas pessoas

que conhecem, na festa, uma mesma quantidade de outras pessoas (supondo que a relação

de conhecer alguém é simétrica).

Solução: Primeiramente, observe que qualquer pessoa na festa conhece no mínimo 0 e

no máximo n− 1 outras pessoas. Consideramos dois casos:

(a) Cada pessoa conhece pelo menos uma outra: Considere n−1 salas numeradas
de 1 a n−1. Colocamos na sala i todas as pessoas que conhecem exatamente i outras

pessoas na festa. Como temos n − 1 salas e n pessoas, pelo princípio da casa dos

pombos, pelo menos uma sala deve conter no mínimo duas pessoas. Essas duas

pessoas conhecem a mesma quantidade de outras pessoas na festa.

(b) Existe pelo menos uma pessoa que não conhece ninguém (penetra): Neste

caso, ninguém na festa conhece todas as n−1 outras pessoas (pois há pelo menos uma
pessoa que não conhece ninguém). Portanto, podemos usar n− 1 salas numeradas

de 0 a n − 2 e aplicar o mesmo raciocínio do caso (a). Novamente, pelo princípio
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da casa dos pombos, haverá pelo menos duas pessoas na mesma sala, ou seja, que

conhecem a mesma quantidade de outras pessoas na festa.

Em ambos os casos, concluímos que existem pelo menos duas pessoas na festa

que conhecem o mesmo número de outras pessoas.

Exemplo 3.15. (CHINA/2001) Se 51 números são escolhidos arbitrariamente entre os

primeiros 100 números naturais {1, 2, . . . , 100}, prove que necessariamente existirão dois

números escolhidos tais que um é múltiplo do outro.

Solução: Seja A = {1, 2, 3, . . . , 100}. Existem um total de 50 números ímpares neste

conjunto:

2k − 1, k = 1, 2, 3, . . . , 50.

Pelo teorema fundamental da aritmética, qualquer número em A pode ser escrito de forma

única a forma 2mq, onde m é um inteiro não negativo, e q é um número ímpar. Quando

particionamos todos os números de A em classes de acordo com seus valores de q, obtemos

50 classes distintas, onde cada número pertence a exatamente uma classe. Ao selecionar

51 números quaisquer de A, pelo Princípio da Casa dos Pombos, necessariamente haverá

dois números na mesma classe (ou seja, com o mesmo fator ímpar q). Sejam estes dois

números:

a = 2m1q e b = 2m2q.

sem perda de generalidade, assuma m1 ≥ m2. Então:

a = 2m1−m2 · (2m2q) = 2m1−m2 · b,

o que mostra que a é múltiplo de b.

Exemplo 3.16. (SASMO/1990) Dados quaisquer 2n − 1 inteiros positivos, prove que

existem n deles cuja soma é divisível por n para:

(a) n = 3

(b) n = 9.

Solução:

(a) Para n = 3 temos 2n− 1 = 5. Particionamos os cinco números de acordo com seus

restos módulo 3 em três classes: C0, C1 e C2. Se uma das três classes não contém

nenhum número, ou seja, os cinco números estão em duas classes, pelo princípio da

casa dos pombos, deve haver pelo menos uma classe contendo pelo menos 3 números.

Então, quaisquer três números da mesma classe terão soma divisível por 3. Se cada

classe contém pelo menos um número, então tomando um número de cada classe, a

soma desses três números será divisível por 3.

(b) Para n = 9, temos 2n−1 = 17 números dados, digamos n1, n2, · · · , n17. O resultado

de (a) implica que, de cada cinco deles, podemos selecionar três números cuja soma
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é divisível por 3. Assim, organizando esses 17 números nas seguintes quíntuplas

(n1, n2, . . . , n5); (n4, n5, . . . , n8); (n7, n8, . . . , n11); (n10, n11, . . . , n14), (n13, n14, . . . , n17).

Em cada uma dessas quíntuplas existe uma terna de números cuja soma é múltiplo

de 3. Essas cinco ternas são distintas pois a interseção entre duas quíntuplas tem no

máximo dois termos. Podemos supor , sem perda de generalidade, que as cinco ter-

nas são: (n1, n2, n3); (n4, n5, n6); . . .; (n13, n14, n15). Assim, suas somas s1, s2, . . . , s5
são todas divisíveis por 3. Seja si = 3mi para i = 1, 2, . . . , 5 (onde mi são inteiros

positivos). Então, novamente pelo resultado de (a), podemos selecionar três núme-

ros m1,m2,m3 dentre os cinco m′
is tais que m1 +m2 +m3 = 3k para algum inteiro

positivo k. Portanto,

n1 + n2 + · · ·+ n9 = s1 + s2 + s3 = 3(m1 +m2 +m3) = 9k,

que é divisível por 9.

Exemplo 3.17. Prove que em um conjunto contendo n inteiros positivos, deve existir

um subconjunto cuja soma de seus elementos é divisível por n.

Solução: Sejam os n inteiros positivos a1, a2, . . . , an. Considere n novos inteiros positivos:

b1 = a1, b2 = a1 + a2, . . . , bn = a1 + a2 + · · ·+ an.

Todos os n valores bi são distintos. Se algum bi for divisível por n, a conclusão

está provada. Caso contrário, se nenhum bi for divisível por n, então seus restos na

divisão por n são todos não nulos, podendo assumir no máximo n − 1 valores distintos.

Pelo princípio da casa dos pombos, devem existir bi e bj com i < j tais que bj − bi ̸= 0 é

divisível por n. Como

bj − bi = ai+1 + ai+2 + · · ·+ aj

é a soma de alguns dos números dados, a conclusão está provada.

Exemplo 3.18. (CHINA/1993) Se cinco pontos são escolhidos aleatoriamente no interior

de um quadrado de lado 1, prove que existem pelo menos dois pontos cuja distância entre

eles não é maior que

√
2

2
.

Solução: Dividimos o quadrado unitário em quatro quadrados menores congruentes de

lado
1

2
, traçando linhas que conectam os pontos médios de lados opostos. Pelo princípio

da casa dos pombos, pelo menos um desses quatro quadrados menores deve conter pelo

menos dois dos cinco pontos. A diagonal do quadrado unitário mede
√
2. Portanto, a

diagonal de cada um dos quatro quadrados menores mede
√
2
2
e essa é a maior distância

possível entre dois pontos dentro de um mesmo quadrado de lado 1
2
.
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Para leitores interessados em aprofundar seus conhecimentos sobre os princí-

pios estudados, recomenda-se a consulta às seguintes obras Carvalho(2015), Neto(2012),

Neto(2016), Lima (1981) e Oliveira(1998) que serviram de referências para o texto apre-

sentados neste capítulo.
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4 O PRINCÍPIO DA INVARIÂNCIA

Uma das melhores estratégias para resolver problemas de olimpíadas é encon-

trar os invariantes. O Princípio da Invariância é basicamente sobre descobrir o que não

muda, mesmo quando a gente faz operações ou transformações permitidas no problema.

Ele não segue uma fórmula pronta, mas depende mais de argumentos lógicos e matemá-

ticos, usando conceitos de aritmética, álgebra, geometria e outros. A ideia é usar esses

conceitos para chegar numa solução clara e que faça sentido. O Princípio da Invariância é

aplicável a algoritmos1, como jogos ou transformações, nos quais uma tarefa é executada

repetidamente. A questão central é: o que permanece constante? O que se mantém inva-

riante ao longo dessas operações? Devemos analisar a seguinte situação: �Se há repetição,

procure pelo que não muda!�

Em algoritmos, temos um estado inicial S e uma sequência de passos permitidos

(movimentos ou transformações). O objetivo é responder às seguintes perguntas:

� Um determinado estado �nal pode ser alcançado?

� Quais são todos os estados �nais possíveis de serem alcançados?

� O processo converge para um estado �nal?

� Quais são os períodos existentes, com ou sem pré-períodos, caso existam?

Por se tratar de um princípio heurístico2, o Princípio da Invariância demanda

investigação e análise cuidadosa para sua plena compreensão. Sua aplicação e�caz evo-

lui principalmente através da prática sistemática, sendo a resolução de problemas sele-

cionados, especialmente aqueles provenientes de obras de referência consagradas como

Problem-Solving Strategies (1998) e The Art and Craft of Problem Solving (2016) um

método mais e�ciente para dominá-lo. Esta abordagem tem como objetivo desenvolver

no leitor uma compreensão sólida da aplicação e�ciente do conceito nos problemas típicos

das olimpíadas nacionais de matemática.

Exemplo 4.1. Sete moedas estão sobre uma mesa mostrando a cara. Podemos escolher

quaisquer quatro delas e virá-las ao mesmo tempo. Podemos obter todas as moedas

mostrando a coroa?

Solução: Em um instante qualquer da dinâmica do jogo, quando escolhemos quatro moe-

das para virar, observando as faces viradas para cima, sempre teremos uma das seguintes

possibilidades:

� Quatro caras

� Três caras e uma coroa;

1Um algoritmo é um conjunto �nito de instruções bem de�nidas e ordenadas que, quando executadas
passo a passo, resolvem um problema especí�co ou realizam uma tarefa. Ele deve ser determinístico
(produzir o mesmo resultado para a mesma entrada), e�ciente (usar recursos de forma otimizada) e
genérico (funcionar para uma classe de problemas, não apenas para um caso especí�co).

2Na educação matemática, estratégias cognitivas que facilitam a descoberta de soluções através de
analogias, experimentação e padrões reconhecíveis.
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� Duas caras e duas coroas;

� Uma cara e três coroas;

� Quatro coroas.

Em cada uma dessas situações, vamos analisar como varia a quantidade de moedas com

a coroa virada para cima. Na primeira possibilidade, ao virarmos as quatro moedas,

passamos a ter quatro coroas a mais na con�guração. Na segunda, passamos a ter duas

coroas a mais. Na terceira, a quantidade de coroas não se altera. Na quarta, perdemos

duas coroas. E na quinta, perdemos quatro. Veja que o número de coroas sempre varia

por uma quantidade par. A observação crucial aqui é que a propriedade de um número

ser par ou ímpar (isso é o que chamamos de paridade) não se altera quando adicionamos

a ele uma quantidade par. Ou seja, um número par adicionado de uma quantidade par,

continua par. Do mesmo modo, um número ímpar adicionado de uma quantidade par,

continua ímpar. Portanto, a quantidade de coroas, que é inicialmente zero (par), sempre

será par. Logo, é impossível obter todas as sete moedas com a coroa virada para cima.

Neste caso, a paridade da quantidade de coroas é invariante.

Exemplo 4.2. Em cada um dos dez degraus de uma escada existe uma rã. Cada rã pode,

dando um pulo, ir para outro degrau. Porém, quando uma rã faz isso, ao mesmo tempo,

uma outra rã deve pular a mesma quantidade de degraus em sentido contrário: uma sobe

e outra desce. Conseguirão as rãs colocar-se todas juntas no mesmo degrau? Justi�que.

Solução: Para entender se as rãs podem se reunir em um mesmo degrau, vamos criar uma

maneira de acompanhar suas posições. Para isso, vamos enumerar os degraus da escada

usando os números de 1 até 10 de baixo para cima, de modo que o degrau mais baixo

recebe o número 1 e o mais alto recebe o 10. A ideia é atribuir a cada rã um número igual

ao número do degrau onde ela ocupa. Vamos então considerar a soma dos dez números

atribuídos às dez rãs. No início, como temos rãs nos degraus de 1 a 10, a referida soma é

dada por

1 + 2 + 3 + · · ·+ 10 = 55.

O ponto crucial é perceber que, pelas condições do problema, essa soma é invariante.

Não importa quantos pulos as rãs deem. Por exemplo, se uma rã que estava no degrau 9

pula para o degrau 6, a soma total diminuirá de 3 unidades. Porém, pelas condições do

problema, uma outra rã deverá subir 3 degraus, o que fará a soma aumentar também de

3 unidades, uma subindo e outra descendo o mesmo número de degraus, os aumentos e

diminuições se cancelam, perfeitamente mantendo a soma total constante. Agora, imagine

que em algum momento todas as rãs conseguissem �car em um mesmo degrau. Se esse

degrau fosse o número x, então a soma total dos números atribuídos às rãs seria 10 vezes

x (pois são 10 rãs no degrau x). Mas sabemos que a soma total deve permanecer 55,

então teríamos 10x = 55. Isso levaria a x = 11
2
, o que não faz sentido porque os degraus

são numerados com números inteiros. Portanto, concluímos que é impossível que todas



38

as rãs se reúnam em um mesmo degrau.

Observação 4.1. Podemos generalizar o problema acima considerando uma escada com n

degraus na qual há uma rã posicionada em cada degrau e a dinâmica de movimentos é

a mesma descrita antes. Seguindo a mesma ideia da resolução acima, temos que a soma

dos números associados às rãs é:

1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

Portanto, se em algum momento todas as rãs estiverem em um mesmo degrau, digamos

correspondente ao número d, então

n · d =
n(n+ 1)

2
.

Portanto, devemos ter d = n+1
2
. Logo, para que seja possível concentrar todas as rãs em

um mesmo degrau, n deve ser ímpar e a única possibilidade é concentra-las no degrau do

meio da escada. Isso mostra que o princípio da invariância pode ser usado não apenas

para responder negativamente a um questionamento, mas também para analisar em quais

condições a situação almejada é possível.

Exemplo 4.3. Cada um dos números a1, a2, . . . , an é 1 ou −1, e temos que:

S = a1a2a3a4 + a2a3a4a5 + · · ·+ ana1a2a3 = 0.

Prove que 4 | n.
Solução: Consideremos a sequência de produtos consecutivos de quatro elementos como

Pk = akak+1ak+2ak+3,

com k = 1, 2, 3, . . . , n e convencionamos que an+1 = a1, an+2 = a2 e an+3 = a3. A soma S

de todos esses produtos Pk é dada por S =
∑n

k=1 Pk = 0. Observe que cada ai aparece

exatamente em quatro das parcelas dessa soma. Assim, quando multiplicamos todos os

produtos Pk, cada termo ai aparece com expoente igual a quatro, isto é,

P =
n∏

k=1

Pk =
n∏

k=1

(akak+1ak+2ak+3) =

(
n∏

i=1

ai

)4

= 1.

Por outro lado, como Pk ∈ {−1, 1}, para que tenhamos S = 0, é necessário que o número

de termos Pk = 1 seja igual ao número de termos Pk = −1. Daí, sendo m o número de

termos Pk = 1, então m = n − m, pois a soma S tem n parcelas. Portanto, n = 2m.

Finalmente, como P = 1 e também, P = (−1)n−m = (−1)m, concluímos que m deve ser

par. Logo, n = 2m é divisível por 4.

Exemplo 4.4. Considere um número inteiro positivo ímpar n. Em um quadro, são



39

escritos inicialmente todos os números inteiros 1, 2, . . . , 2n . A seguir, realiza-se repetida-

mente a seguinte operação: escolhem-se dois números quaisquer a e b presentes no quadro,

apagam-se esses números e escreve-se, em seu lugar, o valor absoluto da diferença |a− b|.
Demonstre que, ao �nal deste processo, restará necessariamente um número ímpar no

quadro.

Solução: Seja S a soma de todos os números no quadro-negro. Inicialmente:

S = 1 + 2 + · · ·+ 2n = n(2n+ 1).

Como n é ímpar e 2n + 1 também é ímpar (pois 2n é par e somando 1 �ca ímpar), seu

produto n(2n + 1) é ímpar. Em cada passo, quando substituímos a e b por |a − b|, a
mudança na soma é:

∆S = |a− b| − (a+ b).

Podemos analisar dois casos:

1. Se a ≥ b: |a− b| = a− b, então ∆S = (a− b)− a− b = −2b.
2. Se b > a: |a− b| = b− a, então ∆S = (b− a)− a− b = −2a.

Em ambos os casos, a soma é subtraída de um número par, a saber: o dobro

do menor dos números. Assim, como a soma inicial é ímpar, ao �nal de cada operação a

soma resultante continua ímpar e o total de números escritos no quadro diminui de uma

unidade. Logo, após um certo número de repetições restará apenas um número escrito no

quadro e esse número será ímpar.

Exemplo 4.5. Um círculo é dividido em seis setores. Em seguida, os números 1, 0, 1, 0,

0, 0 são escritos nos setores (no sentido anti-horário, por exemplo). Você pode aumentar

dois números vizinhos em 1. É possível igualar todos os números através de uma sequência

de tais operações?

Solução: Suponha que a1, . . . , a6 são os números atualmente nos setores conforme a �gura

1. Consideremos a soma alternada:

I = a1 − a2 + a3 − a4 + a5 − a6.

Com valor inicial dado por

I = 1− 0 + 1− 0 + 0− 0 = 2.

Temos que cada movimento adiciona 1 a dois números vizinhos. Além disso,

quaisquer dois termos vizinhos têm sinais contrários. Portanto, uma parcela contribui

para aumentar o número I em uma unidade, mas a outra o faz diminuir em uma unidade.

Logo, o valor de I é um invariante do problema. Como o valor inicial é I = 2 e o valor

almejado para números iguais seria I = 0 (pois todos os ai seriam iguais), concluímos que
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é impossível equalizar todos os números com as operações permitidas.

Figura 1 � Círculo dividido em 6 setores

a1

1

a2

0
a3

1

a4

0

a5

0
a6

0

Fonte: Próprio autor (2025).

4.1 APLICAÇÕES GEOMÉTRICAS

Invariantes geométricos são propriedades ou características que permanecem

inalteradas sob determinadas transformações, como rotações, translações, re�exões ou

homotetias. Eles desempenham um papel fundamental na geometria e em suas aplicações,

pois permitem identi�car e classi�car objetos independentemente de sua posição ou escala.

Por exemplo, a razão entre segmentos (razão simples) é um invariante proje-

tivo, enquanto distâncias e ângulos são invariantes em transformações rígidas (isometrias).

Apresentaremos alguns invariantes geométricos relevantes para a resolução de problemas

olímpicos.

Exemplo 4.6. Dado um ponto �xo P dentro do círculo �xo, trace uma linha que passa

por P e intersecta o círculo nos pontos X e Y. A potência do ponto P em relação a esse

círculo é de�nida como o produto PX · PY . Qual a relação do conceito de potência de

ponto com o conceito de invariantes?

Solução: A potência do ponto é um invariante geométrico, pois seu valor não depende da

reta especí�ca traçada por P . Para qualquer outra reta passando por P e intersectando

o círculo em X ′ e Y ′, tem-se que:

PX · PY = PX ′ · PY ′.

Esse valor constante é dado por |PO2 − r2|, onde O é o centro do círculo e r seu raio.
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Figura 2 � Potência de um ponto

O

Y

X

Y ′

X ′

P

Pot(P ) = PX·PY = PX ′·PY ′ = OP 2−r2
Fonte: Próprio autor (2025).

Exemplo 4.7. Considere n pontos dispostos sobre uma circunferência. Trace todas as

cordas que ligam esses pontos dois a dois, de modo que não existam três cordas se in-

tersectando no mesmo ponto dentro do círculo. Nessas condições, em quantas regiões o

interior do círculo �ca dividido?

