Use este identificador para citar ou linkar para este item: https://repositorio.unilab.edu.br/jspui/handle/123456789/4562
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorFernandes, Larissa Braga-
dc.date.accessioned2024-04-11T20:18:51Z-
dc.date.available2024-04-11T20:18:51Z-
dc.date.issued2022-07-28-
dc.identifier.citationFERNANDES, L. B. (2022)pt_BR
dc.identifier.urihttps://repositorio.unilab.edu.br/jspui/handle/123456789/4562-
dc.descriptionFERNANDES, Larissa Braga. Funções complexas holomorfas e campos conformes no plano hiperbólico. Monografia - Curso de Curso de Licenciatura em Matemática, Instituto de Ciências Exatas e da Natureza, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Redenção-Ceará, 2022.pt_BR
dc.description.abstractO presente trabalho tem como objetivo, apresentar uma maneira mais simples de se obter campos de vetores conformes (ou simplesmente, campos conformes) no plano hiperbólico, utilizando-se das funções complexas holomorfas. Para isso estudamos as referidas funções e a relação destas com os campos conformes no plano hiperbólico, utilizando a fórmula da derivada de Lie para mudança conforme de métrica para demonstrar que através das partes real e imaginária de uma função holomorfa, podemos construir exemplos de campos conformes no plano hiperbólico. Do mesmo modo, mostramos que a partir das funções componentes de um campo conforme no plano hiperbólico é possível obter uma função complexa holomorfa. Por fim, demonstramos alguns resultados, entre eles, que um campo é conforme no plano hiperbólico se, e somente se, o mesmo for conforme no semiplano superior do plano Euclidiano munido com a métrica canônica e que um campo homotético no plano hiperbólico será um campo de Killing.pt_BR
dc.language.isopt_BRpt_BR
dc.subjectFunções complexas holomorfaspt_BR
dc.subjectCampos conformespt_BR
dc.subjectPlano hiperbólicopt_BR
dc.titleFunções complexas holomorfas e campos conformes no plano hiperbólicopt_BR
dc.typeMonographpt_BR
Aparece nas coleções:Monografia - Licenciatura plena em Matemática

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
TCC - Larissa Fernandes (1).pdf2022_mono_lferandes.pdf1,48 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.