Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.unilab.edu.br/jspui/handle/123456789/5749
Título : | Solução para queries complexas em bigdata utilizando mapreduce com banco de dados mongodb: um estudo de caso com dados do caged |
Autor : | Uamba, António Paulo |
Palabras clave : | Big data Informações governamentais MapReduce MongoDB Processo distribuido |
Fecha de publicación : | 22-abr-2024 |
Citación : | UAMBA, A. P. (2024) |
Resumen : | O processamento de grandes volumes de dados representa um desafio crescente em diversas esferas, abrangendo desde a gestão pública até setores privados e acadêmicos. À medida que a quantidade e a variedade de dados disponíveis para as agências governamentais aumentam exponencialmente, surge a necessidade urgente de desenvolver estratégias eficazes para analisar e utilizar essas informações de maneira inteligente e proativa na tomada de decisões. No âmbito das políticas públicas, a análise de dados desempenha um papel crucial ao fornecer insights valiosos para medir resultados, avaliar o desempenho de programas e projetos governamentais e embasar a formulação de políticas mais eficientes e eficazes. No entanto, o processamento de grandes volumes de dados requer abordagens e tecnologias especiais para garantir resultados precisos e oportunos. Nesse contexto, este trabalho propõe a aplicação da tecnologia de MapRe- duce em conjunto com o banco de dados MongoDB para lidar com os desafios associados ao processamento de grandes volumes de dados governamentais. O MapReduce, um modelo de programação paralela e distribuída, permite a divisão de tarefas em várias etapas de mapeamento e redução, possibilitando o processamento eficiente de grandes conjuntos de dados em ambientes distribuídos. Por sua vez, o MongoDB, um banco de dados NoSQL altamente escalável e flexível, oferece um ambiente propício para armazenar e manipular grandes volumes de dados de forma eficiente. O principal objetivo deste trabalho é investigar a viabilidade e a eficácia da utilização da tecnologia de MapReduce com MongoDB no contexto do processamento de dados gover- namentais. Por meio de um estudo prático, serão avaliadas as capacidades dessas tecnologias em lidar com as demandas específicas de análise e processamento de dados governamentais, visando aprimorar a capacidade das agências governamentais de extrair insights valiosos e tomar decisões fundamentadas com base em evidências. Ao finalizar esta pesquisa, espera-se contribuir significativamente para o avanço do conhecimento no campo do processamento de grandes volumes de dados governamentais, além de fornecer insights práticos e recomendações para o aprimoramento dos processos de análise e utilização de dados nas esferas governamentais. |
Descripción : | UAMBA, Antonio Paulo. Solução para queries complexas em bigdata utilizando mapreduce com banco de dados mongodb: um estudo de caso com dados do caged. 2024, 55f. Monografia - Curso de Engenharia de Computação, Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção-CE, 2024. |
URI : | https://repositorio.unilab.edu.br/jspui/handle/123456789/5749 |
Aparece en las colecciones: | Monografias - Engenharia da Computação |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
ANTONIO PAULO UAMBA.pdf | 2024_art_antuamba.pdf | 1,77 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.