Solução: Para cada n, temos L =
(
n
2

)
é o número total de segmentos de reta que podemos

traçar ligando os n pontos. Denotemos por P o número de pontos de interseção interiores

ao círculo que esses L segmentos determinam e seja R o número de regiões em que o

círculo �ca dividido. Assim, para n = 2 temos L = 1, P = 0 e R = 2. Para n = 3, temos

L = 3, P = 0 e R = 4. Para n = 4, temos L =
(
4
2

)
= 6, P = 1 e R = 8.

Figura 3 � Regiões de um círculo delimitada por 1, 3 e 6 cordas

Fonte: Próprio autor (2025).

Esses casos nos sugerem que a quantidade R−L−P é um invariante, pois em

todos esses casos analisados temos R−P −L = 1. Suponha que as cordas são adicionadas

à �gura uma de cada vez. Uma nova corda ao ser adicionada, corta várias regiões já

existentes, aumentando o número de seções. O número de regiões extras é o número de

segmentos em que a nova corda �ca dividida pelas cordas que ela cruza, pois cada segmento

divide uma região já existente em dois pedaços, fazendo o total de regiões aumentar de

uma unidade. Portanto, o acréscimo no número de regiões é uma unidade a mais que o
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número de pontos de interseção que ocorrem ao longo da nova corda.

Figura 4 � Regiões de um círculo delimitada por 4 cordas

Fonte: Próprio autor (2025).

Em outras palavras, sempre que adicionamos uma nova corda, a diferença R−P aumenta

em uma unidade. Como L também aumenta de uma unidade, concluímos que (R−P )−L
permanece constante. Assim, vemos que R − P − L é um invariante do problema, que

tem valor igual a 1, como vimos nos casos iniciais. Portanto,

R = P + L+ 1.

Já vimos que L =
(
n
2

)
. Por outro lado, observe que cada ponto de interseção

interior ao círculo é determinado por um único par de cordas. Esse par de cordas,

por sua vez, é determinado por quatro dos n pontos que foram dados sobre o círculo.

Reciprocamente, quaisquer quatro dos n pontos determinam um quadrilátero inscrito no

círculo e, consequentemente, um par de diagonais que determinam um único ponto de

interseção no interior do círculo. Desse modo, temos uma correspondência biunívoca

entre pontos de interseção e quádruplas de pontos escolhidos dentre os n pontos dados.

Figura 5 � Representação biunívoca dos pares de pontos que determinam as regiões

p1 p2

p3

p4
Fonte: Próprio autor (2025).
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Portanto, P =
(
n
4

)
. Logo,

R(n) =

(
n

4

)
+

(
n

2

)
+ 1.

Observação 4.2. Observe que o número de regiões pode ser derivado de forma muito ele-

gante acompanhando o número de regiões que são perdidas quando as linhas são deletadas

uma a uma. Cada seção de uma linha separa duas regiões que se unem em uma única

parte quando a linha é removida. O número de regiões perdidas, então, é um a mais

que o número de pontos de interseção na linha. Agora, cada ponto de interseção está

em duas linhas, e com a remoção de qualquer uma delas, ele desaparece da outra tam-

bém. Portanto, cada ponto de interseção �gura exatamente uma vez na operação total

de desmontagem, e para cada linha o número de regiões perdidas é:

(número de pontos de interseção restantes na linha) + 1.

Somando sobre a remoção de todas as L linhas, vemos que nosso total conterá todos os

P pontos de interseção mais um 1 para cada linha, implicando que um total de P + L

regiões são perdidas. Como no �nal permanece apenas uma região, concluímos que no

início tínhamos P + L+ 1 regiões.

4.2 APLICAÇÕES ARITMÉTICAS

Em aritmética, os invariantes são ferramentas fundamentais que revelam pro-

priedades essenciais dos números, mantendo-se constantes mesmo sob operações matemá-

ticas. Um dos exemplos mais simples e poderosos é o conceito de paridade (a classi�cação

de um número como par ou ímpar), que funciona como um invariante crucial em diversos

problemas. Por exemplo, em somas ou multiplicações, a paridade do resultado depende

apenas da paridade dos operandos (par + par = par, ímpar + ímpar = par, etc.), permi-

tindo resolver problemas de divisibilidade e demonstrar resultados como a impossibilidade

de escrever um número ímpar como soma de dois números ímpares consecutivos. Outro

invariante fundamental é o resto módulo n, que generaliza a paridade e permite analisar

congruências e ciclos em sequências numéricas.

Além disso, invariantes como o máximo divisor comum (MDC) e a fatoração

em primos são essenciais para simpli�car problemas complexos. O algoritmo de Euclides,

por exemplo, se baseia no invariante mdc(a, b) = mdc(b, a mod b) para calcular e�cien-

temente o MDC. Já o Teorema Fundamental da Aritmética, que garante a fatoração

única de números inteiros em primos, depende da invariância dessa decomposição. Es-

ses conceitos não apenas facilitam a resolução de equações diofantinas e problemas de

competições matemáticas, mas também têm aplicações práticas em criptogra�a e ciência

da computação. Em suma, invariantes como paridade, restos módulo n e propriedades
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de divisibilidade são pilares da aritmética, oferecendo métodos elegantes e e�cazes para

explorar a estrutura dos números.

Os números inteiros são classi�cados em duas categorias fundamentais quanto

à paridade: pares e ímpares. Um número é par se é divisível por 2, caso contrário, é

ímpar. Vale destacar que o zero é considerado par, seguindo essa de�nição. Embora

a paridade pareça um conceito básico, ela possui propriedades fundamentais que são

amplamente utilizadas na matemática, especialmente em problemas de olimpíadas e teoria

dos números. Temos como propriedades da paridade:

� Paridade da Soma:

A soma de um conjunto de números inteiros terá paridade ímpar se, e somente se,

a quantidade de números ímpares no conjunto for ímpar. Caso contrário, a soma

será par.

� Paridade do Produto:

O produto de um conjunto de números inteiros será ímpar apenas se nenhum dos

fatores for par. Se pelo menos um número no conjunto for par, o produto será par.

Essas propriedades, embora simples, são ferramentas poderosas na resolução

de problemas matemáticos. Os exemplos a seguir ilustrarão isso.

Exemplo 4.8. Em um torneio de tênis individual com 127 participantes, prove que, ao

�nal do torneio, o número de pessoas que jogaram um número ímpar de partidas é par.

Solução: È comum pensar que para resolver esse problema devemos supor que o torneio

seja disputado, como eliminatória dupla (Mata-mata) ou rodízio. Porém, o problema não

especi�ca a estrutura do torneio! Logo, só podemos considerar que, independentemente

de como o torneio é organizado, o número de pessoas que jogaram um número ímpar de

partidas deve ser par. Por exemplo, em um cenário extremo, se ninguém jogar nenhuma

partida, o número de pessoas que jogaram um número ímpar de partidas é zero, que é um

número par, satisfazendo a condição.

Parece haver poucas restrições, mas há uma crucial: cada partida envolve

exatamente dois jogadores. Em outras palavras, se o jogador A joga contra o jogador

B, essa partida é contabilizada duas vezes: uma vez na contagem de partidas de A e

uma vez na contagem de partidas de B. Formalmente, se denotarmos por gi o número de

partidas jogadas pelo i-ésimo jogador ao �nal do torneio, então a soma

g1 + g2 + g3 + · · ·+ g127,

deve ser par, pois essa soma conta cada partida jogada exatamente duas vezes! Note

que essa soma é sempre par, não apenas ao �nal do torneio, mas em qualquer momento

durante sua realização.

Agora, a conclusão é imediata: a soma acima é par e consiste na adição de um

número ímpar de termos (127). Se um número ímpar desses termos fosse ímpar, a soma

não poderia ser par. Portanto, o número de gi que são ímpares deve ser par.
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Exemplo 4.9. Seja a1, a2, . . . , an uma permutação arbitrária dos números 1, 2, 3, . . . , n.

Prove que, se n é ímpar, o produto

(a1 − 1)(a2 − 2)(a3 − 3) · · · (an − n)

é um número par.

Solução: É útil começar analisando o caso com n = 11. Recordando o que já sabemos

sobre paridade, perguntamos: o que garante que o produto

(a1 − 1)(a2 − 2)(a3 − 3) · · · (a11 − 11)

seja par? Claramente, basta mostrar que pelo menos um dos termos (a1 − 1), (a2 −
2), . . . , (a11 − 11) é par. Como podemos fazer isso? Uma estratégia e�caz é tentar uma

prova por contradição, pois precisamos mostrar que apenas um desses termos é par, e não

sabemos qual deles. Se assumirmos que todos os termos são ímpares, teremos informações

especí�cas para trabalhar. Assim, suponha que cada um dos termos

(a1 − 1), (a2 − 2), . . . , (a11 − 11)

seja ímpar. Podemos então determinar a paridade dos ai originais. Observe que:

� Se (ai − i) é ímpar, então ai e i têm paridades opostas. Ou seja:

� Se i é par, ai é ímpar.

� Se i é ímpar, ai é par.

Aplicando essa lógica ao caso n = 11:

� Os índices ímpares são 1, 3, 5, 7, 9, 11. Portanto, a1, a3, a5, a7, a9, a11 são pares.

� Os índices pares são 2, 4, 6, 8, 10. Portanto, a2, a4, a6, a8, a10 são ímpares.

No entanto, isso leva a uma contradição, pois os ai são uma permutação dos

números 1, 2, 3, . . . , 11, que contém exatamente cinco números pares (2, 4, 6, 8, 10) e seis

números ímpares (1, 3, 5, 7, 9, 11). Pela nossa suposição, teríamos seis números pares

(a1, a3, a5, a7, a9, a11) e cinco números ímpares (a2, a4, a6, a8, a10), o que é impossível, pois

a contagem de números pares e ímpares não coincide com a do conjunto original.

Portanto, nossa suposição inicial (de que todos os termos (ai− i) são ímpares)

é falsa. Concluímos que pelo menos um dos termos (ai − i) deve ser par, o que implica

que o produto

(a1 − 1)(a2 − 2) · · · (an − n)

é par. Esse argumento se estende ao caso geral, pois a única propriedade especial de 11

que utilizamos foi o fato de ser ímpar. Assim, para qualquer n ímpar, o produto é par.

Observação 4.3. Agora iremos considerar como ideia central a soma dos termos. Logo:

(a1 − 1) + (a2 − 2) + · · ·+ (an − n)

pode ser reescrita como:
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(a1 + a2 + · · ·+ an)− (1 + 2 + · · ·+ n).

Lembre que a1, a2, . . . , an é uma permutação dos números 1, 2, . . . , n. Portanto,

a soma a1 + a2 + · · · + an é igual à soma 1 + 2 + · · · + n. Assim, a expressão acima se

simpli�ca para:
(1 + 2 + · · ·+ n)− (1 + 2 + · · ·+ n) = 0,

ou seja, a soma dos termos (a1 − 1), (a2 − 2), . . . , (an − n) é sempre igual a zero, inde-

pendentemente da permutação escolhida. Isso signi�ca que essa soma é um invariante:

seu valor não muda, não importa como os números 1, 2, . . . , n sejam rearranjados.

Agora, note que estamos somando um número ímpar de termos (pois n é

ímpar) e o resultado dessa soma é zero, que é um número par. Sabemos que a soma de

um número ímpar de inteiros só pode ser par se pelo menos um desses inteiros for par.

Caso contrário, a soma seria ímpar. Portanto, pelo menos um dos termos (ai − i) deve

ser par e assim concluímos que o produto

(a1 − 1)(a2 − 2) · · · (an − n)

deve ser par, pois pelo menos um de seus fatores é par.

Nessa nova abordagem do problema de maneira geral e criativa, mostramos que

a soma dos termos (ai−i) é sempre zero (invariante), independentemente da permutação.
Foi um caminho importante que pode ser aplicado em muitos outros problemas.

Exemplo 4.10. Sejam P1, P2, . . . , P2025 pontos distintos no plano. Conecte os pontos

com os segmentos de reta P1P2, P2P3, P3P4, . . ., P2024P2025, P2025P1. É possível traçar

uma reta que passe pelo interior de cada um desses segmentos?

Solução: De início não dá pra saber se a paridade importa nesse caso, mas é bom não

esquecer dessa possibilidade. Pois quando um problema envolve números inteiros, observar

a paridade pode fazer a diferença.

Este problema envolve 2025 pontos. Alguns testes com um número bem menor

de pontos vão te convencer facilmente (faça isso!) de que é possível traçar a reta se, e

somente se, o número de pontos for par. Então, a paridade parece ser importante. Vamos

encontrar um argumento rigoroso para um caso especí�co, digamos, sete pontos. Mais

uma vez, usaremos um raciocínio por contradição, porque assumir que podemos traçar a

reta nos dá várias informações concretas para trabalhar.

Então, suponha que exista uma reta L que passa pelo interior de cada seg-

mento. Essa reta divide o plano em duas regiões (semiplanos), que chamaremos de lado

�esquerdo� e �direito� de L. Sem perda de generalidade, P1 está no lado esquerdo de L.

Isso força P2 a �car no lado direito, o que, por sua vez, obriga P3 a �car no esquerdo, P4

no direito, e assim por diante como mostrado na �gura 6. O detalhe importante é que

P7 acaba no lado esquerdo, junto com P1. Portanto, L não pode passar pelo interior do

segmento P1P7, logo uma contradição.
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Figura 6 � 7 pontos em zigzag

P1

P2

P3

P4

P5

P6

P7 L
Fonte: Próprio autor.

Esse argumento se generaliza facilmente sempre que n for ímpar, P1 e Pn �carão

do mesmo lado de L.

Exemplo 4.11. (IMO 1985) Dado um conjunto de 1.985 números inteiros positivos (não

necessariamente distintos), em que nenhum deles tem fatores primos maiores que 23, prove

que sempre existem quatro números desse conjunto cujo produto é um inteiro elevado à

quarta potência.

Solução: Este é um problema bastante complexo, que exige análise de paridade junto

com aplicações criativas e sucessivas do princípio das gavetas de Dirichlet. Cada número

deste conjunto pode ser expresso na forma:

2f13f25f37f411f513f617f719f823f9 ,

onde os expoentes f1, f2, . . . , f9 são inteiros não negativos. O produto de dois números

desse tipo,
(2f1 · · · 23f9)× (2g1 · · · 23g9),

será um quadrado perfeito se, e somente se, os expoentes correspondentes tiverem a mesma

paridade (ambos pares ou ambos ímpares). Em outras palavras,

(2f1 · · · 23f9)× (2g1 · · · 23g9)

será um quadrado perfeito se e somente se:

� f1 e g1 tiverem a mesma paridade,

� f2 e g2 tiverem a mesma paridade,
...

� f9 e g9 tiverem a mesma paridade.

A cada número desse conjunto, associamos uma 9-upla ordenada (lista orde-

nada com 9 termos) que representa a paridade dos expoentes. Por exemplo, o número
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2103517123111

corresponde à 9-upla:

(par, ímpar, par, par, par, par, ímpar, par, ímpar).

Como cada coordenada admite duas possibilidades: par ou ímpar, o princípio

fundamental da contagem nos diz que existem 29 = 512 (9-uplas possíveis). Usando

repetidamente o princípio da casa dos pombos, concluímos que 1472 dos inteiros do

conjunto podem ser organizados em 736 pares

{a1, b1}, {a2, b2}, . . . , {a736, b736},

onde cada par contém dois números com a mesma 9-upla de paridade dos expoentes.

Assim, o produto dos números em cada par é um quadrado perfeito. Ou seja, se de�nirmos

Ci := aibi,

então cada termo da lista
C1, C2, . . . , C736

é um quadrado perfeito. Consequentemente, cada uma das raízes√
C1,
√

C2, . . . ,
√
C736

é um número inteiro cujos fatores primos não excedem 23.

Aplicando novamente o princípio da casa dos pombos, concluímos que pelo

menos dois números na lista acima compartilham a mesma 9-upla de paridade dos expo-

entes. Sem perda de generalidade, sejam esses números
√
Ck e

√
Cj. Então,

√
Ck ×

√
Cj

é um quadrado perfeito, ou seja,
√
Ck ×

√
Cj = n2 para algum inteiro n. Logo,

CkCj = n4.

Como CkCj = akbkajbj, encontramos quatro números do conjunto original de 1.985

inteiros cujo produto é uma quarta potência de um inteiro.

Exemplo 4.12. Seja s(N) a soma dos dígitos da representação decimal de um número

inteiro positivo N . Mostre que N − s(N) é sempre divisível por 9. Por exemplo, se

N = 237, então

N − s(N) = 237− (2 + 3 + 7) = 225 = 9 · 25.

Solução: Considere um número inteiro positivo N com k algarismos, representado por:

N = ak · 10k + ak−1 · 10k−1 + · · ·+ a1 · 10 + a0,

onde ak, ak−1, . . . , a0 são os algarismos de N , com 0 ≤ ai ≤ 9 para todo i ∈ {1, 2, 3 . . . , 9}.
Agora note que:

10 = 9 + 1,
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102 = 100 = 99 + 1 = 9 · 11 + 1,

103 = 1000 = 999 + 1 = 9 · 111 + 1,

e, em geral:

10m = 9 · 111 . . . 1︸ ︷︷ ︸
m dígitos

+1.

Portanto, podemos escrever:

10m = 9 · Cm + 1,

onde Cm é um número inteiro que consiste em m dígitos 1 (por exemplo, C2 = 11,

C3 = 111, etc.). Substituindo 10m = 9 · Cm + 1 na expressão de N , obtemos:

N = ak · (9 · Ck + 1) + ak−1 · (9 · Ck−1 + 1) + · · ·+ a1 · (9 · C1 + 1) + a0.

Expandindo os termos, temos:

N = 9 · (ak · Ck + ak−1 · Ck−1 + · · ·+ a1 · C1) + (ak + ak−1 + · · ·+ a1 + a0).

Simpli�cando, podemos escrever:

N = 9 ·Q+ s(N)⇒ N − s(N) = 9 ·Q,

onde temos:
Q = ak · Ck + ak−1 · Ck−1 + · · ·+ a1 · C1 ∈ Z.

Isso nos permite estabelecer o critério de divisibilidade por 9. De fato, se S =

s(N) (a soma dos algarismos de N) for divisível por 9, então S = 9 · T , onde T é um

número inteiro. Substituindo na expressão de N , temos:

N = 9 ·Q+ 9 · T = 9 · (Q+ T ).

Portanto, N é divisível por 9. Reciprocamente, se N for divisível por 9, então N = 9 ·R,
onde R é um número inteiro. Substituindo na expressão de N , temos:

9 ·R = 9 ·Q+ S.

Isolando S, obtemos:
S = 9 · (R−Q).

Logo, S é divisível por 9.

Observação 4.4. Os critérios de divisibilidade representam alguns dos invariantes aritmé-

ticos mais fundamentais e práticos, pois revelam propriedades intrínsecas dos números

que se mantêm inalteradas mesmo sob diversas operações e transformações. Esses invari-

antes não apenas oferecem métodos e�cientes para testar divisibilidade sem a necessidade

de cálculos trabalhosos, como a conhecida regra da soma dos dígitos para divisibilidade

por 9 que acabamos de ver a prova, mas também desvendam relações profundas entre

a representação posicional dos números e suas características algébricas subjacentes. O
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caso da divisibilidade por 9 é particularmente ilustrativo: como o critério depende apenas

da soma dos dígitos, ele permanece válido mesmo quando estes são permutados, demons-

trando que se trata de uma propriedade combinatória inerente ao conjunto de dígitos,

independentemente de sua disposição especí�ca.

Essencialmente, os critérios de divisibilidade sintetizam a utilidade da arit-

mética modular, convertendo problemas aparentemente complexos de divisibilidade em

veri�cações simples e elegantes, fundamentadas em propriedades invariantes robustas e

matematicamente consistentes.

Exemplo 4.13. No início, uma sala está vazia. A cada minuto, ou uma pessoa entra

ou duas pessoas saem. Após exatamente 31999 minutos, a sala poderia conter 31000 + 2

pessoas?

Solução: Se há n pessoas na sala, após um minuto, haverá n+1 ou n−2 pessoas. A dife-

rença entre esses dois resultados possíveis é 3. Continuando por mais tempo, observamos

que:

� Em qualquer momento �xo t, todos os valores possíveis para a população da sala

diferem entre si por múltiplos de 3.

Em 31999 minutos, uma possível população da sala seria 31999 pessoas (assu-

mindo que uma pessoa entrou a cada minuto). Esse número é um múltiplo de 3, então

todos os valores possíveis para a população da sala também devem ser múltiplos de 3.

Portanto, 31000 + 2 não será uma população válida.

4.3 APLICAÇÕES VARIADAS

A seguir, exploraremos o uso de invariantes em diversas aplicações, ampliando

o escopo de problemas em que eles se aplicam.

Exemplo 4.14. Começando com o conjunto {3, 4, 12}, é permitido apagar dois números
a e b e escrever em seus lugares 0,6a � 0,8b e 0,8a + 0,6b, respectivamente. É possível

chegar ao conjunto {4, 6, 12}?
Solução: Note que (0, 6a− 0, 8b)2 + (0, 8a+0, 6b)2 = a2 + b2, implicando que a soma dos

quadrados dos números dos conjuntos obtidos é invariante. Como 32+42+122 = 169 = 132

e 42 + 62 + 122 = 196 = 142 então não é possível chegar ao conjunto {4, 6, 12}.

Exemplo 4.15. Encontre a solução da equação x4 + x3 + x2 + x+ 1 = 0.

Solução: Usaremos a simetria dos coe�cientes como ponto de partida para impor ainda

mais simetria nos graus dos termos. Basta dividir por x2 e obteremos:

x2 + x+ 1 +
1

x
+

1

x2
= 0.

O problema pode não ter �cado mais fácil de resolver, porém agora há mais
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simetria, pois podemos agrupar termos semelhantes da seguinte forma:

x2 +
1

x2
+ x+

1

x
+ 1 = 0. (1)

Tomando u = x+ 1
x ⇒ u2 = x2 + 2 + 1

x2 , substituindo em (1), teremos:

u2 + u− 1 = 0,

com soluções

u =
1±
√
5

2
.

Resolvendo x+ 1
x
= u, obtemos x2 − ux+ 1 = 0, ou

x =
u±
√
u2 − 4

2
.

Substituindo para os valores de u obtemos:

x =

1±
√
5

2
±
√

(1±
√
5

2
)2 − 4

2
=

1±
√
5± i

√
10± 2

√
5

4
.

Quando aumentamos a simetria do problema e fazemos a substituição conveniente de u

por x + x−1 os passos seguintes são meramente técnicos, pois só resta trabalhar com a

equação para chegar a solução desejada.

Observação 4.5. A simetria é uma propriedade relacionada ao conceito de invariantes.

Pois dado um objeto (geométrico ou não) simétrico, é um invariante em relação a alguma

transformação ou conjunto de transformações. No caso do exemplo acima, a equação

x2 + x+ 1 +
1

x
+

1

x2
= 0

é invariante por meio da transformação

x→ 1

x
.

Isso nos diz que se x for uma raiz, então 1
x também será.

Exemplo 4.16. As seguintes operações são permitidas com a equação quadrática ax2 +

bx+ c:

(i) Trocar as posições de a e c;

(ii) Trocar x por x+ t, onde t é um número real;

Repetindo estas transformações é possível transformar x2 − x− 2 em x2 − x− 1?

Solução: Veremos que o discriminante será invariante nas equações executando as ope-

rações desejadas.
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(i) Temos que pela equação ax2 + bx + c; ∆0 = b2 − 4ac. Trocando a e c na equação

quadrática temos:

ax2 + bx+ c→ cx2 + bx+ a.

E para esta nova equação teremos ∆1 = b2 − 4ca = ∆0.

(ii) Agora fazendo a troca de x por x+ t teremos:

a(x+ t)2 + b(x+ t) + c = ax2 + (b+ 2at)x+ at2 + bt+ c.

Calculando o novo discriminante:

∆2 = (b+2at)2−4a(at2+bt+c) = b2+4abt+4a2t2−4a2t2−4abt−4ac = b2−4ac = ∆0.

Agora vamos veri�car que se é possível transformar x2 − x− 2 em x2 − x− 1.

Temos que:

� O discriminante de x2 − x− 2 é ∆ = (−1)2 − 4 · 1 · (−2) = 1 + 8 = 9

� O discriminante de x2 − x− 1 é ∆∗ = (−1)2 − 4 · 1 · (−1) = 1 + 4 = 5

Como as transformações mantêm o discriminante invariante (∆ = ∆0 = ∆1 = ∆2)

e 9 ̸= 5, a transformação é impossível.

Exemplo 4.17. (Lenigrado 1990) O número 123 está na tela do computador de Teddy.

A cada minuto, o número escrito na tela é somado com 102. Teddy pode trocar a ordem

dos dígitos do número escrito na tela quando ele quiser. Ele pode fazer com que o número

escrito na tela seja sempre um número de três dígitos?

Solução: Como 123 e 102 são ambos múltiplos de 3, e além disso, permutar os dígitos

de um número não modi�ca o resto da divisão por 3, vemos que os números na tela do

computador sempre serão múltiplos de 3. Assim, como podemos realizar as operações

muitas vezes (in�nitas), se for possível sempre permanecer com um número de três dígitos

na tela, em algum momento esse número deve se repetir. Como veremos que é possível

montar uma sequência de operações em que o 123 volta a aparecer. Para isso, seja S a

operação de somar 102 e seja P a operação de permutar algarismos. Assim, é possível

manter sempre 3 dígitos com a seguinte sequência estratégica:

123
S−→ 225

S−→ 327
S−→ 429

S−→ 531
S−→ 633

P−→ 336
S−→ 438

S−→ 540
P−→ 405

S−→ 507
S−→ 609

S−→ 711
P−→ 117

S−→ 219
S−→ 321

P−→ 123.

Observação 4.6. Note que a maioria dos problemas de invariância tem enunciados muito

semelhantes. Basicamente, todos perguntam se, dada uma determinada con�guração

inicial, é possível alcançar outra con�guração especí�ca. Como você já deve ter percebido,

na maioria dos casos, a resposta é não. No entanto, cuidado! Existem problemas com

enunciados parecidos em que a resposta é sim. Nesses casos, além de a�rmar que a
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transformação é possível, devemos demonstrar como alcançar a con�guração desejada.
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5 O PRINCÍPIO DO ELEMENTO EXTREMO

O ensino da matemática transcende a mera aplicação de fórmulas e procedi-

mentos algorítmicos, trata-se de desenvolver o pensamento crítico e estimular a curiosidade

intelectual. Para estudantes dedicados e com aptidão na matéria, o desa�o consiste em

apresentar a disciplina como um campo de exploração criativa e de inovação. Uma estra-

tégia que funciona muito bem é propor problemas que provoque nos alunos um impulso

de curiosidade.

Nesse contexto, o Princípio do Elemento Extremo surge como uma ferramenta

pedagógica e�caz. Trata-se de um princípio que assim como o da invariância, também não

é tão conhecido. Mas é uma ótima ferramenta na resolução de problemas, principalmente

os que são ligados as olimpíadas de matemática. A ideia é simples: em um problema

com vários elementos, focamos no “maior”, no “menor” ou em algum extremo que pode

revelar um caminho para a solução. Pense, por exemplo, em problemas de geometria ou

álgebra em que parece não haver uma saída clara. Ao identi�car o elemento mais distante,

o menor ângulo ou um número que assume um papel máximo ou mínimo, ajudando a

solução aparecer como um quebra-cabeça: cada ideia é uma peça que, quando encaixada,

revela parte do todo. O Princípio do Elemento Extremo pode nos fornecer essa peça-chave

que completa o quadro lógico.

Inicialmente, temos que é fundamental observar três condições básicas, porém

importantes para a aplicação correta do algoritmo, elas são:

� Todo conjunto �nito de reais tem um mínimo e um máximo, que não são necessa-

riamente únicos.

� Todo conjunto não vazio de inteiros positivos tem um mínimo (esse é o princípio da

boa ordem, que é equivalente ao princípio da indução �nita.

� Se um conjunto in�nito A de reais pode ter ou não um elemento máximo ou mínimo

(por exemplo, o intervalo real ] − ∞, 1[ não possui nenhum dos dois). Se A é

limitado superiormente, então admite um limitante superior mínimo, denotado por

sup A (supremo de A); Se A é limitado inferiormente, então admite um limitante

inferior máximo, denotado por inf A (ín�mo de A).

Vale ressaltar que conjuntos �nitos de números reais sempre possuem elementos

extremos (máximo e mínimo), enquanto conjuntos in�nitos podem não tê-los (como no

exemplo {1, 2, 1
2
, 22, 1

22
, 23, . . .}). No caso de conjuntos de inteiros positivos, podemos

recorrer ao Princípio da Boa Ordenação, que se tornará essencial na resolução de diversos

problemas quando aplicamos a técnica do elemento extremo. Sugiro ao leitor visitar o

apêndice desse trabalho se preciso para rever a construção dos reais como um corpo.

Temos que este princípio tem natureza heurística, assim como o princípio da

invariância. Portanto a sua estrutura de aplicação segue um padrão característico:

� Assume-se o contrário do que se quer provar.
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� Identi�ca-se o elemento extremo (mínimo/máximo).

� Constrói-se uma contradição criando um elemento mais extremo.

Novamente, nosso estudo será fundamentado em um conjunto variado de pro-

blemas selecionados das obras de referência The Art and Craft of Problem Solving (2016),

Problem-Solving Strategies (1998), Notas Olímpicas: Princípio Extremal (2021) e comple-

mentado com problemas clássicos de olimpíadas internacionais. Com isso, vamos conseguir

absorver com mais naturalidade as técnicas de aplicação do elemento extremo, explorando

suas diferentes nuances e variações.

Exemplo 5.1. (Leningrado 1988). Alguns pinos estão em um tabuleiro de xadrez. A

cada segundo, um dos pinos move para uma casa vizinha (lado em comum). Após muito

tempo veri�cou-se que cada pino havia passado todas as casas do tabuleiro exatamente

uma vez e tinha voltado para a sua casa inicial. Prove que existiu um momento em que

todos os pinos estavam fora de sua casa inicial.

Solução: Suponha que P seja o primeiro pino a retornar a sua posição original de fato,

percorrendo todas as casas possíveis. E de�nimos t como esse momento em que P retorna

à sua casa inicial. Imediatamente antes desse instante, no tempo t− 1, teremos que:

� P está necessariamente em uma posição adjacente à sua origem, pois no próximo

movimento ele retornará.

� Todos os outros pinos não podem estar em suas posições iniciais nesse momento,

pois P foi de�nido como o primeiro a retornar. Então se algum outro pino já tivesse

retornado antes, isso contradiria nossa escolha de P.

� Além disso, como cada pino precisa passar por todas as casas, incluindo a posição

inicial de P, e P está prestes a retornar, os demais pinos já devem ter visitado a casa

inicial de P em algum momento anterior, mas não podem estar lá agora.

Observação 5.1. O bom desta solução está em como a simples tomada de P como "o

primeiro a retornar"(nosso elemento extremo) contém toda a informação necessária. Essa

escolha inteligente nos permite deduzir o comportamento de todo o sistema em um mo-

mento crítico, sem necessidade de analisar cada caso individualmente. O elemento extremo

age de forma a revelar a propriedade global que queremos demonstrar.

Exemplo 5.2. Responda:

(a) Em quantas partes, no máximo, um plano é dividido por n retas?

(b) Em quantas partes o espaço é dividido por n planos em posição geral?

Solução: Denotaremos Pn o número de partes que o plano é dividido por n retas e Sn o

número de partes que o espaço é dividido por n planos. Ficaria fácil observar que esses

problemas seriam melhor solucionados recursivamente, encontrando Pn+1 em função de

Pn e Sn+1 em função de Sn. De fato, ao adicionar uma nova reta (ou plano) a n retas

(planos) já existentes, obtemos facilmente Pn+1 = Pn + n + 1 e Sn+1 = Sn + Pn. Não

há nada errado nessa abordagem, pois a recursão é uma ferramenta de amplo alcance e

serventia.
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� Em (a) temos um problema de contagem. Um princípio fundamental de contagem é

a correspondência biunívoca. A primeira pergunta é: podemos mapear as Pn partes

do plano bijetivamente em um conjunto mais fácil de contar? Os
(
n
2

)
pontos de

interseção das n retas são fáceis de contar. Cada ponto de interseção é o ponto mais

profundo de exatamente uma parte do plano (princípio extremal). Portanto, há(
n
2

)
partes com um ponto mais profundo. As partes sem ponto mais profundo não

são limitadas inferiormente e cortam uma reta horizontal h (que introduzimos) em

n+ 1 segmentos. Essas partes podem ser associadas unicamente a esses segmentos.

Assim, há n + 1 (ou
(
n
0

)
+
(
n
1

)
) partes sem ponto mais profundo. Logo, o número

total de partes do plano é Pn =
(
n
0

)
+
(
n
1

)
+
(
n
2

)
.

� Em (b), três planos formam um vértice no espaço. Há
(
n
3

)
vértices, e cada um

é o ponto mais profundo de exatamente uma parte do espaço. Portanto, existem(
n
3

)
partes com um ponto mais profundo. Cada parte sem ponto mais profundo

intersecta um plano horizontal h em uma das pn partes do plano. Assim, o número

total de partes no espaço é Sn =
(
n
0

)
+
(
n
1

)
+
(
n
2

)
+
(
n
3

)
.

Exemplo 5.3. São dados 2n pontos no plano, com nenhum três colineares. Exatamente

n desses pontos são fazendas F = {F1, F2, . . . , Fn} e os n pontos restantes são poços

W = {W1,W2, . . . ,Wn}. Deseja-se construir uma estrada reta de cada fazenda a um

poço. Mostre que os poços podem ser atribuídos bijetivamente às fazendas de modo que

nenhuma das estradas se intercepte.

Solução: Considere qualquer bijeção f : F → W . Se traçarmos uma reta de cada Fi até

f(Fi), obtemos um sistema de estradas. Dentre todos os n! sistemas possíveis, escolhemos

aquele com comprimento total mínimo. Suponha que neste sistema existam segmentos

que se cruzam, digamos FiWm e FkWn como na �gura 7.

Figura 7 � Segmentos que se cruzam FkWm e FiWn

Wn

Fi

Wm

Fk

Fonte: Próprio autor (2025).

Quando substituímos esses segmentos por FkWm e FiWn, o comprimento total

das estradas diminui devido à desigualdade triangular, o que contraria a minimalidade da

escolha. Portanto, o sistema minimal não pode ter estradas que se intersectam.

Exemplo 5.4. Cada equipe de um torneio de vôlei joga com cada uma das outras exa-

tamente uma vez. Ao �m do torneio, cada jogador faz uma lista com os nomes de todos
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os jogadores vencidos por ele e de todos os que foram vencidos pelos jogadores que ele

venceu. Sabendo que não houve empates, prove que existe um jogador cuja lista possui o

nome de todos os outros jogadores.

Solução: Tome A como equipe com o maior número de vitórias no torneio. Iremos

demonstrar que a lista de A contém todos os outros jogadores. Agora considere B como

uma equipe qualquer do torneio. Teremos duas situações a analisar:

� A primeira é se B perder para A, então B está imediatamente na lista de A por

derrota direta, então um jogador da equipe A tem o nome de todos os outros na sua

lista.

� A segunda, seria quando B vence A, e aí temos que mostrar que B também está na

lista de A, porém indiretamente.

Como A tem o maior número de vitórias, ou seja, nosso elemento extremo da

escolha, B não pode ter vencido todas as equipes que A venceu caso contrário, B teria

pelo menos tantas vitórias quanto A (todas que A venceu) mais a vitória sobre A, o que

faria B ter mais vitórias que A, contradizendo a maximalidade de A. Portanto, existe

pelo menos uma equipe C tal que A venceu C, mas B perdeu para C. Isso implica que B

está na lista de A por transição: A venceu C e C venceu B, logo B está incluso na lista

de A através de C. E assim concluímos que todas as equipes estão na lista de A portanto

existe um jogador com o nome de todos os derrotados.

5.1 APLICAÇÕES ALGÉBRICAS

A seguir, exploraremos exemplos concretos em que a busca por valores ex-

tremos (máximos ou mínimos) surge naturalmente em contextos algébricos delimitados

por restrições. Essas situações como: Encontrar máximos e mínimos de funções sujei-

tas a equações ou inequações algébricas ou espaço de soluções é limitado por condições

polinomiais ou racionais.

Exemplo 5.5. Cada ponto reticulado do plano é rotulado com um número inteiro po-

sitivo. Cada um desses números é a média aritmética de seus quatro vizinhos (acima,

abaixo, esquerda, direita). Demonstre que todos os rótulos são iguais.

Solução: Supomos que m seja o menor rótulo de um ponto reticulado L. Os pontos

vizinhos de L são rotulados por a, b, c, d. Então:

m =
a+ b+ c+ d

4
⇔ a+ b+ c+ d = 4m. (2)

Como m é o menor rótulo, temos a ≥ m, b ≥ m, c ≥ m, d ≥ m. Se qualquer

uma dessas desigualdades fosse estrita, teríamos

a+ b+ c+ d > 4m

o que contradiz a equação (2). Portanto, concluímos que a = b = c = d = m.
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Observação 5.2. Este é um problema bastante simples quando consideramos inteiros po-

sitivos. Entretanto, se substituirmos os inteiros positivos por números reais positivos, o

problema se torna signi�cativamente mais difícil. A di�culdade surge porque o conjunto

dos números reais positivos não possui um elemento mínimo (ao contrário dos inteiros

positivos, onde o Princípio da Boa Ordenação garante a existência de tal elemento).

Exemplo 5.6. (São Petersburgo 1998) Em cada uma de dez folhas de papel são escritas

diversas potências de 2. A soma dos números em cada uma das folhas é a mesma. Mostre

que algum número aparece pelo menos 6 vezes.

Solução: Seja N a soma comum, e n o maior inteiro tal que 2n ≤ N . Suponha que cada

potência só ocorra no máximo 5 vezes. Daí,

5(1 + 2 + · · ·+ 2n) = 5(2n+1 − 1) < 10N.

E isso gera uma contradição.

Exemplo 5.7. O número n
√
2 não é um número inteiro para nenhum inteiro positivo n.

Solução: Usaremos uma abordagem de demonstração de ampla aplicação, fundamentada

no Princípio do Elemento Extremo. Suponha que exista um conjunto S não vazio de n

inteiros positivos tais que n
√
2 é também um inteiro. Se S não for vazio, então pelo P.B.O

ele tem um elemento mínimo k. Considere o inteiro (
√
2− 1)k. Então

(
√
2− 1)k

√
2 = 2k − k

√
2,

como k ∈ S, tanto (
√
2− 1)k quanto 2k − k

√
2 também são inteiros positivos. Portanto,

por de�nição, (
√
2 − 1)k ∈ S. Porém temos (

√
2 − 1)k < k, absurdo! Pois k é o menor

elemento de S. Logo, S é vazio, o que signi�ca que
√
2 é irracional.

5.2 APLICAÇÕES GEOMÉTRICAS

Exploraremos agora, exemplos em que a identi�cação de elementos extremos,

como o maior lado, o menor ângulo ou a distância máxima entre �guras, desempenha um

forte recurso na resolução de problemas geométricos.

Exemplo 5.8. Seja Ω um conjunto de pontos no plano. Cada ponto em Ω é um ponto

médio de dois pontos em Ω. Mostre que Ω é um conjunto in�nito.

Solução: Suponha que Ω seja um conjunto �nito. Então Ω contém dois pontos A, B com

distância máxima |AB|. B é um ponto médio de algum segmento CD com C,D ∈ Ω.

A �gura abaixo mostra pela desigualdade triangular que |AC| > |AB| ou |AD| > |AB|
contrariando a hipótese de |AB| ser a maior distância devido a escolha dos dois pontos

extremais A e B .
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Figura 8 � Conjunto de pontos Ω

B
C D

A

A′

Fonte: Próprio autor (2025).

Exemplo 5.9. Em cada pentágono convexo, podemos escolher três diagonais a partir das

quais um triângulo pode ser construído.

Solução: A �gura abaixo mostra um pentágono convexo ABCDE. Seja BE a mais longa

das diagonais.

Figura 9 � Pentágono convexo com BE destacada como a diagonal mais longa.

A B

C

D

E

Fonte: Próprio autor (2025).

A desigualdade triangular implica

|BD|+ |CE| > |BE|+ |CD| > |BE|,

ou seja, podemos construir um triângulo a partir de BE, BD, CE.

Exemplo 5.10. (Coreia 1995) Considere um número �nito de pontos no plano com a

propriedade de que, para quaisquer três pontos A, B, C escolhidos dentre eles, a área do

triângulo ABC é sempre menor que 1. Mostre que todos esses pontos estão contidos no

interior ou na fronteira de um triângulo com área menor que 4.

Solução: Seja △ABC o triângulo de maior área possível formado por pontos do conjunto

dado, onde S denota a área de △ABC. Por hipótese, S < 1. Considere agora △LMN ,

o triângulo cujos pontos médios dos lados são exatamente A, B e C (ou seja, △ABC é o

triângulo medial de △LMN). Neste caso, a área de △LMN = 4S < 4.
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Figura 10 � Triângulo LMN com pontos médios A,B e C.

L M

N

A B

C

P

Fonte: Próprio autor (2025).

A�rmamos que todos os pontos do conjunto devem estar dentro ou sobre

△LMN . Suponha, por contradição, que exista um ponto P fora de △LMN . Neste

caso, é possível conectar P a dois dos vértices de △ABC formando um novo triângulo

cuja área seria maior que S, o que contradiria a maximalidade da área de △ABC.

Observação 5.3. Em qualquer problema, priorize identi�car os elementos de ordem, má-

ximo e mínimo. Sempre que possível, assuma uma disposição ordenada dos elementos

(técnica conhecida como monotonização).

Exemplo 5.11. Sejam B e W conjuntos �nitos de pontos pretos e brancos, respectiva-

mente, no plano, com a propriedade especial de que todo segmento de reta conectando

dois pontos da mesma cor contém pelo menos um ponto da outra cor. Vamos provar que

todos os pontos devem estar alinhados em uma única reta usando o princípio do extremo.

Solução:

Figura 11 � Triângulo ABC com menor área possível.

A B

C

D
Fonte: Próprio autor (2025).

Suponha, por contradição, que os pontos não são todos colineares. Então

existem pelo menos três pontos formando um triângulo, conforme a �gura 11. Entre

todos os triângulos possíveis formados por esses pontos, considere △ABC aquele com
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menor área possível (princípio do extremo). Sem perda de generalidade, assuma que A e

B são ambos pretos. Pela propriedade do problema, deve existir um ponto branco D no

segmento AB. Agora, observe que pelo menos um dos novos triângulos formados (△ADC

ou △BDC) tem área estritamente menor que △ABC, o que contradiz a minimalidade de

△ABC. Portanto, nossa suposição inicial é falsa, e todos os pontos devem estar em uma

única reta.

Exemplo 5.12. Em todo polígono convexo de n lados com n ≥ 3, existem três vértices

consecutivos A, B, C tais que o circuncírculo do triângulo △ABC cobre todo o polígono.

Solução: Entre as �nitas circunferências de�nidas por três vértices do polígono, existe

uma circunferência máxima. Vamos dividir o problema em duas partes:

(1) A circunferência máxima cobre todo o polígono, e

(2) A circunferência máxima passa por três vértices consecutivos.

Provaremos (1) por contradição. Suponha que exista um ponto A′ fora da

circunferência máxima de�nida por △ABC, onde A, B, C, A′ são vértices de um qua-

drilátero convexo. Então, o circuncirculo de △A′BC teria raio maior que o de △ABC, o

que é uma contradição com a maximalidade.

Também provamos (2) por contradição. Sejam A, B, C vértices na circunfe-

rência máxima, e seja A′ um vértice entre B e C que não está na circunferência máxima.

Por (1), A′ deve estar dentro dessa circunferência, mas então o circuncírculo de △A′BC

seria maior que a circunferência máxima, novamente uma contradição.

Exemplo 5.13. (Teorema de Sylvester) Um conjunto �nito S de pontos no plano possui a

seguinte propriedade: qualquer reta que passa por dois pontos de S passa por um terceiro

ponto de S. Prove que todos os pontos de S estão sobre uma mesma reta.

Solução: Suponha, por contradição, que nem todos os pontos de S estejam alinhados.

Considere:

� L o conjunto de todas as retas determinadas por pares de pontos de S.

� Escolha P0 ∈ S e l0 ∈ L tais que a distância d(P0, l0) seja a menor distância não-nula

possível entre pontos de S e retas de L.
� Seja Q o pé da perpendicular de P0 sobre l0.

Por hipótese, l0 deve conter pelo menos três pontos de S. Pelo menos dois

desses pontos, digamos M e N , estão do mesmo lado em relação a Q. Sem perda de

generalidade, assuma que N está entre Q e M .
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Figura 12 � Teorema de Sylvester

P0

Q N M

S

l0

Fonte: Próprio autor (2025).

Considere agora a reta P0M e calculemos a distância de N a esta reta:

� A área do triângulo P0MN pode ser calculada de duas formas:

Área =
1

2
d(N,P0M) · |P0M | =

1

2
d(P0, l0) · |MN |.

� Como |MN | < |P0M | (pois N está entre Q e M), segue que:

d(N,P0M) = d(P0, l0) ·
|MN |
|P0M |

< d(P0, l0).

Isto contradiz a minimalidade de d(P0, l0), pois encontramos um ponto N ∈ S

e uma reta P0M ∈ L com distância menor. Portanto, nossa suposição inicial é falsa, e

todos os pontos de S devem estar sobre uma única reta.

Observação 5.4. A validade do Teorema de Sylvester, vem da ideia da relação de ordem

entre pontos e à distância entre eles. Isso acontece porque o teorema depende de de�nições

e axiomas da geometria euclidiana. Em outras geometrias, o teorema pode não valer. Um

exemplo de tal invalidez seria em geometrias projetivas, que surgem em áreas como a

álgebra e a combinatória. Nessas geometrias, existem apenas um número �nito de pontos

e de retas, e os arranjos possíveis entre eles são diferentes dos que conhecemos no plano.

Em certos casos, pode acontecer que todas as retas passem por três ou mais pontos do

conjunto ou seja, nenhuma reta passa por exatamente dois deles, o que contraria o que

o Teorema de Sylvester garante no plano euclidiano. Também cabe citar geometrias

elípticas, onde as �retas� são curvas fechadas (como grandes círculos numa esfera), e dois

pontos distintos sempre estão sobre alguma dessas curvas. Fora que, também pode acorrer

de uma reta(curva) conter vários pontos do conjunto, sem que exista uma reta que passe

por apenas dois.
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5.3 APLICAÇÕES VARIADAS

Os próximos exemplos ilustrarão estratégias e�cientes para explorar extremos

na álgebra e na aritmética. Teremos desde: Encontrar os valores máximo e mínimo de

funções polinomiais, racionais ou exponenciais, sujeitas a certas condições algébricas, o uso

de médias (aritmética, geométrica, harmônica) para determinar extremos em expressões

simétricas ou limitar o comportamento de sequências, identi�car termos máximos ou

mínimos em progressões aritméticas e geométricas, ou em somas condicionadas.

Exemplo 5.14. Existirá uma função f : N∗ → N∗, onde N∗ é o conjunto dos inteiros

positivos, tal que se cumpra a seguinte igualdade para cada número natural n > 1:

f(n) = f(f(n− 1)) + f(f(n+ 1)) ?

Solução: Inicialmente devemos nos atentar que entre os valores

f(2), f(3), . . . , f(n), . . . ,

deve haver um elemento mínimo, digamos que seja f(n0), onde n0 > 1. Observe que

f(n0 + 1) ≥ f(n0) = f(f(n0 − 1)) + f(f(n0 + 1)) ≥ 1 + 1 > 1.

Como
f(n0 + 1) > 1, então f(f(n0 + 1)) ∈ {f(2), f(3), . . . }.

Portanto,
f(f(n0 + 1)) ≥ f(n0),

o que implica que

f(n0) = f(f(n0 − 1)) + f(f(n0 + 1)) ≥ 1 + f(n0),

o que torna impossível existir tal função.

Exemplo 5.15. A soma de 17 inteiros positivos distintos é igual a 1000. Prove que podem

ser escolhidos 8 destes inteiros de tal forma que a sua soma é maior ou igual a 500.

Solução: Ordene os inteiros em ordem crescente:

a1 < a2 < · · · < a17.

Seja a9 o elemento central. O valor médio da soma é
⌊
1000
17

⌋
= 58. Consideramos dois

casos:

� a9 ≥ 58

Neste caso, consideremos:

a10 ≥ 59, a11 ≥ 60, . . . , a17 ≥ 66.

Somando as desigualdades temos

a10 + a11 + · · ·+ a17 ≥ 59 + 60 + · · ·+ 66 = 500.
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� a9 < 58 Então, temos:

a9 ≤ 57, a8 ≤ 56, . . . , a1 ≤ 49.

Portanto:
a1 + a2 + · · ·+ a9 ≤ 49 + 50 + · · ·+ 57 = 477.

Segue que:
a10 + a11 + · · ·+ a17 ≥ 1000− 477 = 523 > 500.

Em ambos os casos, encontramos 8 inteiros cuja soma é pelo menos 500.

Exemplo 5.16. (Leningrado 1989) Dado um número natural k > 1, prove que é impos-

sível colocar os números 1, 2, . . . , k2 em um tabuleiro k × k de forma que todas as somas

dos números em cada linha e coluna sejam potências de 2.

Solução: Suponha que tal disposição seja possível para algum natural maior que 1. Por

sua vez seja 2n a menor dentre todas as somas das linhas e colunas. Logo,

2n ≥ 1 + 2 + · · ·+ k =
k(k + 1)

2
.

Como 2n é a menor potência de 2 entre as somas, ela deve dividir todas as outras somas

(pois são potências de 2 maiores ou iguais a 2n). Portanto, 2n divide a soma total de

todos os números no tabuleiro. Assim

2n | k
2(k2 + 1)

2
.

Como k2 e k2 + 1 tem paridades diferente. Absurdo!

Exemplo 5.17. Encontre todas as soluções positivas do sistema:

x1 + x2 = x2
3

x2 + x3 = x2
4

x3 + x4 = x2
5

x4 + x5 = x2
1

x5 + x1 = x2
2

Solução: Consideremos x e y o maior e o menor de x1, x2, ..., x5, respectivamente, ou seja

x = max{x1, x2, x3, x4, x5} e y = min{x1, x2, x3, x4, x5}. Como x é máximo, então existe

uma equação onde x aparece no lado esquerdo:

xi + xj = x2
k com xk ≤ x.

Assim
xi + xj ≤ 2x =⇒ x2

k ≤ 2x =⇒ x ≤ 2.

E tomando y mínimo, então temos uma equação onde y aparece no lado direito:
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xi + xj = y2 com xi, xj ≥ y.

Daí
xi + xj ≥ 2y =⇒ y2 ≥ 2y =⇒ y ≥ 2 (y > 0).

Assim
2 ≤ y ≤ x ≤ 2.

Portanto a única solução seria quando

x1 = x2 = x3 = x4 = x5 = 2.

5.4 VERSÃO FUNCIONAL DO PRINCÍPIO DO ELEMENTO EXTREMO

Agora apresentaremos o princípio do elemento extremo em uma versão funcio-

nal denotada por Princípio Extremal, ela nos permite explorar objetos com propriedades

maximais ou minimais e assim, construir demonstrações elegantes.

A aplicação e�caz do Princípio Extremal depende da escolha adequada da fun-

ção. Essa escolha exige um profundo insight, pois a função ideal deve traduzir propriedades

abstratas em quantidades mensuráveis, capturar a essência do problema, preservando a

�nitude do conjunto estudado e por �m estabelecer uma correspondência biunívoca entre

os extremos da função e as soluções desejadas. Funções bem escolhidas costumam ser

aplicáveis a grupos inteiros de problemas. Exemplos comuns incluem dimensão, cardina-

lidade, energia, entropia, entre outras.

Agora podemos apresentar a versão mais simples do Princípio Extremal porém,

a que provavelmente é bastante relevante em aplicações. Ela também é conhecida como

Princípio Minimal (ou Princípio Maximal).

Teorema 5.1. (Princípio Minimal) Seja S um conjunto �nito e não vazio. Considere

f : S → R uma função qualquer. Então existe m ∈ S que minimiza o valor de f , ou seja,

f(m) ≤ f(s) ∀s ∈ S.

Demonstração. Como S é um conjunto �nito e não vazio, podemos escrever:

S = {s1, s2, . . . , sn}, n ≥ 1.

Temos que a função f associa a cada elemento de S um número real:

f(s1), f(s2), . . . , f(sn) ∈ R.

Como o conjunto de valores {f(s1), . . . , f(sn)} ⊂ R é �nito e não vazio, então pelo PBO

garantimos que f possui um menor elemento. Logo, existe algum índice i ∈ {1, . . . , n}
tal que:

f(si) ≤ f(sj), para todo j ∈ {1, . . . , n}.
De�nimos m := si ∈ S. Então:
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f(m) ≤ f(s), para todo s ∈ S.

Portanto, existe m ∈ S tal que f(m) ≤ f(s), ∀s ∈ S.

Observação 5.5. Por outro lado, o princípio maximal nos garante que também existe um

elemento que maximiza o valor de f . Observe que ambos princípios são equivalentes, pois

podemos deduzir um a partir do outro substituindo f por −f . Usamos o princípio quando
queremos provar a existência de algum elemento de um conjunto �nito com certas propri-

edades especiais ou quando queremos mostrar que não existem elementos com uma certa

propriedade em um conjunto �nito, ou seja, quando se quer provar que um subconjunto

de um conjunto �nito é vazio.

Geralmente, aplicamos o princípio sobre um conjunto �nito muito grande,

provavelmente de tamanho desconhecido, e onde não sabemos exatamente quais são seus

elementos. Os passos mais importantes para aplicar o princípio consistem, na identi�cação

do conjunto e veri�cação da sua �nitude. E construir uma função que possamos minimizar

(ou maximizar), este sim é o passo mais engenhoso na nossa demonstração.

Exemplo 5.18. (ONM 2004) Em um certo país, existe uma conexão ferroviária direta

entre qualquer par de cidades, mas os trens viajam apenas em uma direção. Prove que

existe uma cidade da qual é possível chegar a qualquer outra, passando por no máximo

uma cidade intermediária.

Solução: Considere uma cidade A que maximize o número de cidades alcançáveis direta-

mente a partir dela (sem passar por outras cidades). A�rmamos que esta cidade satisfaz

a condição requerida. De fato, se supormos o contrário, deve existir uma cidade B para a

qual não é possível viajar diretamente de A nem viajando de A passando por exatamente

uma cidade intermediária conforme a �gura 13. Sejam A1, A2, . . . , An as cidades alcan-

çáveis diretamente a partir de A (indicadas por setas cinzas). Como não se pode viajar

diretamente de nenhuma Ai para B (para i = 1, 2, . . . , n), necessariamente deve existir

uma ligação de B para cada Ai (setas amarelas). Além disso, como não existe ligação

direta de A para B, deve existir a ligação B → A (seta verde).

Figura 13 � Conexões ferroviárias entre A e B.

A1

A2

A3

An

AB

...

Fonte: Próprio autor (2025).
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Concluímos então que a partir de B pode-se viajar diretamente para pelo

menos n + 1 cidades (as n cidades Ai mais a cidade A), o que excede o número n de

cidades alcançáveis diretamente a partir de A. Esta contradição com a maximalidade de

A prova que não pode existir tal cidade B, e portanto a cidade A realmente satisfaz a

propriedade desejada.

Veremos agora outra variação do Princípio Extremal para conjuntos in�nitos.

Podemos dizer que ele é equivalente ao P.B.O.

Teorema 5.2. (Princípio Minimal In�nito) Seja S um conjunto não vazio (de qualquer

cardinalidade, inclusive in�nito). Considere

f : S → Z

e suponha que existe algum c ∈ Z tal que

c ≤ f(s) ∀s ∈ S.

Então existe algum m ∈ S que minimiza o valor de f , ou seja,

f(m) ≤ f(s) ∀s ∈ S.

Demonstração. Como f(s) ∈ Z para todo s ∈ S e existe um número inteiro c tal que

f(s) ≥ c para todo s ∈ S, temos que o conjunto de valores da imagem de f ,

f(S) := {f(s) | s ∈ S} ⊂ Z,

é um subconjunto não vazio e inferiormente limitado de Z. Como qualquer subconjunto
de Z podemos garantir pelo Princípio do Boa Ordenação a existência de um elemento

mínimo. Logo o conjunto f(S) possui um menor elemento. Seja m0 ∈ Z esse menor

elemento , ou seja,
m0 = min f(S).

Como m0 ∈ f(S), existe algum m ∈ S tal que f(m) = m0. Logo, para todo s ∈ S,

f(m) = m0 ≤ f(s),

ou seja, f atinge seu valor mínimo em m ∈ S, como queríamos demonstrar.

Observação 5.6. Por exemplo, se considerarmos uma função f : S → N, podemos aplicar
o princípio minimal pois 0 ≤ n para todo n ∈ N. Assim como na versão �nita do princípio

minimal, utilizamos este princípio para construir elementos especiais de um conjunto e

mostrar que não existem elementos com certa propriedade em um conjunto.

Observação 5.7. Observe que se 3 | a2+ b2 ⇒ 3 | a e 3 | b. De fato, pois podemos escrever
a = 3k + ra e b = 3m+ rb com ra, rb ∈ {0, 1, 2}. Desenvolvendo a2 + b2 temos:
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a2 + b2 = (3k + ra)
2 + (3m+ rb)

2

= 9k2 + 6kra + r2a + 9m2 + 6mrb + r2b

= 3(3k2 + 3m2 + 2kra + 2mrb) + (r2a + r2b ).

Como 3 divide a2 + b2, deve dividir r2a + r2b . Calculando todas as possibilidades para

(ra, rb):

� (0, 0)→ 0 + 0 = 0 (divisível por 3).

� (0, 1), (1, 0)→ 0 + 1 = 1 ou 1 + 0 = 1 (não divisível por 3).

� (0, 2), (2, 0)→ 0 + 4 = 4 ou 4 + 0 = 4 (não divisível por 3).

� (1, 1)→ 1 + 1 = 2 (não divisível por 3).

� (1, 2), (2, 1)→ 1 + 4 = 5 ou 4 + 1 = 5 (não divisível por 3).

� (2, 2)→ 4 + 4 = 8 (não divisível por 3).

A única possibilidade onde r2a + r2b é divisível por 3 é quando ra = rb = 0, ou

seja, quando ambos a e b são múltiplos de 3.

Exemplo 5.19. Mostre que não existe quadrupla de inteiros positivos (x, y, z, u) que satis-

faça
x2 + y2 = 3(z2 + u2).

Solução: Suponha que exista tal quadrupla. Escolhemos a solução com o menor valor

de x2 + y2. Seja (a, b, c, d) essa solução escolhida. Então

a2 + b2 = 3(c2 + d2)

⇒ 3 | a2 + b2

⇒ 3 | a e 3 | b

⇒ a = 3a1, b = 3b1 com a1, b1 ∈ Z,

a2 + b2 = 9(a21 + b21) = 3(c2 + d2)

⇒ c2 + d2 = 3(a21 + b21).

O que mostra que (c, d, a1, b1) onde c2 + d2 < a2 + b2 é solução, absurdo pois

(a, b, c, d) é a menor solução para quadrupla. Logo a minimalidade da solução não é

satisfeita.

O método anterior é conhecido como descenso in�nito, pois o que fazemos é

mostrar que, a partir de uma solução, sempre podemos produzir outra estritamente menor,

ou seja, produzimos in�nitas soluções cada vez menores. Como no caso dos números

naturais é impossível descender in�nitamente, conclui-se que não pode existir nenhuma

solução.

Este método ganhou fama depois que Fermat o utilizou para resolver de forma

elementar alguns exemplos do chamado Último Teorema de Fermat, que a�rma não exis-

tirem soluções inteiras não triviais para xn + yn = zn com n ≥ 3, foi demonstrado por

Andrew Wiles em 1994. A prova utilizou técnicas avançadas da teoria dos números e
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geometria algébrica, particularmente a conexão entre curvas elípticas e formas modulares

(via Teorema de Taniyama-Shimura). Wiles provou que toda curva elíptica semiestável

é modular, implicando a impossibilidade das soluções propostas por Fermat. Esse resul-

tado, que dependeu de contribuições acumuladas por séculos, resolveu um dos problemas

mais famosos da matemática, permanecendo em aberto por mais de 350 anos.

Exemplo 5.20. (IMO 2020). Considere um baralho de n > 1 cartas. Cada carta tem

um inteiro positivo escrito. O baralho tem a propriedade de que a média aritmética de

cada par de cartas é a média geométrica de alguma coleção de cartas. Para quais valores

de n o baralho só tem cartas iguais?

Solução: A�rmamos que para todo n > 1 o baralho sempre deve ter todas suas cartas

iguais. Em outras palavras, a�rmamos que não existe tal baralho com um par de cartas

diferentes. Suponhamos por contradição que isto não seja verdade, e aplicando o princípio

minimal consideremos um baralho que cumpre a propriedade do enunciado, que além

disso não tem todas suas cartas iguais, e que além disso minimiza a soma total das cartas.

Ordenemos as cartas

a1 ≤ a2 ≤ · · · ≤ an.

Por nossa suposição sabemos que an > a1. Seja p | an um divisor primo. A�rmamos que

p | ai ∀i = 1, . . . , n.

De fato, suponhamos que p | ai+1, p | ai+2, . . ., p | an. Como

ai + an
2

= k
√
ai1 · · · aik

para algum conjunto de índices 1 ≤ i1 < i2 < · · · < ik ≤ n, segue que se aik ≤ ai então

ai + an
2

≤ k
√
ai1 · · · aik ≤ ai

e consequentemente an ≤ ai. Logo conclui-se que ai = an e assim p | ai neste caso. No

caso que aik > ai, segue que ik > i e então p | aik . Como

(ai + an)
k = 2kai1 · · · aik ,

vemos que a igualdade anterior implica que p | ai neste caso também. Isto termina a prova
de nossa a�rmação. Finalmente, se tomarmos o baralho e dividirmos o número de todas

as cartas por p obtemos um novo baralho com as mesmas propriedades do problema, que

não tem todas suas cartas iguais e com um valor menor da soma total de suas cartas. Isto

contradiz nossa escolha original e termina o problema.

Finalmente veremos uma versão do princípio extremal em conjuntos ordenados.

Tanto esta versão, como as duas que vimos anteriormente, são casos particulares de um
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princípio extremal geral que vale em conjuntos in�nitos de tamanhos tão grandes quanto

se queira, dotados de uma ordem especial (chamada ordem indutiva). Nos referimos ao

chamado Lema de Zorn, o qual é sumamente importante em matemática. Nós somente

mencionaremos sua versão em conjuntos �nitos, a qual é totalmente trivial. Primeiro

vamos com os preliminares.

De�nição 5.1. Um conjunto ordenado é um par (S,≤) formado por um conjunto S e

uma relação de ordem ≤ entre seus elementos. Uma relação ≤ entre elementos de S é

uma ordem quando se cumpre as seguintes propriedades:

(1) Re�exiva, isto é, ∀a ∈ S : a ≤ a,

(2) Antissimétrica, isto é, ∀a, b ∈ S : se a ≤ b e b ≤ a, então a = b,

(3) Transitiva, isto é, ∀a, b, c ∈ S : se a ≤ b e b ≤ c, então a ≤ c.

Exemplo 5.21. Seja S o conjunto dos subconjuntos de {1, 2, 3}, ou seja,

S = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Se para A,B ∈ S de�nirmos A ≤ B ⇔ A ⊆ B, então temos uma ordem em S. Um

modo de vizualizar esta ordem em S é pelo diagrama de Hasse, representado na �gura 14

abaixo:

Figura 14 � Diagrama Hasse

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

Fonte: Próprio autor 2025.

Podemos notar facilmente pelo diagrama que o ∅ é o elemento mínimo e {1, 2, 3} é o

elemento máximo de S.
Exemplo 5.22. Os números reais com a ordem usual (R,≤) onde

a ≤ b⇔ b− a ∈ R+ ∪ {0}

é um conjunto ordenado. Esta ordem tem a seguinte propriedade que nos permite repre-

sentar R em uma reta: É uma ordem total, isto é, ∀a, b ∈ R : a ≤ b ou b ≤ a.

Exemplo 5.23. O subconjunto dos números naturais N ⊆ R goza da seguinte propriedade

que é equivalente ao princípio de indução: É um bom ordenamento, isto é,
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∀ ∅ ̸= S ⊆ N, ∃ s0 ∈ S : s0 = min(S).

Exemplo 5.24. A ordem mais importante em N é dada pela relação de divisibilidade. O

par (N, |) é um conjunto ordenado, mas não possui uma ordem total. Por exemplo, 2 ∤ 3
e 3 ∤ 2. O mínimo de (N, |) é o 1. Por outro lado, nem todo subconjunto de N possui um

mínimo, por exemplo N \ {1} não tem mínimo.

De�nição 5.2. Seja (S,≤) um conjunto ordenado. Dizemos que s0 ∈ S é minimal se

∀s ≤ s0 : s = s0.

Analogamente, dizemos que um elemento s1 ∈ S é maximal se

∀s ≥ s1 : s = s1.

Exemplo 5.25. No exemplo anterior, (N \ {1}, |) tem in�nitos elementos minimais, que

correspondem exatamente aos números primos.

Teorema 5.3. Seja S um conjunto ordenado, �nito e não vazio. Então S possui algum

elemento minimal e algum elemento maximal.

Demonstração. A demonstração é análoga a apresentada no teorema 5.1

Exemplo 5.26. (IMO 1988) Sejam a e b inteiros positivos tais que ab+ 1 divide a2 + b2.

Demonstre que a2+b2

ab+1
é o quadrado de um perfeito.

Solução: Iremos provar por absurdo. Se ab + 1 divide a2 + b2, então existe um inteiro

positivo k tal que:
a2 + b2

ab+ 1
= k.

Então teremos:

a2 − kab+ b2 = k. (3)

Suponhamos agora que k não seja um quadrado perfeito. Consideremos o conjunto de

todos os pares (a, b) que satisfazem (3) com a ≥ b > 0, e tomemos o par com a mínimo.

� Se a = b, a equação se torna:
(2− k)a2 = k.

Como o lado esquerdo é não positivo, teríamos k ≤ 0, contradizendo k positivo.

� Se a > b, considerando a equação como quadrática em a:

a2 − kba+ (b2 − k) = 0.

Sejam a e a1 as raízes. Pelas relações de Vieta:

a+ a1 = kb e aa1 = b2 − k.

Assim, a1 = b2−k
a

< a2−1
a

< a (pela minimalidade de a). O par (a1, b) também satisfaz a

equação original com 0 < a1 < a, contradizendo a minimalidade de a. Portanto, k é um

quadrado perfeito.
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6 RESOLUÇÃO DE PROBLEMAS DAS OLIMPÍADAS NACIONAIS COM

O PRINCÍPIO DA INVARIÂNCIA E DO ELEMENTO EXTREMO

Neste capítulo, aprofundaremos nossa análise, aplicando esses princípios a pro-

blemas selecionados de competições como a OBM, OBMEP e OCM. Veremos como es-

tratégias baseadas em invariantes e extremos não apenas resolvem questões desa�adoras,

mas também revelam padrões ocultos, transformando problemas dinâmicos em análises

estáticas de propriedades preservadas ou condições críticas.

Sendo assim, destacaremos técnicas estudadas de resolução, como:

� Identi�cação de invariantes criativos (paridade, divisibilidade, somas simétri-

cas, entre outros).

� Uso estratégico de elementos extremos (maior/menor valor, primeiro/último

elemento, con�gurações limites).

Essas metodologias permitem a identi�cação precoce de soluções não viáveis,

otimizando assim o processo de resolução de problemas. O domínio dessas técnicas nos

dão uma vantagem competitiva signi�cativa, propiciando maior clareza e e�ciência na

execução da soluções. As resoluções buscam explicitar como e por que cada princípio é

aplicado, destacando estratégias heurísticas, armadilhas comuns e conexões com outros

conceitos (como o Princípio da Casa dos Pombos ou indução).

As questões foram cuidadosamente selecionadas para ilustrar a versatilidade

desses princípios em diferentes contextos. Assim, este trabalho re�ete o compromisso de

unir teoria e prática. As questões servem não apenas para consolidar o conhecimento,

mas também para estimular a criatividade e o raciocínio lógico desenvolvido durante a

leitura dos capítulos anteriores.

Este capítulo se destaca como resultado educacional esperado, que por sua

vez, visa a atender às necessidades tanto de professores quanto de alunos em busca de

excelência matemática. Para os educadores, oferece um repertório valioso de problemas

desa�adores que podem enriquecer suas aulas, servindo como ferramenta pedagógica para

estimular o raciocínio crítico e a criatividade dos estudantes. Para os alunos, especialmente

aqueles que aspiram aprofundar seu conhecimento, apresenta técnicas de prova re�nadas

e elegantes, organizadas de maneira progressiva para facilitar a aprendizagem.

O resultado é um material que não apenas transmite conhecimento matemá-

tico, mas também cultiva a capacidade de resolver problemas de forma criativa e sistemá-

tica, habilidades essenciais tanto para competições matemáticas quanto para a formação

acadêmica em geral.

Problema 6.1. (OBM 2007-N2Q3) Em 1949 o matemático indiano D. R. Kaprekar in-

ventou um processo conhecido como Operação de Kaprekar. Primeiramente escolha um

número de quatro dígitos (não todos iguais), em seguida escreva a diferença entre o maior

e o menor número que podem ser formados a partir de uma permutação dos dígitos do nú-
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mero inicial. Repetindo o processo com cada número assim obtido, obtemos uma sequên-

cia. Por exemplo, se o primeiro número for 2007, o segundo será 7200− 0027 = 7173. O

terceiro será 7731−1377 = 6354. Começando com o número 1998, qual será o 2007-ésimo

termo da sequência?

Solução: A sequência é 1998 → 9981 − 1899 = 8082 → 8820 − 0288 = 8532 → 8532 −
2358 = 6174 → 7641 − 1467 = 6174. Note que, depois de 6174, todos os termos serão

iguais a 6174, pois este é um ponto �xo da operação. Logo, a resposta é 6174. Na

verdade, começando com qualquer número de 4 dígitos, obtemos este número, 6174, após

executarmos um número �nito de vezes a operação de Kaprekar.

Observação 6.1. O número 6174 é um invariante porque, ao aplicarmos a Operação de

Kaprekar, ele se mantém inalterado. Esse comportamento é análogo a um ponto de

equilíbrio no qual o processo converge independentemente do número inicial de 4 dígitos

(desde que não sejam todos iguais).

Problema 6.2. (OBM 2012-N2Q3) Quando duas amebas vermelhas se juntam, se trans-

formam em uma única ameba azul; quando uma ameba vermelha se junta com uma

ameba azul, as duas se transformam em três amebas vermelhas; quando duas amebas

azuis se juntam, elas se transformam em quatro amebas vermelhas. Um tubo de ensaio

tem inicialmente 201 amebas azuis e 112 amebas vermelhas.

(a) É possível que após algumas transformações o tubo contenha 100 amebas azuis e

314 amebas vermelhas?

(b) É possível que após algumas transformações o tubo contenha 99 amebas azuis e 314

amebas vermelhas?

Solução:

(a) Vamos analisar as transformações considerando apenas as cores. Temos duas regras:

(1) podemos converter vermelhas em azuis e vice-versa individualmente; (2) quando

temos azuis e vermelhas juntas, podemos transformá-las apenas em vermelhas (1

azul + 1 vermelha → 3 vermelhas). Isso mostra que é mais fácil obter vermelhas

do que azuis. Uma estratégia e�caz é: primeiro, isolar as 100 azuis iniciais; depois,

trabalhar com as 101 azuis e 112 vermelhas restantes. A questão é se podemos

transformar essas 101 azuis e 112 vermelhas em 314 vermelhas. Sabemos que cada

par (azul + vermelha) produz 3 vermelhas. Com 101 azuis: usamos 101 azuis +

101 vermelhas → 3× 101 = 303 vermelhas. Sobram 112− 101 = 11 vermelhas não

transformadas. O total �nal será 303 + 11 = 314 vermelhas, mantendo as 100 azuis

iniciais, como queríamos.

(b) Vamos encontrar um invariante para este problema. Mostraremos que a quanti-

dade V + 2A (vermelhas mais o dobro das azuis) permanece constante em todas as

transformações. Analisemos cada caso:

1. Duas vermelhas → uma azul:
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(V,A)→ (V − 2, A+ 1)

V + 2A→ (V − 2) + 2(A+ 1) = V + 2A.

2. Uma vermelha + uma azul → três vermelhas:

(V,A)→ (V − 1 + 3, A− 1) = (V + 2, A− 1)

V + 2A→ (V + 2) + 2(A− 1) = V + 2A.

3. Duas azuis → quatro vermelhas:

(V,A)→ (V + 4, A− 2)

V + 2A→ (V + 4) + 2(A− 2) = V + 2A.

Em todos os casos, V + 2A é invariante. Na con�guração inicial (V = 212, A = 151):

212 + 2× 151 = 514.

Enquanto na con�guração desejada (V = 314, A = 100):

314 + 2× 100 = 514.

Portanto, a transformação é possível, pois o invariante é preservado.

Problema 6.3. (OBMEP 2005-N2Q1) Numa aula de Matemática, a professora inicia

uma brincadeira, escrevendo no quadro-negro um número. Para continuar a brincadeira,

os alunos devem escrever outro número, seguindo as regras abaixo:

1. Se o número escrito só tiver um algarismo, ele deve ser multiplicado por 2.

2. Se o número escrito tiver mais de um algarismo, os alunos podem escolher entre

apagar o algarismo das unidades ou multiplicar esse número por 2.

Depois que os alunos escrevem um novo número, a brincadeira continua com este nú-

mero, sempre com as mesmas regras. Veja a seguir dois exemplos desta brincadeira, um

começando com 203 e o outro com 4197:

203 dobra−−−→ 406
apaga−−−→ 40

apaga−−−→ 4 ...

4197
apaga−−−→ 419 dobra−−−→ 838

apaga−−−→ 83 ...

a) Comece a brincadeira com o número 45 e mostre uma maneira de prosseguir até

chegar ao número 1.

b) Comece agora a brincadeira com o número 345 e mostre uma maneira de prosseguir

até chegar ao número 1.

c) Explique como chegar ao número 1 começando a brincadeira com qualquer número

natural diferente de zero.

Solução:

(a) Há várias soluções, como por exemplo:

45
apaga−−−→ 4 dobra−−−→ 8 dobra−−−→ 16

apaga−−−→ 1
ou

45 dobra−−−→ 90
apaga−−−→ 9 dobra−−−→ 18

apaga−−−→ 1.
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(b) Aqui também há várias soluções, como por exemplo:

345
apaga−−−→ 34

apaga−−−→ 3 dobra−−−→ 6 dobra−−−→ 12
apaga−−−→ 1

ou

345
apaga−−−→ 34 dobra−−−→ 68

apaga−−−→ 6 dobra−−−→ 12
apaga−−−→ 1.

(c) Aplicamos a regra �apaga� até sobrar apenas um algarismo, e temos então três casos:

1. Este algarismo é igual a 1 e a brincadeira acaba.

2. Este algarismo é 2, 3 ou 4: neste caso aplicamos a regra �dobra� algumas vezes

até obter um número de dois algarismos cujo algarismo das dezenas seja 1 (16,

12 ou 16, respectivamente), e aplica-se a regra �apaga� obtendo o número 1.

3. Este algarismo é 5, 6, 7, 8 ou 9: neste caso aplica-se a regra �dobra� uma vez,

obtendo respectivamente 10, 12, 14, 16 ou 18; então aplica-se a regra �apaga�

para obter o número 1.

Observação 6.2. O invariante aqui é que, independentemente do número inicial, aplicando-

se as regras de apagar ou dobrar, sempre se chegará a 1 após um número �nito de passos.

Isso ocorre porque o processo reduz sistematicamente a magnitude do número (seja dimi-

nuindo seus dígitos, seja forçando-o a entrar em um ciclo que leva a 1). Podemos modelar

esse problema como um algoritmo de redução, onde:

� Se n tem mais de um dígito, n é reduzido para
⌊

n
10

⌋
(apagar o último dígito) ou 2n

(dobrar).

� Se n tem um único dígito, só podemos dobrá-lo até que tenha dois dígitos novamente.

O único ponto �xo (estado que não muda) é 1, pois:

1
dobra−−−→ 2

dobra−−−→ 4
dobra−−−→ 8

dobra−−−→ 16
apaga−−−→ 1

entrando em um ciclo que retorna a 1. Portanto, 1 é um atrator para esse processo, e

qualquer número natural diferente de zero eventualmente chegará a ele seguindo as regras

dadas.

Problema 6.4. (OCM 2023-N2Q2) Dado o conjunto {1, 2, 3, . . . , n}, ao remover um

número x, a média dos elementos restantes é 2023. Sabendo que n é ímpar, determine o

valor de x.

Solução: A soma dos elementos do conjunto original é:

n∑
i=1

i =
n(n+ 1)

2
.

Se um elemento x é removido, a nova soma dos elementos passa a ser:

n(n+ 1)

2
− x.

Como agora o número de elementos é n− 1, a média dos elementos restantes é dada por:

n(n+1)
2
− x

n− 1
= 2023.

Multiplicando ambos os lados da equação por (n− 1), temos:
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n(n+ 1)

2
− x = 2023(n− 1).

Isolando x:

x =
n(n+ 1)

2
− 2023(n− 1). (1)

Como x deve pertencer ao conjunto S = {1, 2, . . . , n}, devemos garantir que x ∈ N e

1 ≤ x ≤ n. Note que a média do conjunto original é:

1 + n

2
.

Como a média dos elementos restantes é 2023, procuramos um valor de n tal que:

1 + n

2
≈ 2023⇒ n ≈ 4045.

Como n é ímpar, para n = 4045. Substituindo na equação (1):

x =
4045 · 4046

2
− 2023 · 4044.

Calculando:

x =
16370570

2
− 8181012 = 8185285− 8181012 = 4273.

Observação 6.3. A soma dos elementos restantes após a remoção de x é invariável e igual

a 2023(n − 1), já que a média foi �xada. Esse valor determina unicamente o valor de x

pela diferença em relação à soma total do conjunto original.

Problema 6.5. (OBMEP 2020-BQN3Q15) Começando com um número inteiro positivo

n, uma sequência é criada satisfazendo a seguinte regra: cada termo se obtém do anterior

subtraindo-se o maior quadrado perfeito que é menor ou igual ao termo anterior, até

chegar ao número zero. Por exemplo, se n = 142, teremos a seguinte sequência de 5

termos:

a1 = 142, a2 = 21, a3 = 5, a4 = 1, a5 = 0, pois 21 = 142 − 112, 5 = 21 − 42,

1 = 5− 22 e 0 = 1− 12.

(a) Dê exemplo de uma sequência que tenha exatamente 6 termos.

(b) Encontre o menor valor de n para que a sequência assim criada tenha exatamente

7 termos.

Solução:

(a) Um exemplo é a sequência, a1 = 23, a2 = 7 = 23 − 16, a3 = 3 = 7 − 4, a4 =

2 = 3− 1, a5 = 1 = 2− 1, a6 = 0 = 1− 1.

(b) Como an+1 = an − x2, com x2 ≤ an < (x+ 1)2, segue que

an+1 = an − x2 < (x+ 1)2 − x2 = 2x+ 1.

Daí o inteiro x satisfaz x > an+1−1
2

. Para obter o valor mínimo, a sequência será

construída de trás para frente e em cada etapa será utilizado a estimativa mínima
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do incremento x2 obtida anteriormente. Temos a7 = 0 e a6 ≥ 12. Daí

a5 = a6 + x2 ≥ 1 + 12,

a4 = a5 + x2 ≥ 2 + 12,

a3 = a4 + x2 ≥ 3 + 22,

a2 = a3 + x2 ≥ 7 + 42,

a1 = a2 + x2 ≥ 23 + 144.

Assim, o menor valor de n é 23 + 144 = 167 e a sequência de 7 termos que será

criada é

a1 = 167, a2 = 23, a3 = 7, a4 = 3, a5 = 2, a6 = 1, a7 = 0.

Observação 6.4. Começar com o elemento mínimo (zero) e ir adicionando os menores

quadrados possíveis permitiu, garantir que n fosse o menor possível e controlar o número

exato de termos na sequência, evitando soluções redundantes ou ine�cientes. Essa abor-

dagem é um exemplo clássico de construção gulosa em matemática, onde escolhas locais

ótimas (usar o menor quadrado possível em cada etapa) levam a uma solução global ótima

(o menor n que gera uma sequência com 7 termos). O método de começar do mínimo

funcionou porque garantiu que cada passo fosse necessário e su�ciente, levando ao menor

n = 167 possível.

Problema 6.6. (OBM 2012-N2Q3) Zoroastro escreveu os números 1, 2, . . . ,100 em um

quadro negro. Ele irá executar algumas operações que reduzirão a quantidade de números

até que reste apenas um único número no quadro. A primeira operação consiste em

escolher dois números quaisquer a e b e trocá-los por a + b − 1. A segunda operação

consiste em novamente escolher dois números quaisquer a e b e trocá-los por a + b − 2.

Em geral, depois de executar k operações, a nova operação será escolher dois números

quaisquer a e b e substituí-los por a+ b− (k + 1). Determine qual o número que restará

no �nal.

Solução: Observe que, a cada passo i, a soma dos números escritos no quadro diminui

de i. No total, serão realizados 99 passos. A soma dos números no quadro inicial é

1 + 2 + · · ·+ 100,

e após 99 passos será

(1 + 2 + · · ·+ 100)− (1 + 2 + · · ·+ 99) = 100,

e portanto o número que sobra é 100.

Problema 6.7. (OBM 1998- N2Q1) Prove que em qualquer pentágono convexo existem

dois ângulos internos consecutivos cuja soma é maior ou igual a 216◦.

Solução: Seja ABCDE este pentágono. Suponha, por absurdo, que não existam dois

ângulos consecutivos cuja soma seja maior ou igual a 216◦.
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Figura 15 � Pentágono

A

B

C

D

E

Fonte: Próprio autor (2025).

Então a soma de dois ângulos consecutivos é menor que que 216◦ logo teremos que

∠A+ ∠B < 216◦

∠B + ∠C < 216◦

∠C + ∠D < 216◦

∠D + ∠E < 216◦

∠E + ∠A < 216◦

ao somarmos as desigualdades chegamos em

2(∠A+ ∠B + ∠C + ∠D + ∠E) < 1080◦ ⇔ ∠A+ ∠B + ∠C + ∠D + ∠E < 540◦.

Porém a soma dos ângulos internos de um pentágono é 180◦(5− 2) = 540◦. Logo, existem

dois ângulos internos consecutivos cuja soma é maior ou igual a 216.

Problema 6.8. (OCM 2024-N2Q2) Romildo distribui os números {1, 2, . . . , 200} em duas

caixas A e B, de modo que cada número aparece em exatamente uma caixa. É possível

que Romildo realize a distribuição de modo que o produto dos números da caixa A seja

igual ao produto dos números da caixa B? Justi�que sua resposta.

Solução: Suponhamos que seja possível tal distribuição de modo que o produto dos

elementos da caixa A, denotado por PA, seja igual ao produto dos elementos da caixa B,

denotado por PB. Então:
PA = PB.

Considere o número P , tal que P seja o maior número primo menor que 200. Assim temos

que 100 < P ≤ 199, consequentemente não existe nenhum outro múltiplo de P menor que

200. Como cada número deve estar em exatamente uma das caixas, o número P estará

em uma única caixa: ou em A, ou em B, mas não em ambas. Suponha, sem perda de

generalidade, que P ∈ A. Logo P | PA mas P ∤ PB, absurdo! Pois consideramos PA = PB.

Portanto não é possível que Romildo distribua os números de 1 a 200 em duas caixas de
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forma que os produtos sejam iguais.

Problema 6.9. (OBMEP 2020-BQN2) Em uma loja de chocolates, existem caixas com

8, 9 e 10 chocolates. Observe que algumas quantidades de chocolates não podem ser

compradas exatamente como, por exemplo, 12 chocolates.

(a) Encontre outra quantidade de chocolates que não pode ser comprada.

(b) Veri�que que todo número maior que 56 pode ser escrito na forma 8x+ 9y com x e

y inteiros não negativos.

(c) Qual é a maior quantidade de unidades de chocolates que não podemos comprar

exatamente nessa loja?

Solução:

(a) Não é possível comprarmos 11, 12, 13, 14 e 15 chocolates, pois 15 > 10 e a soma

das quantidades de quaisquer duas caixas é maior que 15.

(b) Observe a tabela 1 e veja que podemos escrever qualquer número de 56 a 63 com

inteiros não negativos na forma 8x+ 9y:

Tabela 1 � Resultados da equação 8x+ 9y para diferentes pares ordenados

x y 8x+ 9y
7 0 8× 7 + 9× 0 = 56
6 1 8× 6 + 9× 1 = 57
5 2 8× 5 + 9× 2 = 58
4 3 8× 4 + 9× 3 = 59
3 4 8× 3 + 9× 4 = 60
2 5 8× 2 + 9× 5 = 61
1 8 8× 1 + 9× 6 = 62
0 7 8× 0 + 9× 7 = 63

Fonte: Elaborada pelo autor (2025).

Somando 8 unidades a cada uma dessas representações, podemos escrever todos

os números inteiros do intervalo [64, 71] na forma 8x + 9y. Por exemplo, como

63 = 8 × 0 + 9 × 7, segue que 71 = 8 × 1 + 9 × 7. Somando sucessivamente 8,

podemos concluir que todos os inteiros dos intervalos

[72, 79], [80, 87], [88, 95], ...

podem ser escritos na forma 8x+9y, com x e y inteiros não negativos. Assim, todos

os inteiros maiores que 56 podem ser escritos na forma 8x + 9y com x e y inteiros

não negativos.

(c) As quantidades de chocolates que podem ser compradas são os números da forma

8x + 9y + 10z, com x, y e z inteiros não negativos representando as quantidades

de cada tipo de caixa. Um número que pode ser escrito na forma 8x + 9y em

particular também pode ser escrito na forma 8x+ 9y + 10z. Assim, em virtude do

item anterior, basta analisarmos os números menores que 56 para sabermos qual é o

maior deles que não pode ser uma quantidade admissível de chocolates comprados
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na loja. A tabela a seguir indica como escrever todos os números de 32 até 40 na

forma 8x+ 9z + 10z:

Tabela 2 � Resultados da equação 8x+ 9y + 10z para diferentes ternos ordenados
x y z 8x+ 9y + 10z
4 0 0 8× 4 + 9× 0 + 10× 0 = 32
3 1 0 8× 3 + 9× 1 + 10× 0 = 33
3 0 1 8× 3 + 9× 0 + 10× 1 = 34
2 1 1 8× 2 + 9× 1 + 10× 1 = 35
2 0 2 8× 2 + 9× 0 + 10× 2 = 36
1 1 2 8× 1 + 9× 1 + 10× 2 = 37
1 0 3 8× 1 + 9× 0 + 10× 3 = 38
0 1 3 8× 0 + 9× 1 + 10× 3 = 39
5 0 0 8× 5 + 9× 0 + 10× 0 = 40

Fonte: Elaborada pelo autor (2025).

Somando 8 unidades a cada uma dessas representações, podemos escrever todos os

números de 40 a 48. Repetindo esse processo, podemos escrever todos os números

inteiros de 48 a 56 na forma 8x+9y+10z, com x, y e z inteiros não negativos. Para

concluir que 31 é a maior quantidade de chocolate que não podemos comprar na

loja, precisamos veri�car que não existem x, y e z não negativos tais que

8x+ 9y + 10z = 31.

Se existissem tais inteiros, como 31 é ímpar e 8 e 10 são pares, devemos ter y ̸= 0.

Assim y = 3 ou y = 1. No primeiro caso, teríamos 8x + 10z = 4, que claramente não

possui solução em inteiros não negativos. No segundo caso, teríamos 8x+10z = 22,

ou seja, 4x + 5z = 11. Para z = 0, z = 1 e z = 2, deveríamos ter 4x = 11, 4x = 6

e 4x = 1. Como nenhuma dessas equações possui soluções em inteiros, podemos

concluir que a equação 8x + 9y + 10z = 31 não possui solução em inteiros não

negativos.

Observação 6.5. A solução do item (c) utiliza implicitamente o conceito de elemento

extremo (ou maior número não representável) em problemas de combinações lineares

de inteiros. Esse conceito é formalizado pelo Teorema do Número de Frobenius, que

a�rma que, para dois inteiros coprimos a e b, o maior número que não pode ser expresso

como ax + by (com x, y ≥ 0) é ab − a − b. No caso da equação 8x + 9y (item b), como

mdc(8, 9) = 1, o maior número não representável é 8 × 9 − 8 − 9 = 55. Contudo, a

introdução da terceira variável (10z) modi�ca o problema. Para três números a, b, c

coprimos dois a dois, não existe uma fórmula geral fechada para o maior número não

representável, mas a estratégia adotada na solução, de veri�car exaustivamente os valores

abaixo de um limite (56) � é tradicional. O número 31, identi�cado como o maior não

representável para 8x+ 9y + 10z, é um elemento extremo desse sistema.

Problema 6.10. (OBMEP 2016-BQN3) Seja n um número inteiro positivo maior ou
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igual a 5. Para números ai escolhidos no conjunto {−1, 1}, calcula-se o número

Sn = a1a2a3a4 + · · ·+ ana1a2a3

que soma os produtos de cada quatro termos ai de índices consecutivos, inclusive os que

começam em an−2, an−1 e an e terminam em a1, a2 e a3, respectivamente.

(a) Considerando n = 8, comecemos com a1 = a2 = · · · = a7 = a8 = 1. Qual o valor

de S8? Se trocarmos a4 = 1 por a4 = −1 quanto passa a ser a soma S8? Após a

primeira troca, trocamos a5 = 1 por a5 = −1. Após esta segunda troca, quanto vale
S8?

(b) Para cada troca de 1 por −1, quantas parcelas mudam de valor? Quais são as

possíveis variações no valor de S8 quando se faz uma troca?

(c) Mostre que para quaisquer oito valores de a1, a2, . . . , a7 e a8 no conjunto {−1, 1} a
soma S8 resulta sempre em um número múltiplo de 4.

(d) Para certo valor de n e certa escolha dos números ai no conjunto {−1, 1} a soma

Sn = a1a2a3a4 + · · ·+ ana1a2a3

resultou em zero. Prove que n é necessariamente um número múltiplo de 4.

Solução:

(a) Com os valores dados, tem-se: Para n = 8, a soma S8 é dada por:

S8 = a1a2a3a4 + a2a3a4a5 + · · ·+ a7a8a1a2 + a8a1a2a3

= 1 · 1 · 1 · 1 + 1 · 1 · 1 · 1 + · · ·+ 1 · 1 · 1 · 1

= 8.

É a soma de oito parcelas iguais a 1. Veja que ao trocar o a4 de 1 para −1, os quatro
produtos em que ele aparece mudam de sinal. Então a soma perde quatro parcelas

1 que passam a ser quatro parcelas −1. Deste modo, a soma passa a ser

S ′
8 = 8− 4 + (−4) = 0.

Se trocarmos agora o a5 de 1 para −1, há quatro parcelas afetadas, mas algumas

passam de 1 para −1 e outras passam de −1 para 1. Mais especi�camente, as

parcelas com o a5 que já mudaram de sinal com o a4 voltarão a ser 1. A parcela

a5a6a7a8 passa de 1 a −1 e as outras três passam de −1 a 1. Após a segunda troca

a soma será

S ′′
8 = S ′

8 −
(
1 + (−1) + (−1) + (−1)

)
+
(
(−1) + 1 + 1 + 1

)
= S ′

8 − (−2) + 2

= S ′
8 + 4

= 4.
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(b) Como vimos no item anterior, as quatro parcelas em que o produto possui certo ai

mudam de valor quando trocamos este número de 1 para −1. Para saber as possíveis
variações, considere x, y, z e w as parcelas que possuem o ai no produto.

S ′
8 = S8 − (x+ y + z + w) + (−x− y − z − w)

= S8 − 2(x+ y + z + w).

Como x, y, z e w são produtos de números 1 ou −1, eles mesmos são iguais a 1

ou −1. Então ao somar os quatro, os resultados possíveis são 1 + 1 + 1 + 1 = 4,

1 + 1 + 1 + (−1) = 2, 1 + 1 + (−1) + (−1) = 0, 1 + (−1) + (−1) + (−1) = −2 ou

(−1)+(−1)+(−1)+(−1) = −4. Finalmente, concluímos que as variações possíveis
são +8, +4, 0, −4 ou −8.

(c) Primeiro faça todos os números iguais a 1, então a soma é 8. Agora, para cada

número da sequência, podemos trocá-lo para −1 e analisar a soma. Deste jeito,

todas as possibilidades de números ai são analisadas. Pelo item anterior, cada troca

gera uma variação que é um múltiplo de 4. Como no início a soma é um múltiplo de

4 e esta propriedade não se altera em cada troca, concluímos que a soma S8 resulta

sempre em um múltiplo de 4.

(d) Novamente, comece com todos os números iguais a 1 resultando em soma n. Para

uma dada escolha dos elementos da sequência, trocamos cada ai igual a −1 por 1,

um por vez. Em cada troca, não altera-se o resto de Sn na divisão por 4 e, ao �nal,

chegamos no número 0 que é múltiplo de 4. Portanto, o número inicial n também é

um múltiplo de 4.

Observação 6.6. No item (c), o invariante é a propriedade "S8 é múltiplo de 4". Mesmo

após trocas sucessivas de ai = 1 para ai = −1, como cada troca altera S8 por um múltiplo

de 4 (como demonstrado no item (b)), a propriedade é preservada. Já no item (d), o

invariante é o "resto da divisão de Sn por 4". O processo de trocar −1's por 1's um a um

mantém este resto inalterado, o que permite concluir que se Sn = 0 (que é ≡ 0 mod 4),

então o valor inicial n também deve satisfazer n ≡ 0 mod 4.

Problema 6.11. (OCM 2015-N1Q2) Duas mil e quatorze pessoas estão sentadas ao redor

de uma mesa redonda. Sabe-se que a altura de cada uma das pessoas sentadas ao redor da

mesa é a média aritmética das alturas de suas duas vizinhas. Prove que todas as pessoas

sentadas ao redor da mesa têm uma mesma altura.

Solução: Seja P = {P1, P2, . . . , P2014} o conjunto das pessoas, organizadas circularmente.
De�nimos:

� hi = altura da pessoa Pi.

� hmax = max{h1, h2, . . . , h2014}. (existente pois o conjunto é �nito)
Suponha que existe pelo menos uma pessoa Pk com altura hk = hmax. Sabemos que:

hk =
hk−1 + hk+1

2
.
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Como hk é máximo, temos hk−1, hk+1 ≤ hk. Contudo, pela desigualdade das médias:

hk−1 + hk+1

2
≤ hk + hk

2
= hk. Absurdo!

Problema 6.12. (OBMEP 2020-BQN1Q12) Sobre uma mesa estão 10 moedas, todas

com “cara” voltada para cima. Uma jogada consiste em virar exatamente 4 moedas.

a) Qual a quantidade mínima de jogadas para que todas estejam com “coroa” voltada

para cima?

b) Se fossem 11 moedas, seria possível deixar todas com coroa voltada para cima?

Solução:

(a) Com 2 jogadas não é possível, pois podemos mudar no máximo 2× = 8 moedas,

mas precisamos alterar todas as 10. É possível com 3 jogadas, conforme a sequência

abaixo na �gura 16:

Figura 16 � Jogo das moedas

Posição Inicial k k k k k k k k k k

Jogada 1 C C C C k k k k k k

Jogada 2 C C C k C C C k k k

Jogada 3 C C C C C C C C C C

Fonte: Próprio autor (2025).

(b) Viramos sempre 4 moedas (quantidade par) a cada jogada. Inicialmente, o número

de caras (10) e o de coroas (0) é par. Sempre que viramos 4 moedas, a quantidade

é par em cara e coroa ou ímpar em ambas, pois a soma das quantidades viradas é

par (4). Assim, após cada jogada, a quantidade de caras e de coroas têm mesma

paridade (ambas par ou ambas ímpar). Dessa forma, concluímos que não é possível

deixar as 11 moedas com �coroa� voltada para cima, pois o número de coroas (11)

seria ímpar e o de caras (0) seria par.

Observação 6.7. A impossibilidade de transformar todas as moedas em coroas quando

temos uma quantidade ímpar no total está diretamente relacionada à preservação da

paridade. Quando começamos com um número ímpar de moedas (digamos, 11) e todas

estão com cara, qualquer jogada que vire um número par de moedas (como 4) manterá a

paridade do número de caras. Isso ocorre porque virar um número par de moedas pode

apenas: (1) virar um número par de caras para coroas e um número par de coroas para

caras (não alterando a paridade do total de caras), ou (2) virar um número ímpar de caras

para coroas e um número ímpar de coroas para caras (o que também mantém a paridade,
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pois ímpar - ímpar = par). Portanto, como começamos com um número ímpar de caras

(11), nunca poderemos alcançar 0 caras (par), já que todas as operações preservam a

paridade ímpar inicial.

Problema 6.13. (OCM 2015-N2Q3) Tem-se 2015 números reais e sabe-se que a soma de

quaisquer 100 desses números é positiva. Mostre que a soma de todos os 2015 números é

positiva.

Solução: O que temos a observar aqui é que quaisquer que sejam os cem números

escolhidos, a soma deles sempre será um valor positivo (invariante). Então considere

a1, a2, a3, ..., a2015 números reais tais que a soma de quaisquer cem deles é positiva. Logo

podemos formar a soma de cem deles dos seguintes modos

a1 + a2 + a3 + ...+ a99 + a100 > 0

a2 + a3 + a4 + ...+ a100 + a101 > 0

...

a1916 + a1916 + a1915 + ...+ a2014 + a2015 > 0

a1917 + a1918 + a1919 + ...+ a2015 + a1 > 0

a1918 + a1919 + a1920 + ...+ a1 + a2 > 0

...

a2015 + a1 + a4 + ...+ a98 + a99 > 0.

Somando todas as equações acima, obtemos a expressão

100(a1, a2, a3, ..., a2015) > 0.

E assim concluímos que a soma dos 2015 números reais em questão é positiva.

Problema 6.14. (OBM 2004-N2Q3) Esmeralda tem uma pilha com 100 pedras. Ela

divide essa pilha em duas novas pilhas e em seguida multiplica as quantidades de pedras

nessas duas novas pilhas e escreve o produto em um quadro. Ela então escolhe uma

pilha com mais de uma pedra e repete esse procedimento: a pilha é dividida em duas,

as quantidades de pedras nessas duas pilhas são multiplicadas e o produto escrito no

quadro. Esta operação é realizada até se obter apenas pilhas com 1 pedra cada. Quais

são os possíveis valores da soma de todos os produtos escritos no quadro?

Solução: Vamos analisar o problema considerando o processo de divisão das pilhas. Para

qualquer divisão de uma pilha com a pedras em duas pilhas de b e c pedras (a = b + c),

o produto registrado é bc, que pode ser expresso como:

bc =
a2 − b2 − c2

2
.
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No caso geral com múltiplas divisões, sejam b1, b2, . . . , b2n+1 as quantidades de pedras após

cada divisão. A soma total S dos produtos registrados é:

S =
n∑

k=1

b2k−1b2k =
1002 − b21 − b22

2
+

b21 − b23 − b24
2

+ · · ·+
b22n−1 − b22n+1 − b22n+2

2
.

Observamos que todos os termos b2i onde bi > 1 se cancelam, pois aparecem uma vez

positiva e uma vez negativa. Como o processo termina com 100 pilhas de 1 pedra cada,

permanecem apenas 100 termos unitários:

S =
1002 −

100 termos︷ ︸︸ ︷
12 − 12 − · · · − 12

2
=

1002 − 100× 12

2
=

10000− 100

2
= 4950.

Portanto, a soma S é invariante e independe da ordem das divisões, tendo como único

valor possível 4950.

Problema 6.15 (OBM 2007-N2Q6). Em um torneio de tênis de mesa (no qual nenhum

jogador termina empatado), cada um dos n participantes jogou uma única vez contra

cada um dos outros. Sabe-se que, para todo k > 2, não existem k jogadores J1, J2, · · · Jk
tais que J1 ganhou de J2, J2 ganhou de J3, J3 ganhou de J4,· · · , Jk−1 ganhou de Jk e Jk

ganhou de J1. Prove que existe um jogador que venceu todos os outros e um que perdeu

para todos.

Solução: O problema em questão é mais geral. Poderia ser enunciado como �se um

jogador A vencer B e B vencer C, é impossível C vencer A. Então, há um jogador que

vença todos os demais�. Ele se torna até intuitivo se o enunciarmos assim: �quando um

jogador vence outro, que vence um terceiro, o primeiro vencerá o terceiro�.

Para indicar o vencedor de uma disputa, vamos utilizar uma seta: Jx → Jy (isso

signi�ca que Jx perdeu para Jy). A seta aponta para o vencedor. Vamos supor que nenhum

jogador perdeu todas as partidas. Assim, J1 ganhou pelo menos 1 partida. O esquema

dele será assim: J1 ← J2. Como J2 também não perdeu todas, o esquema �cará assim:

J1 ← J2 ← J3 ← · · · Observe que nenhum jogador pode aparecer 2 vezes nessa sequência.

Vejamos o porquê: supondo que J2 apareça de novo no esquema: J1 ← J2 ← J3 ← J4 ←
J2. Isso criaria um ciclo: J2 → J3 → J4 → J2, o que é proibido pelo enunciado. Portanto,

não podemos repetir jogadores na sequência. Como o número de jogadores n é �nito, a

sequência deve terminar. A única maneira de terminar é quando encontramos um jogador

invicto (que não perdeu para ninguém), pois não podemos adicionar ninguém após ele na

sequência. Logo, deve existir um jogador que venceu todos os outros. Analogamente, se

construirmos a sequência na direção oposta (dos perdedores), chegaremos a um jogador

que perdeu para todos os outros. Portanto:

� Existe um jogador que venceu todos os outros (o melhor jogador).

� Existe um jogador que perdeu para todos os outros (o pior jogador).
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Esses dois jogadores podem ser o mesmo (no caso de haver apenas um jogador)

ou diferentes (no caso geral).

Problema 6.16. (OBMEP 2005-N3Q2) A sequência 0, 3, 7, 10, 14, 17, 21, ... é formada a

partir do número 0 somando-se alternadamente 3 ou 4 ao termo anterior, isto é: o primeiro

termo é 0, o segundo é 3 a mais que o primeiro, o terceiro é 4 a mais que o segundo, o

quarto é 3 a mais que o terceiro, o quinto é 4 a mais que o quarto e assim sucessivamente.

0 3 7 10 14

+3 +4 +3 +4

(a) Escreva os 20 primeiros termos desta seqüência.

(b) Qual é o 1000◦ termo desta sequência?

(c) Algum termo desta sequência é igual a 2000? Por quê?

Solução:

(a) A sequência inicia com 0 e segue o padrão de somar alternadamente 3 e 4, gerando

os 20 primeiros termos:

0, 3, 7, 10, 14, 17, 21, 24, 28, 31, 35, 38, 42, 45, 49, 52, 56, 59, 63, 66.

(b) Analisando sua estrutura, podemos decompô-la em duas progressões aritméticas:

i) Para termos ímpares (a2n−1), temos a sequência 0, 7, 14, 21, . . . com termo

geral 7(n− 1) para n ≥ 1;

ii) Para termos pares (a2n), a sequência 3, 10, 17, 24, . . . segue a fórmula 7(n −
1) + 3 para n ≥ 1.

Essa decomposição nos permite calcular qualquer termo: o 1000◦ termo (par) é

a1000 = 7× 499 + 3 = 3496.

(c) Para veri�car se 2000 pertence à sequência, analisamos suas duas sub-sequências:

� Termos ímpares: a2n−1 = 7k onde k = n− 1 ≥ 0.

� Termos pares: a2n = 7k + 3 onde k = n− 1 ≥ 0.

Testando ambas as possibilidades:

2000 = 7k ⇒ k =
2000

7
≈ 285.714 /∈ N.

2000 = 7k + 3⇒ k =
1997

7
≈ 285.285 /∈ N.

Como nenhum dos casos resulta em k inteiro não-negativo, concluímos que 2000 não

é termo da sequência. De outro modo, temos que:

2000 = 7× 285 + 5,

mostra que 2000 deixa resto 5 na divisão por 7, enquanto nossos termos só podem

deixar restos 0 (termos ímpares) ou 3 (termos pares).
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Problema 6.17. (OCM 2016- N3Q5) São dados 2n+1 pontos dispostos sobre um círculo,

tais que dois quaisquer deles não são extremidades de um mesmo diâmetro. Prove que,

dentre os triângulos que têm três desses 2n+ 1 pontos por vértices, no máximo

n(n+ 1)(2n+ 1)

6
,

são acutângulos. (Nota: por círculo de centro O e raio r entendemos o conjunto formado

pelos pontos do plano que estão à distância r do ponto O.)

Solução: Um triângulo é acutângulo quando todos os seus ângulos internos são menores

que 90◦. Em um triângulo inscrito em uma circunferência, um ângulo será obtuso se e

somente se o arco oposto a esse ângulo tiver comprimento maior que meio círculo. Assim,

para que um triângulo seja acutângulo, seus três vértices devem estar contidos em um

arco com menos da metade da circunferência. Como temos 2n+1 pontos uniformemente

distribuídos e nenhum par de pontos é diametralmente oposto, um arco com n pontos

consecutivos representa menos da metade do círculo. Seja P0, P1, . . . , P2n os 2n+1 pontos

dispostos ordenadamente no sentido anti-horário sobre a circunferência. Fixemos um

ponto Pi dentre os 2n+1 pontos da circunferência. Os triângulos que têm Pi como vértice

serão acutângulos se os outros dois vértices estiverem entre os n pontos imediatamente à

esquerda e os n pontos imediatamente à direita de Pi (considerando a ordem circular dos

pontos). Para cada par (Pj, Pk), onde Pj está entre os n pontos à esquerda e Pk entre os

n pontos à direita de Pi, o triângulo PiPjPk será acutângulo. O número de tais pares é

n · n = n2. Como há 2n + 1 pontos possíveis para Pi, temos, no máximo, (2n + 1) · n2

triângulos acutângulos contados dessa forma. Contudo, cada triângulo é contado três

vezes, uma para cada vértice. Assim, o número total de triângulos acutângulos distintos

é dado por:

(2n+ 1) · n2

3
=

n(n+ 1)(2n+ 1)

6
.

Observação 6.8. O uso do princípio do elemento extremo está na identi�cação de que,

entre todos os triângulos possíveis, apenas os que se formam com vértices concentrados

num arco menor que meio círculo podem ser acutângulos, e o número máximo desses casos

ocorre justamente quando essa concentração é máxima, ou seja, quando os vértices estão

o mais próximo possível no contorno do círculo.

Problema 6.18. (OCM 1986-N2Q3) Seja BED uma corda de um círculo com centro em

O tal que BE = 3 cm e ED = 5 cm. A reta determinada por O e E intercepta o círculo

no ponto C. Determine o raio do círculo, sabendo-se que EC = 1 cm.
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Figura 17 � Círculo de centro O,cortado por duas cordas

rO

B

C

D
E

Fonte: Próprio autor 2025.

Solução: Sabemos que BD = BE + ED = 3 cm + 5 cm = 8 cm. Logo pelo teorema da

potência de pontos (nosso invariante) temos:

BE · ED = CE · (2r − CE)

3 · 5 = 1 · (2r − 1)

15 = 2r − 1

2r = 16

r = 8 cm

Problema 6.19. (OCM 1998-N2Q6) Sejam a1, a2, . . . , a13 inteiros positivos e p1, p2, . . . , p13
números primos. Sabe-se que:

a1 + a2 = p1

a2 + a3 = p2

a3 + a4 = p3
...

a13 + a1 = p13.

Encontre o valor do menor elemento dos conjuntosA = {a1, a2, . . . , a13} eB = {p1, p2, . . . ,
p13}.
Solução: Se somarmos todos os termos das equações acima, obtemos:

2(a1 + a2 + . . .+ a13) = p1 + p2 + . . .+ p13.

Temos que pela paridade se todos os pis fossem ímpares, a soma p1+p2+ . . .+p13 também



89

seria ímpar (pois teríamos a soma de uma quantidade ímpar de ímpares). Logo algum pj

é par, para algum j = 1, 2, 3 . . . , 13. Como pj é primo, segue que pj = 2 que é o menor

elemento de B. Para este termo em especí�co temos

aj + aj+1 = 2⇒ aj = aj+1 = 1.

Então 1 é o menor elemento de A e 2 o de B e dado a essaminimalidade conseguimos con-

jeturar os outros elementos, assim teremos por exemplos A = {1, 1, 2, 3, 4, 7, 10, 13, 16, 21,
22, 25, 28} e B = {2, 3, 5, 7, 11, 17, 23, 29, 37, 43, 47, 53, 29}.

Problema 6.20. (OCM 2014 - N2Q1) Um estudante resolve colar seus selos num álbum.

Se prega 20 selos em cada folha, o álbum não terá folhas su�cientes para receber todos

os selos. Se prega 23 selos, sobrará pelo menos uma folha vazia no álbum. Se o aluno

receber outro álbum idêntico, com 21 selos em cada folha, �cará com um total de 500

selos. Quantas folhas tem o álbum?

Solução: Seja S a quantidade de selos no nosso herói e n a quantidade de folhas do

álbum. Então podemos concluir que:

S > 20n, S ≤ 23(n− 1) e 21n+ S = 500.

Daí,
20n+ 21n < S + 21n ≤ 23(n− 1) + 21n,

que resulta:
41n < 500 ≤ 44n− 23.

resolvendo as equações:

500 > 41n ⇒ n <
500

41
≈ 12, 19

500 ≤ 44n− 23 ⇒ n ≥ 523

44
≈ 11, 89.

Como n deve ser inteiro, obtemos 11, 89 ≤ n < 12, 19⇒ n = 12 que é o número de folhas
no álbum.

Problema 6.21. (OCM 1998-N2Q4) Determine todos os inteiros positivos N de três

dígitos tais que N e a soma dos seus dígitos sejam divisíveis por 11.

Solução: Seja N = abc. Sabemos que pra N ser divisível por 11 então c − b + a (nosso

invariante) também tem que ser divisível por 11, ou seja,

c− b+ a = 11k. (4)

Como a soma dos dígitos de N também é divisível por 11, temos

b+ c = 11s. (5)

Subtraindo a equação (4) da (5), obtemos

2b = 11(s− k).
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Logo, sabemos que 2b é múltiplo de 11. A única possibilidade é b = 0. Assim as equações

se reduzem a uma única a + c = 11k. Como 0 < a + c ≤ 9 + 9 = 18, só podemos ter

a+ c = 11. Portanto, teremos como resultado os números:

209, 308, 407, 506, 605, 704, 803 e 902.

Problema 6.22. (OBMEP 2017-BQN1Q3) Existem 100 caixas idênticas, todas tampa-

das, dispostas em uma linha. Em uma das caixas, existe um diamante. Cada caixa possui

a seguinte mensagem escrita em sua tampa: �O diamante está na caixa da esquerda ou

da direita�. Sabemos que exatamente uma das mensagens é verdadeira e todas as demais

são falsas. Abrindo apenas a tampa de uma delas, é possível descobrirmos onde está o

diamante?

Solução: Supomos que o diamante não esteja em uma das caixas que �cam nos extremos,

logo, as duas caixas vizinhas, da caixa com o diamente, terão uma mensagem verdadeira

e isso contradiz a informação dada (absurdo!). Portanto, basta abrir uma das caixas dos

extremos. Se o dimante estiver nela, teremos descoberto a sua posição. Caso contrário,

certamente ele estará na caixa do outro extremo.

Problema 6.23. (OBMEP 2014- N3Q5) Fábio gosta de brincar em escadas, subindo ou

descendo seus degraus da seguinte maneira:

� começa no degrau de número 1;

� a cada movimento ele sobe ou desce um ou dois degraus e, ao subir ou descer dois

degraus, não pisa no degrau intermediário;

� pisa em todos os degraus exatamente uma vez.

Por exemplo, em uma escada com três degraus ele pode brincar de duas maneiras dife-

rentes: 1-2-3, 1-3-2; com quatro degraus ele pode brincar de quatro maneiras diferentes:

1-2-3-4, 1-2-4-3, 1-3-2-4 e 1-3-4-2.

Figura 18 � Fábio

1
2
3
4
5
6

Fonte: Próprio autor (2025).

(a) Fábio pode brincar de seis maneiras diferentes em uma escada com cinco degraus.

Escreva essas seis maneiras.

(b) Explique por que sempre é possível terminar a brincadeira no degrau de número 2

em qualquer escada com dois ou mais degraus.

(c) Há 31 e 68 maneiras diferentes de se brincar em escadas com nove e onze degraus,



91

respectivamente. De quantas maneiras diferentes Fábio pode brincar em uma escada

com doze degraus?

Solução:

(a)
1-2-3-4-5, 1-2-3-5-4, 1-2-4-3-5,

1-3-2-4-5, 1-3-2-5-4, 1-3-4-2-5.

(b) Basta ele subir pelos degraus ímpares até o mais alto dos ímpares e em seguida ir

para o mais alto dos pares e descer pelos degraus pares. Exemplos:

� Para 12 degraus: 1-3-5-7-9-11-12-10-8-6-4-2.

� Para 13 degraus: 1-3-5-7-9-11-13-12-10-8-6-4-2.

(c) Para uma escada de 12 degraus:

� Se ele começar com os movimentos 1-2, o problema recairá no caso com 11

degraus e, portanto, será possível completá-lo de 68 maneiras.

� Se ele começar com 1-3-2, então ele terá que ir pro degrau 4 e o problema

recairá na mesma situação com 9 degraus. Portanto ele terá 31 maneiras de

completá-los.

� Se ele começar com 1-3-4, os degraus 2 e 5 �carão com um afastamento de 3

degraus, logo não será possível completar o movimento.

� Se ele começar com 1-3-5, ele não poderá mais descer ou subir um degrau, até

atingir o último ímpar para depois voltar pelos pares como descrito no item

(b) e, assim, ele só tem uma maneira de completar o movimento. Portanto, o

número de maneiras de realizar a brincadeira com 12 degraus é:

68 + 31 + 1 = 100.

Problema 6.24. (OCM 2004- N2Q4) São dados no plano uma reta r e um ponto A /∈ r e

a distância de A a r é igual a 3 cm. Determine, com prova, o menor comprimento possível

de um segmento BC, com B,C ∈ r e tais que ∠BAC = 120◦.

Figura 19 � Triângulo ABC, com altura relativa BC= 3 cm

r

c b3

x

A

B CD

Fonte: Próprio autor (2025).

Solução: Temos que pela lei dos cossenos, aplicado no triângulo ABC:
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x2 = b2 + c2 − 2bc

(
−1

2

)
x2 = b2 + c2 + bc

Usando que b2 + c2 ≥ 2bc na equação acima temos:

x2 ≥ 3bc. (6)

Seja S a área do triângulo ABC, então:

3 · x
2

= S =
1

2
bc sin 120◦ =

bc
√
3

4
.

Assim, bc = 2x
√
3 e, por (6), temos x2 ≥ 3 · 2x

√
3, assim teremos x ≥ 6

√
3. A igualdade

só ocorre se, e somente se, b = c.

Problema 6.25. (OBM 2016-N2Q11) Num país imaginário vivem somente duas espécies

de pessoas: os honestos, que sempre dizem a verdade e os mentirosos, que só dizem

mentira. Numa �la de 2016 pessoas da ilha, o primeiro da �la diz que todos atrás dele

são mentirosos e todas as demais pessoas da �la dizem que a pessoa imediatamente à sua

frente é mentirosa. Quantas pessoas mentirosas estão nessa �la?

Solução: Supomos que a primeira pessoa da �la seja honesta, assim sua a�rmação de que

todos atrás são mentirosos implicaria um padrão alternado de mentirosos e honestos a

partir do segundo indivíduo, mas isso levaria a uma contradição quando a última pessoa

(de número par) teria que mentir sobre a anterior ser mentirosa (quando na verdade seria

honesta); portanto, a primeira pessoa deve ser mentirosa, o que signi�ca que existe pelo

menos um honesto após ela. A partir daí, o primeiro honesto na posição k estabelece um

padrão de pares (H,M) subsequentes, onde cada pessoa diz que a anterior é mentirosa -

como temos 2015 pessoas restantes (um número ímpar), isso resulta em 1007 mentirosos

nesse grupo, somando-se ao primeiro mentiroso, totalizando 1008 mentirosos na �la.

Problema 6.26. (OBM 2001-N1Q19) Cinco animais A, B, C, D, e E, são cães ou são

lobos. Cães sempre contam a verdade e lobos sempre mentem. A diz que B é um cão. B

diz que C é um lobo. C diz que D é um lobo. D diz que B e E são animais de espécies

diferentes. E diz que A é um cão. Quantos lobos há entre os cinco animais?

Solução: Começamos analisando as a�rmações extremas de E ("A é um cão") e A ("B

é um cão"), que estão interligadas. Se assumirmos que E é um cão (verdadeiro), então

A seria de fato um cão (por dizer a verdade), o que implicaria que B também é cão (já

que A estaria falando a verdade). No entanto, essa cadeia leva a uma contradição quando

D (um suposto cão nesse cenário) a�rmaria que B e E são de espécies diferentes, quando

na verdade ambos seriam cães. Portanto, E não pode ser um cão e deve ser um lobo

(mentiroso), o que signi�ca que A também é um lobo (já que E mente sobre ele ser cão).

Como A é lobo, sua a�rmação sobre B é falsa, tornando B um lobo. B, sendo lobo, mente

ao a�rmar que C é lobo, logo C é cão. C, como cão, diz a verdade que D é lobo, e D,
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sendo lobo, mente ao a�rmar que B e E são diferentes, quando na verdade, ambos são

lobos, mantendo a coerência. Assim, concluímos que A, B, D e E são lobos (4 no total),

e apenas C como cão.

Problema 6.27. (OBMEP 2013-BQN3Q13) Sergio pediu para Ivan pensar em um nú-

mero inteiro positivo. Depois, pediu para Ivan calcular a soma de seus algarismos e,

�nalmente, elevar ao quadrado o resultado. Sem falar o número em que pensou inicial-

mente, Ivan contou que obteve como resultado �nal x. Mostre a Sergio como chegar às

seguintes conclusões:

(a) Se Ivan tivesse pensado em um número com 3 ou menos algarismos, então x seria

menor do que 730.

(b) Se Ivan tivesse pensado em um número com 4 algarismos, então x seria menor do

que o número no qual Ivan pensou.

(c) Se Ivan tivesse pensado em um número com 5 ou mais algarismos, então x seria

menor do que o número que Ivan pensou.

Sergio fez depois o seguinte: Considerou o número x que Ivan disse, calculou a soma

dos seus algarismos e elevou ao quadrado o resultado. Quando Sergio falou para Ivan o

número que obteve, Ivan disse com surpresa que esse foi o número que havia pensado.

Solução:

(a) Sim! De fato se Ivan tivesse pensado em um número com 3 ou menos algarismos,

teríamos como soma de seus algarismos no máximo 9+9+9 = 27. Então o número

�nal de Ivan x seria no máximo 272 = 729 que é menor que 730.

(b) Vamos considerar a possibilidade de Ivan pensar no menor número ou o maior

número com 4 algarismos, digamos que abcd é esse número, então x = (a+b+c+d)2.

Logo as duas possibilidades são:

� a = 1, b = c = d = 0, então

x ≤ (1 + 0 + 0 + 0)2 = 1 < 1000.

� a = b = c = d = 9, então

x ≤ (9 + 9 + 9 + 9)2 = 1296 < 9999.

Em qualquer um dos casos temos que, x < abcd. Portanto se esse número tiver 4

algarismo então x é menor que o número que Ivan pensou.

(c) Suponhamos que Ivan pensou em um número com n ≥ 5 algarismos, digamos

a1a2 . . . an. Então, x = (a1 + a2 + · · ·+ an)
2. Logo,

x ≤ (9n)2 = 81n2.

Note que o número que Ivan pensou deve ser menor ou igual a 10n−1, logo:

10n−1 ≤ a1a2 . . . an.

Assim, para mostrar que x < a1a2 . . . an só precisamos provar que
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81n2 < 10n−1, para todo inteiro n ≥ 5.

Usaremos indução para provar esse resultado. Para n = 5, temos

81 · 52 = 1755 < 10000 = 105−1.

Suponhamos então que essa desigualdade é válida para algum inteiro k ≥ 5, ou seja,

81k2 < 10k−1. (H.I)

Vamos mostrar que ela é válida para k + 1. Observemos que, por ser k ≥ 5, então

81(k + 1)2 < 81(2k)2 = 4(81k2).

Usando a hipótese de indução vemos que

81k2) < 4(10k−1). (7)

Como 4 < 10 vemos que a última expressão em (7) é menor do que 10×10k−1 = 10k.

Daí concluímos que

81(k + 1)2 < 10(k+1)−1.

Portanto

81n2 < 10n−1, para todo inteiro n ≥ 5.

E assim provamos que qualquer que seja o número que Ivan pensar de cinco ou mais

algarismos x é menor.

Problema 6.28. (OCM 2003-N2Q2) No país da verdade, onde ninguém mente, reuniram-

se os amigos Marcondes, Francisco e Fernando. Entre os três ocorreu a seguinte conversa:

� Marcondes: Estou escolhendo dois inteiros positivos e consecutivos e vou dar um

deles ao Francisco e outro ao Fernando, sem que vocês saibam quem recebeu o maior.

Após receber cada um o seu número, Francisco e Fernando continuaram a conversa.

� Francisco: Não sei o número que Fernando recebeu;

� Fernando: Não sei o número que Francisco recebeu;

� Francisco: Não sei o número que Fernando recebeu;

� Fernando: Não sei o número que Francisco recebeu;

� Francisco: Não sei o número que Fernando recebeu;

� Fernando: Não sei o número que Francisco recebeu;

� Francisco: Agora eu sei o número que o Fernando recebeu;

� Fernando: Agora eu também sei o número que Francisco recebeu;

Quais os números recebidos por cada um deles?

Solução: Este problema usa o princípio do elemento extremo quando usa o menor natural

(o número 1 no caso) como ponto de partida. A partir daí construimos um raciocínio por

eliminação indutivo: Francisco não pode ter recebido 1, pois saberia imediatamente que

Fernando teria 2 (já que os números são consecutivos e positivos). Fernando, ao ouvir

que Francisco não sabe seu número, descarta a possibilidade de ter recebido 2 (pois, se
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tivesse 2, deduziria que Francisco tem 1 ou 3; mas como Francisco não tem 1, Fernando

concluiria que Francisco tem 3). Cada nova negação (�não sei�) elimina o próximo número

possível na cadeia:

Francisco não tem 1⇒ Fernando não tem 2

Fernando não tem 2⇒ Francisco não tem 3

Francisco não tem 3⇒ Fernando não tem 4
...

Fernando não tem 6⇒ Francisco tem 7.

O padrão só é interrompido quando Francisco, após seis rodadas de negações,

conclui que só pode ter 7 (pois 6 já foi eliminado para Fernando). A solução emerge

justamente porque o processo iterativo explora que não há número menor que 1 nos

inteiros positivos, o que gera essa uma cadeia dedutiva sem ciclos.

Problema 6.29. (OBMEP 2018-BQN3Q25) Determine o termo mínimo da sequência√
7

6
+

√
96

7
,

√
8

6
+

√
96

8
,

√
9

6
+

√
96

9
, . . . ,

√
95

6
+

√
96

95
.

Solução: Lembre que (x − y)2 ≥ 0 para todos os reais x e y. Assim pela desigualdade

das médias, temos que x2+y2

2
≥ xy. Substituindo x =

√
a e y =

√
b, com a e b reais não

negativos, temos:
a+ b

2
≥
√
ab.

Observe que todos os termos são do tipo:√
n

6
+

√
16× 6

n
=

√
n

6
+ 4

√
6

n

com n inteiro e 7 ≤ n ≤ 95. Tomando a =
√

n
6
e b = 4

√
6
n
, temos:

√
n
6
+ 4
√

6
n

2
≥

√√
n

6
· 4
√

6

n

⇒
√

n

6
+ 4

√
6

n
≥ 2 · 2 ·

√√
n

6
· 6
n
= 4

O valor mínimo de cada termo é 4 e ocorre quando:√
n

6
= 4

√
6

n
=⇒ n

6
= 16 · 6

n
=⇒ n2 = 576 =⇒ n = 24.
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O termo mínimo é

√
24

6
+

√
96

24
= 2 + 2 = 4.

Problema 6.30. (OBMEP 2016-BQN3Q16) Sejam a e b números reais positivos com

produto diferente de 1, de�ne-se a operação estrela, representada por �∗�, pela equação

a ∗ b = a+ b− 2ab

1− ab
.

Em uma lousa, estão escritos 2015 números iguais a 1
2
. Em cada passo, apagam-se dois

números x e y escritos na lousa e escreve-se o número x ∗ y. Este passo é repetido 2014

vezes até que �que apenas um número na lousa.

(a) Demonstre que a equação

x ∗ y
1− x ∗ y

=
x

1− x
+

y

1− y

é verdadeira para quaisquer x e y reais com x ̸= 1, y ̸= 1 e xy ̸= 1.

(b) Se para cada número x que é escrito na lousa, calcularmos x
1−x

e somarmos todos

estes resultados, teremos um certo resultado. Mostre que este resultado é sempre o

mesmo não importando quantos passos tenham sido feitos até aquele momento.

(c) Qual o número que estará escrito na lousa ao �nal dos 2014 passos?

(d) Se além dos 2015 números iguais a 1
2
na situação inicial, também escrevermos um

número 1, qual será o número �nal após a realização de 2015 passos?

Solução:

(a) Desenvolvendo a expressão da operação estrela, temos:

x ∗ y
1− x ∗ y

=

x+y−2xy
1−xy

1− x+y−2xy
1−xy

=
x+ y − 2xy

1− xy − x− y + 2xy
=

x+ y − 2xy

1− x− y + xy

=
x+ y − 2xy

(1− x)(1− y)
=

x

1− x
+

y

1− y
.

(b) Seja S a soma dos termos x
1−x

para cada x escrito na lousa. Usando o item anterior,

concluímos que retirando dois termos x
1−x

e y
1−y

e adicionando o termo x∗y
1−x∗y , a

soma não se altera. Como isto vale para cada passo, então continua valendo não

importando quantos passos tenham sido feitos.

(c) Seja N o número �nal. Pelo item anterior, sabe-se que a soma não sofre alteração
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com as trocas. Portanto, podemos usá-la para descobrir o número �nal.

N

1−N
=

1/2

1− 1/2
+

1/2

1− 1/2
+ · · ·+ 1/2

1− 1/2
= 1 + 1 + · · ·+ 1 = 2015

⇒ N = 2015(1−N)

⇒ 2016N = 2015

⇒ N =
2015

2016

(d) Para um número x ̸= 1, fazendo a operação x ∗ 1, temos:

x ∗ 1 =
x+ 1− 2x

1− x
=

1− x

1− x
= 1.

Como x ∗ 1 = 1, fazer a troca de x e 1 por x ∗ 1 é o mesmo que apagar o x. Assim,

podemos a�rmar que ao �nal dos 2015 passos o único número escrito será 1.

Observação 6.9. Neste problema, a chave para a solução foi a identi�cação do invariante,

isto é, uma quantidade que se manteve constante durante todas as operações. Que no

caso foi especi�camente, a soma

S =
∑ xi

1− xi

que se manteve inalterada ao longo do processo, conforme demonstrado no item (b).

A invariância veio da propriedade:

x ∗ y
1− x ∗ y

=
x

1− x
+

y

1− y
,

que garante a conservação de S quando substituímos quaisquer dois números x e y por

x ∗ y.
Este invariante foi necessário para resolver os itens (c) e (d), pois ele permite

determinar o valor �nal na lousa sem necessidade de rastrear individualmente cada uma

das 2014 (ou 2015) operações. Em problemas que envolvem operações sucessivas como

este, a identi�cação de invariantes é importante, pois pode reduzir um processo complexo

ao acompanhamento de uma quantidade constante.

Vale observar que a expressão x
1−x

sugere uma conexão com transformações

fracionarias lineares (transformações de Möbius), que preservam certas propriedades com-

binatórias.
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7 CONCLUSÃO

Os princípios que exploramos aqui exigem análise e criatividade, não bastando

somente conhecer as ideias matemáticas, mas saber aplicá-las com �exibilidade. Nosso

objetivo foi ajudar o leitor a desenvolver um olhar estratégico para problemas complexos,

mostrando que, mesmo quando os conceitos são simples no papel, usá-los com e�ciência

requer prática e intuição. Isso é especialmente útil para estudantes e professores en-

volvidos em olimpíadas de matemática, onde a identi�cação de invariantes e a procura

por elementos extremos foram o pilar da nossa metodologia, transformando problemas

aparentemente abstratos em desa�os com caminhos claros para a solução.

A execução desses princípios embora em algumas situações simples, apresen-

tou uma adversidade signi�cativa, pois cada problema exigiu a identi�cação de invarian-

tes especí�cos ou a determinação de extremos particulares. Essa inconstância intrínseca

transformou cada questão em um contratempo único, reforçando a importância da prática

contínua na resolução de problemas diversi�cados. É claro que a falta de fórmulas prontas

ou teoremas milagrosos para esses problemas pode assustar no começo e chegou até causar

uma certa ansiedade. Mas, no �m das contas, é justamente isso que faz a matemática ser

tão incrível: ela exige criatividade e nos faz pensar fora dos nosso limites naturais.

Este trabalho buscou evidenciar a relevância do princípio da invariância e do

elemento extremo na matemática olímpica, demonstrando sua aplicabilidade em proble-

mas desa�adores. Espero que este trabalho sirva como incentivo para pesquisas futu-

ras, estimulando ainda mais a exploração criativa desses princípios através de novas for-

mulações de problemas, abordagens inovadoras e re�namento das técnicas apresentadas.

Sempre pautando o rigor e a precisão que de�nem a matemática de alto nível. Espero

sinceramente que este trabalho tenha proporcionado ao leitor uma experiência intelectual

estimulante, capaz de despertar não apenas o interesse pelo tema aqui explorado, mas

também uma curiosidade renovada por outros campos do conhecimento. Os questiona-

mentos que surgiram tanto da leitura quanto da pesquisa mostram o que faz o trabalho

acadêmico tão valioso: essa capacidade única de transformar dúvidas em descobertas e

desa�os em novos caminhos para a investigação.

Foi nessa jornada de constante aprendizado e superação que encontrei a mo-

tivação para desenvolver esta dissertação. Meu maior desejo é que este trabalho possa

contribuir com a comunidade matemática já interessada no tema e, ao mesmo tempo,

despertar o interesse de novos pesquisadores.

A Matemática não conhece raças ou fronteiras geográ�cas; para a matemática,

o mundo cultural é um país. David Hilbert
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